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Abstract 

The standard diagnosis of diabetic foot ulcer (DFU) infection is limited to 

scheduled visits, and late treatment of this disease can result in further 

complications and limb amputation. This study proposed an automatic 

framework for rapidly detecting DFU infection status on the edge. The design of 

this framework used Google Colab and Android Studio IDE platforms to train 

and optimize the employed models to run on a mobile device using the developed 

Android app. DFU image classification results are compared for pretrained 

MobileNetV2 and EfficientNetB3, and a custom-developed stack convolutional 

model optimized for the two-class classification problem. The testing results 

showed that MobileNetV2 and EfficientNetB3 systems recognized DFU 

infection status with a classification accuracy of 0.74 and 0.8, respectively, 

whereas the stack model performed comparatively inferior. Most misclassified 

images suffered from severe motion blurs and loss of finer details. This paper 

recognized MobileNetV2 as the benchmark model for further exploration in this 

study area. The future of this work includes adopting a more effective weight 

updating process and incorporating preprocessing steps to enhance image quality 

and remove background prior to the prediction. This proposed strategy could 

improve patient care quality in DFU management by supporting real-time clinical 

decision-making in at-home or remote care settings, reducing morbidity and 

mortality. 
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1.  Introduction 

With the advancement of artificial intelligence (AI) applications in all areas of life, 

this technology has significantly transformed how humans work, interact, live, and 

carry out their everyday tasks. The ability of this technology to learn from large 

datasets or past computations eases the decision-making process, allowing efficient 

knowledge and resource management while profoundly improving human well-

being and living qualities. The application of AI is vast and spans from heavy 

industry and manufacturing to AI-powered technology and services [1]. Its 

application in healthcare is becoming increasingly prevalent to improve delivery 

and promote best practices. The integration of AI with imaging technologies has 

been proposed to diagnose diseases, such as infections, malignancies, and 

neurological disorders [2-4]. 

Besides, combining AI with telemedicine for home-based care support allows 

the diagnosis to be made immediately using an edge device, i.e., a smartphone, thus 

improving clinical outcomes and patient experience. Previous efforts that adopted 

human-cantered AI for mobile diagnostics and treatment recommendations include 

skin cancer detection using a convolutional neural network (CNN)-enabled mobile 

app in [5], Internet of Things (IoT) technologies proposed for improved self-

management of chronic diseases during the COVID-19 pandemic in [6-8], and 

mobile system for rehabilitation and recovery applications [9]. 

Diabetic foot ulcer (DFU) is one of the non-communicable chronic diseases 

suffered by a third of type II diabetic patients worldwide [10]. This complication is 

caused by poor circulation of oxygen-carrying blood flowing to the lower extremities 

due to the high glucose microenvironment, thus causing vascular endothelial 

dysfunctions [10]. DFU can be classified into different disease states: negative or 

positive infection, ischemia (inadequate blood supply), or a combination of both [11]. 

Lower limb ischemia is an important prognosis factor that leads to DFU development, 

delayed healing of the wound, and further patient morbidity. This pathological 

condition causes the narrowing of arteries, resulting in soft tissue infections. 

Although these clinical problems are reversible, they are chronic and recurrent. If the 

infected wound progresses to an advanced stage, the infection could be spread rapidly 

to the contiguous subcutaneous skin and bone, causing osteomyelitis [12], which can 

be life-threatening. Therefore, limb amputation is often necessary to halt the 

progression of the disease and prevent mortality.  

Nonetheless, many patients do not seek proper medical attention until the 

condition worsens, largely due to their negligence or lack of appropriate knowledge 

about the disease. This problem is further exacerbated if the disease has been wrongly 

diagnosed, which can lead to the improper treatment of the patient, causing further 

complications. Unlike DFU infection, ischemic wounds are easier to recognize based 

on necrosis and gangrene appearance [13]. The conventional procedure of DFU 

infection detection is based on visual examination using magnification tools and 

clinical scoring by an experienced orthopaedic. The affected soft tissue specimen 

would also be collected from biopsy, swab culture, needle aspiration, and probe to 

bone (PTB) [13, 14] to confirm the severity of the infection.  

The abovementioned issues call for an early and prompt appropriate treatment 

in DFU patient care and strategy to improve clinical outcomes and living quality 

[14]. Since most diagnoses and treatments can only be performed in clinical settings 

and during the scheduled clinical visits, which is the primary point of contact 
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between the public and healthcare providers, quality diabetic patient care should be 

extended into home settings. This is possible following the advancement of AI and 

IoT technologies that warrant the integration of millions of devices and large data 

processing capabilities, thus strengthening the digitalization of healthcare. This 

infrastructure supports better health management procedures and more efficient 

quality care [4].  

Among the earlier studies in the diabetes self-management domain worth 

highlighting are Joachim et al. [15], who demonstrated using a cross-platform 

mobile application and a web-based application for personalized fitness and 

nutrition recommendations for diabetic patients. Others include Tripathi et al. [16], 

who proposed using an IoT-based spatiotemporal CNN system for continuous 

blood glucose monitoring to improve diabetes management, while another study of 

Shen et al. [17] recommended a smartphone app that supports gestational diabetes 

diagnosis using fasting glucose data in pregnant women. Although AI-based 

diabetic care and research are well underway, there remains work to be done for 

better management and prevention of deterioration of foot ulcers, which is the most 

dreaded complication of diabetes, using mobile applications. 

Based on the urgency of the need for more efficient management of DFU 

infection described above, this study proposes an innovative use of AI in 

developing a home-assisted healthcare system for mobile and rapid DFU infection 

detection. This strategy facilitates rapid and reliable diagnosis based on the 

acquired image, complementing the standard screening procedures, and enabling 

patients to seek prompt clinical confirmation and treatment from healthcare 

facilities in cases of suspected positive infection. 

2.  Methods  

2.1.  Convolutional neural networks and model training 

The primary objective of this paper is to propose a lightweight system for DFU 

infection status classification, which can be deployed on an Android mobile device 

for inferencing. For this purpose, this work used open-source Google Colab for the 

simulation. This platform supports importing Keras and TensorFlow (TF) API 

libraries for machine learning applications and edge model optimization and 

compilation using Google’s free cloud service. All experiments were implemented 

with run time Python 3 on an NVIDIA T4 GPU and 78 GB of RAM. 

For the sake of experiments, pre-trained convolutional (conv) MobileNetV2 and 

EfficientNetB3, shown in Figs. 1(a) and (b), are used in this study. Their weights 

loaded from the repository of the TensorFlow hub are used as a feature extractor. 

MobileNet is a lightweight, depth-wise separable convolution (DWSC) model 

consisting mainly of inverted residuals and linear bottleneck blocks, whilst 

EfficientNet is a scaling method that uses inverted residual blocks (MBConv) for 

efficient feature extraction.  

The neuron weights of these models were pre-trained on the ImageNet dataset 

(ILSVRC-2012-CLS) and were shown to outperform their predecessors, e.g., 

MobileNetV1, and other traditional convolutional models, such as ResNet and 

Inception, VGG, in terms of performance and computational cost [18, 19]. These 

models are used with transfer learning to classify DFU infection images. This work 

also proposes a custom-developed CNN formed by linearly stacking three 
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convolutional layers shown in Fig. 1(c) for the two classes of DFU infection 

classification with end-to-end training. 

 

(a) MobileNetV2 

 

(b) EfficientNetB3 

 

(c) Stack convolutional model 

Fig. 1. Convolutional neural network architecture of  

(a) MobileNetV2, (b) EfficientNetB3 and (c) Stack convolutional model. 

The dataset used for models’ training was selected from the Diabetic Foot 

Ulcers Grand Challenge (DFUC-21) dataset (Part B) from [11] containing 15,760 

DFU images collected from Lancashire Teaching Hospital. This dataset comprises 

5,890 and 9,870 images annotated and grouped according to their infection and 

ischemia status, respectively, by a podiatrist and a DFU consultant physician. This 

study considered only the infection problem; thus, images of the positive and 
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negative (non-infection) classes are used in the training and testing. Examples of 

these images and their ground truth label are shown in Fig. 2.  

 

Fig. 2. DFU infection images and their ground truth label. 

Each image is 256 × 256 pixels in size, which is resized to 224 × 224 pixels and 

299×299 pixels, respectively, according to the input size requirement of 

MobileNetV2 and EfficientNetB3. The stack convolutional model in Fig. 1(c) has 

the same input size as the EfficientNetB3. The balanced positive and negative 

infection classes of 2,945 images (each class) were randomly split into training, 

validation, and testing datasets using a split ratio of 85 %, 10 %, and 5 %. 

Considerable effort (by manual cross-checking) has been taken to avoid data 

contamination between training and testing sets. The testing set was set aside for 

final system validation implemented on a mobile Android device. The training set 

is fed into the input layer of the network, which is connected to the feature extractor 

in Fig. 1, followed by a dense output layer of two classes. These layers were 

stacked, and these models were built using Keras sequential API. Figure 3 shows 

the overall workflow in developing the deep learning model for edge device 

deployment. The resized DFU images from the preprocessing steps are used for 

network training. 

The 20-epoch model training was performed using SGDM as an optimizer with 

a mini-batch size of 64 and an initial learning rate of 0.005 to fine-tune the weight 

of the network neurons for the problem. The trained model is then converted from 

TensorFlow to a TensorFlow lite file format (.tflite), which is compatible with 

Android devices. 
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Fig. 3. Machine learning pipeline and mobile app development flow. 

2.2. Edge deployment and prediction 

The mobile application (app) for real-time diagnosis of DFU infection was designed 

and built using Android Studio Flamingo (2022.2.1) with Java programming. The 

functional parts of the app and the designed user interface (UI) layout for image 

acquisition, selection, and classification are shown in Fig. 4. The classification is 

performed using the generated .tflite file imported into the platform. Users can select 

the existing images from the gallery or capture them through the camera. The chosen 

image would be resized to 224×224 or 299×299 for conformity with the input layer of 

the models in Fig. 1 before being displayed on the viewing panel for visualization. The 

predicted classification result would be displayed on the UI screen in real-time. The 

custom-built app was deployed on Xiaomi Redmi Note 4 with Android 7.0 operating 

system for testing and demonstration. This device has 3GB RAM and an Octa-core 

CPU with Max 2GHz for the classification of DFU images without cloud support. 

 

Fig. 4. The functional parts of the developed  

application (left) and the designed user interface (right). 

2.3. Performance evaluation metrics 

The performance of the classification models in their ability to identify the wound 

infection status is evaluated based on the prediction accuracy (ACC), precision (PREC), 

sensitivity (SENS), specificity (SPEC), and F1 score (F1) shown in Eqs. (1) – (5).  
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𝐴𝐶𝐶 =
(𝑇𝑃 + 𝑇𝑁)

(𝐹𝑁 + 𝐹𝑃 + 𝑇𝑃 + 𝑇𝑁)
 (1) 

𝑆𝐸𝑁𝑆 =  
𝑇𝑃

(𝑇𝑃 + 𝐹𝑁)
 (2) 

𝑆𝑃𝐸𝐶 =  
𝑇𝑁

(𝑇𝑁 + 𝐹𝑃)
 (3) 

𝑃𝑅𝐸𝐶 =  
𝑇𝑃

(𝑇𝑃 + 𝐹𝑃)
 (4) 

𝐹1 =  
2𝑇𝑃

2𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁
 (5) 

Where True Positive (TP) is the correct prediction of an infected wound image, 

True Negative (TN) is an accurate prediction of the non-infected DFU. False 

Negative (FN) is the probability of an infected wound (i.e., positive result) being 

misclassified as normal/non-infected (i.e., negative result), and False Positive (FP) 

is the opposite concept of FN. Thus, the ACC metric in Eq. (1) describes the ratio 

of the number of samples correctly classified by the system to the total number of 

samples. SENS or recall is the ratio of TP (positive infection) predictions to the total 

number of actual positive cases, whereas SPEC is the ability of the model to classify 

TN cases among all negative cases correctly. PREC in Eq. (4) measures the 

system’s ability to predict TP cases among all positive predicted cases. F1 in Eq. 

(5) is computed as twice the product of PREC and SENS divided by their sum. 

3. Results 

The training process in this study uses 20 epochs to optimize the network performance. 

Figure 5 shows the training and validation accuracies for each iteration of the epoch. 

The figure shows that the model training performance improves with epoch number. 

The training accuracy of pretrained networks (panels a and b of Fig. 5) reached a 

plateau, accompanied by a slow increase in the validation accuracy after the fifth epoch, 

suggesting the possibility of models’ overfitting beyond this epoch. 

 

Fig. 5. Model training and validation progress.  

 
(a) MobileNetV2 

 
(b) EfficientNetB3 

 
(c) Stack convolutional model 



584       A. K. C. Huong et al. 

 
 
Journal of Engineering Science and Technology               April 2025, Vol. 20(2) 

 

The training process took approximately 20 minutes for MobileNetV2 and the 

stack model, while EfficientNetB3 required 45 minutes to execute. The testing 

confusion matrix of these models (in tflite format on an edge device) evaluated 

using testing images is shown in Fig. 6. The performance measures in Eqs. (1)-(5) 

calculated based on the results in the figure are tabulated in Table 1.  

 

Fig. 6. Testing confusion matrix of (a) MobileNetV2, (b) EfficientNetB3,  

(c) Stack convolutional model, and (d) a screenshot of DFU image classification 

on Android smartphone. Class label 0: negative and 1: positive infection. 

Table 1. Performance metrics of the target  

models optimized for DFU infection classification. 

Model 
Performance metrics 

Accuracy Sensitivity Specificity Precision F1 

MobileNetV2 0.744 0.636 0.85 0.81 0.72 

EfficientNetB3 0.8 0.76 0.84 0.82 0.79 

Stack model 0.588 0.586 0.59 0.586 0.586 

4. Discussion 

The key challenge in the early detection and diagnosis of DFU infection is the rigid 

scheduled care and screenings, which could be infrequent and unsystematic. This 

can lead to delayed treatment and result in further complications and increased 

morbidity. This work proposed using edge computing technology to establish more 

effective patient care and improve patients’ outcomes. This system promotes rapid 

classification of DFU infection, allowing an AI-assisted self-diagnosis using 
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patient-captured images before they seek professional confirmation and prompt 

treatment from a health facility.  

The developed mobile app tested on the testing images showed comparatively 

better classification performance achieved using the transfer learning methods on 

MobileNetV2 and EfficientNetB3 with a training accuracy of 0.74-0.8 than with the 

stack convolutional model (accuracy of 0.59). Unlike the stack model (consisting of 

2.5 million learnable parameters that have never learned any features), the weights of 

the pretrained networks (i.e., 2.2 million in MobileNetV2 and 22 million in 

EfficientNetB3) were originally tuned on ImageNet data. The weights of these 

parameters have been efficiently updated and optimized for our two-class 

classification problem, enhancing the network’s generalization capabilities. 

Both MobileNetV2 and the stack model are considerably lightweight, resulting 

in a faster convergence rate by two-fold than their deeper and wider EfficientNet 

counterpart. The efficiency of the latter architecture is also the reason for the best 

overall performance in Fig. 6. The results show that EfficientNetB3 can recognize 

positive infection cases with a lower misclassification rate of 24 % (and a superior 

sensitivity score of 0.76), as compared to 36 % in MobileNetV2, i.e., the sensitivity 

of 0.63. These models correctly detected most negative infection images, as can 

also be observed from the results in Fig. 7, producing a reasonable specificity of 

0.85. The findings also show similar precision and F1-score performances, ranging 

between 0.72-0.82.  

These scores in Table 1 may initially suggest that these pretrained networks 

overfitting to the negative infection training data, nonetheless the balanced dataset is 

used in this study, and this problem is not seen in the results of the stack model in 

Figs. 6(c) and 7. Therefore, we rule out the possibility of model bias. Images in both 

classes, as shown in Figs. 2 and 7, exhibit similar features in terms of colour and 

texture, except that the positive infection demonstrated greater impairment with 

increased exudate and wound depth, and sloughing and exposure of the dermal layer.  

This complexity is further aggravated by significant variations in the 

appearance and characteristics of the wound bed, which vary in colour from yellow 

to black. Positive DFU infection images, whose wound bed is similar in hue to the 

surrounding skin, as shown on the rightmost bottom rows of Fig. 7, were 

misclassified by most models (i.e., MobileNetV2 and stack convolutional network) 

as noninfecting. Therefore, one possible reason for the misclassification rate is the 

infeasibility of the adopted networks in learning the high-level representations in 

the DFU infection dataset.  

In addition, we do not exclude the possibility of poor image quality that 

degrades the model performance and the image’s complex background that affects 

the analysis of colour and structure. Some images, e.g., seen in the centre image on 

the top row and the last image on the second row of Fig. 2, show insufficient image 

quality due to motion artifacts and the diversity of the image background. These 

cause uncertainties in the training process and possibly the learning of irrelevant 

information in the model training, which may contribute to the misclassification 

rate in the testing phase. Meanwhile, an example of background noise that 

considerably affects the models’ performances is that shown on the rightmost 

image in the top rows of Fig. 7.  
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The dark background colour on the top right corner of this image (marked by the 

red box) could have been wrongly identified as the attributes of scabs, which are 

common in negative infection wounds (see leftmost image indicated by the white box 

in Fig. 7), causing misclassification of the image by the models. The proposed stack 

model performed inferiorly in all metrics evaluated, suggesting the need for a more 

robust weight updating strategy to enhance the accuracy. These experimental results 

show that the MobileNetV2 is superior in terms of computing and classification 

performances as compared to the competing models. This model can be easily 

adapted to the DFU image data and is effective for DFU infection detection. 

 

(a) MobileNetV2 

 

(b) EfficientNetB3 

 

(c) Stack convolutional model 

Fig. 7 Examples of prediction using the employed  

models tested on six images randomly chosen from the test set. 
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This work developed a Java-based user interface for serverless deployment and 

implementation of edge detection of DFU infection. This app can function with the 

device’s CPU without needing an internet or a cloud server connection, providing 

a high degree of flexibility. Therefore, it is well suited for environments with 

inadequate ICT infrastructure. This process also results in faster response time and 

prediction speed. Since the testing stage of this app involved uploading images 

from the device gallery, the next step of this work is to validate the system’s 

performance in real-world clinical settings using the image input from the device 

camera. Such an experiment is not possible in this study as the researchers had no 

access to the DFU patients.  

In addition, there is room for improvement in the network’s performance, which 

can be enhanced with deeper and wider network structures. More robust and 

effective image preprocessing steps may also be implemented to address the image 

quality issues due to artifacts, environment and working factors, such as poor 

ambient lighting conditions, imaging angle, and different camera settings and 

quality. Image segmentation could also be explored to remove the image 

background and integrate it into the system for more effective diagnosis.  

5. Conclusion 

This paper presents a complete working framework of an Android application for the 

classification of DFU infection status on the edge. This standalone system provides a 

solution to improving healthcare delivery by rapidly diagnosing a suspected wound 

and making the diagnosis process accessible to patients in remote care settings. This 

strategy allows patients to take prompt action in seeking further clinical opinions and 

treatment in cases of suspected positive infection, improving patient outcomes. This 

approach is also advantageous in time and cost-saving in terms of lower healthcare 

costs and resource utilization. The experimental results comparing the training and 

classification performances of MobileNetV2, EfficientNetB3, and a custom-

developed stack convolutional model showed the superiority of MobileNetV2. The 

testing of this system showed an acceptable classification performance ranging from 

0.63 to 0.85, which could be further improved by adopting more effective image 

preprocessing techniques and improving network architecture. 
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