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Abstract 

RSA is a widely used asymmetric cryptography method, primarily employed for 

digital signature validation and message encryption. The security of RSA relies 

on the computational difficulty of the integer factorization problem, particularly 

when large security parameters are used. However, vulnerabilities in RSA can be 

exploited, allowing adversaries to impersonate key holders and decrypt 

confidential messages. This study presents novel cryptanalysis techniques that 

target specific weaknesses in the RSA encryption system. We focus on solving 

key equations of the form 𝑒𝑟 − (𝑁 − 𝑝 ±  𝑞 + 𝑢)𝑠 = 𝑡, where specific conditions 

are imposed on the parameters 𝑟, 𝑠, 𝑡, 𝑢 . By utilizing continued fractions to 

identify appropriate values for r and s, followed by the application of 

Coppersmith's method, we successfully factorize the modulus 𝑁 in polynomial 

time. The results demonstrate the potential vulnerabilities in RSA when certain 

key equation structures are exploited. 

Keywords: Continued fractions, Coppersmith's method, Diophantine approximations, 

RSA cryptanalysis, RSA cryptosystem. 
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1.  Introduction 

The Information Technology forms the bedrock of modern society, intricately 

woven into every aspect of our daily lives. Security has consistently taken centre 

stage in computing, ensuring the safe Internet exchange of information and data. 

The present-day applications of cryptographic algorithms extend to various 

domains, including encryption features embedded in web browsers, chat 

applications, email services, VPNs, and other communication platforms 

necessitating the secure transmission of data between parties. The basic procedure 

for message encryption and decryption is illustrated in Fig. 1. The sender 

transforms the plaintext into ciphertext using the encryption key during encryption. 

On the other hand, during decryption, the recipient reverses this process by 

decrypting the received ciphertext back into plaintext using the decryption key. 

 

Fig. 1. Encryption and decryption process in cryptography. 

Often referred to as the RSA cryptosystem, it derives its name from its creators, 

Ron Rivest, Adi Shamir, and Leonard Adleman, who presented RSA in their 1977 

seminal paper [1]. The RSA public key cryptographic algorithm is prominent in the 

domain of cryptographic algorithms, being among the earliest and most widely 

employed concepts of public key cryptography, marking the formal entrance of 

cryptography into modern cryptography. It is an algorithm that uses a pair of keys: 

a publicly disclosed public key and a confidential private key. The public key is 

utilized to encrypt information, whereas the private key is employed for decryption. 

The ciphertext generated by encrypting plaintext with a public key can only be 

decrypted with the corresponding private key. The public key cannot be used for 

decryption. See Fig. 2. 

 

Fig. 2. The concept of public key cryptography. 
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Before proceeding deeper, it is crucial to define the parameters of the RSA 

cryptosystem. A fundamental parameter is the RSA modulus, denoted as 𝑁, and it 

is determined by multiplying two large, randomly selected prime numbers, referred 

to as 𝑝 and 𝑞. Additionally, we compute 𝜙(𝑁), which is the product of (𝑝 − 1) and 

(𝑞 − 1) , representing Euler's totient function for 𝑁.  We exercise caution in 

selecting 𝑝 and 𝑞 to enhance security and thwart factorisation attempts, ensuring 

that 𝑞 < 𝑝 < 2𝑞. Once 𝜙(𝑁) is established, we select a random integer, 𝑒, such 

that 𝑒 is less than 𝜙(𝑁). Subsequently, we calculate the private key component, 

denoted as 𝑑, ensuring that it satisfies the congruence equation 𝑒𝑑 ≡ 1 mod 𝜙(𝑁). 

In the RSA cryptosystem, 𝑁 and 𝑒 are the public keys, while 𝑝, 𝑞, 𝑑 and 𝜙(𝑁) are 

designated as the private keys. 

In an era marked by the pervasive use of the Internet and smart devices, 

incidents of data thefts and breaches have exhibited a persistent upward trajectory. 

In light of these challenges, researchers and cryptographers are actively working to 

introduce innovative cryptographic models and improve existing algorithms [2]. 

These advancements are geared towards practical implementation in real-world 

applications, aiming to enhance user privacy, fortify data security, strengthen 

authentication mechanisms, and address many related features.  

1.1. Our contribution 

The present study introduces a new structure for a weak RSA key equation that 

facilitates solving the integer factorization problem by using the continued 

fractions algorithm and Coppersmith's theorem, all accomplished within 

polynomial time. In the first cryptanalysis, we manipulate the key structure 

having the form 𝑒𝑟 − (𝑁 − 𝑝 + 𝑞 + 𝑢)𝑠 = 𝑡 . Meanwhile, in the second 

cryptanalysis, we employ the key structure of the form 𝑒𝑟 − (𝑁 − 𝑝 − 𝑞 + 𝑢)𝑠 =
𝑡. We provide a practical demonstration of our new attack method and highlight 

the uniqueness of our work by comparing it to relevant existing research. It is 

important to note that this research broadens the scope of vulnerabilities related 

to insecure RSA decryption exponents. 

1.2. Organization of the article 

The subsequent sections of this paper are structured as follows. Section 2 provides 

an overview of essential background information, including previous theorems 

related to continued fractions, Diophantine approximations, Coppersmith’s 

method, and other theorems relevant to our study. Section 3 presents the core of 

our work, including the proof of our main attack and illustrative numerical 

examples to demonstrate our findings. Following that, we also provide a 

comparative table of our results compared to previously documented attacks. 

Finally, in Section 4, we draw our conclusions and summarize the key takeaways 

from this paper.  

2.  Preliminaries 

This section provides an overview of continued fractions, which are used to 

approximate both rational and irrational numbers. This method forms the basis for 

creating strategies to attack the RSA cryptosystem and its various versions. Following 

this, we present an important technique for solving Diophantine equations. 
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2.1. Diophantine approximation 

Definition 1. (Continued Fractions [3]) For any positive 𝜉 ∈ ℝ, let 𝜉0 = 𝜉, and for 

𝑖 = 1, 2, ⋯ , 𝑛, set 𝜉𝑖 = ⌊𝑥𝑖⌋ and 𝜉𝑖+1 =
1

𝜉𝑖−𝓍𝑖
 until 𝜉𝑛 ∈ ℤ. Consequently, 𝜉 can be 

expressed as continued fractions in the form: 

𝜉 = 𝑥0 +
1

𝑥1+
1

𝑥2+
1

𝑥3+
1

⋯+
1

𝑥𝑛

                                                                                (1) 

For simplicity, Eq. (1) can be expressed as 𝜉 = [𝑥0, 𝑥1, ⋯ , 𝑥𝑛, ⋯ ]. In the case 

where 𝜉  is a rational number, the process of computing its continued fractions 

expansion concludes at a finite index 𝑛 , resulting in 𝜉 = [𝑥0, 𝑥1, ⋯ , 𝑥𝑛] . The 

convergents 
𝑥

𝑦
 of 𝜉 are fractions denoted by 

𝑥

𝑦
= [𝑥0, 𝑥1, ⋯ , 𝑥𝑖] for 𝑖 ≥ 0. Notably, 

if 𝜉 =
𝑥

𝑦
 is a rational number with gcd(𝑥, 𝑦) = 1, the continued fractions expansion 

of 𝜉 can be computed using the Euclidean Algorithm in 𝑂(log(𝑦)) time. 

The subsequent Theorem 1 assures that the unknown integers 𝑦 and 𝑧 belong to 

the list of convergents in the continued fractions expansion of a rational number 𝑋, 
satisfying the given inequality as in Eq. (2). 

Theorem 1. (Legendre’s theorem [4]). Consider a rational number 𝑋  and the 

positive integers 𝑦 and 𝑧 with gcd(𝑦, 𝑧) = 1. If the inequality 

|𝑋 −
𝑦

𝑧
| <

1

2𝑧2                                                                                                                                            (2) 

holds, then 
𝑦

𝑧
 is convergent in the continued fraction expansion of 𝑋. 

2.2. Coppersmith’s method 

Given a sufficiently accurate approximation of any multiple of a divisor of 𝑁, the 

broad application of Coppersmith's result [5] readily provides an effective 

factorization method, as demonstrated in Theorem 2 and its corresponding variant, 

Theorem 3. These theorems ensure that revealing half of the leading bits of the 

prime number 𝑝 enables the deduction of the remaining bits. Moreover, satisfying 

these specified conditions results in the factorization of 𝑁, achievable within a time 

frame polynomial in log 𝑁. 

Theorem 2. [5]. Consider an RSA modulus 𝑁 = 𝑝𝑞 where 𝑝 > 𝑞. Additionally, let 

𝑘  be an (unknown) integer not divisible by 𝑞 . Assume we possess an 

approximation 𝑝̃ of 𝑘𝑝 such that: 

|𝑘𝑝 − 𝑝̃| < 𝑁
1

4                                                                                                                                         (3) 

Theorem 3. [6]. Consider an RSA modulus 𝑁 = 𝑝𝑞 with 𝑝 > 𝑞. Additionally, let 

𝑘 be an (unknown) integer not divisible by 𝑞. Assume we possess an approximation 

𝑝̃ of 𝑘𝑝 such that: 

|𝑘𝑝 − 𝑝̃| < √2𝑁
1

4                                                                                                                                  (4) 

The significance of Theorem 2 and Theorem 3 in this study lies in its application 

as a tool to demonstrate that with partial knowledge of bits from 𝑝 (specifically, 
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knowledge of the most significant bits (MSBs)), we can successfully solve the 

factorization of 𝑁. As a result, having information about the approximation of 𝑝 

(i.e. 𝑝̃) also allows us to estimate the value of 𝑝 with high accuracy, guaranteeing 

that the error in this approximation is less than 𝑁
1

4 [7]. It is important to note that, 

although Theorem 2 and Theorem 3 are based on similar fundamental concepts, 

these theorems focus on different specific cases and applications within our 

cryptanalysis framework, as demonstrated in Theorem 4 and Theorem 5. 

3.  Successful direction of factoring new structure of weak RSA key 

equations 

In this section, we introduce a new structure of weak RSA key equation: 𝑒𝑟 − (𝑁 −
𝑝 ± 𝑞 + 𝑢)𝑠 that is partitioned into two separate equations, presenting the results 

individually. Subsequently, both results contribute to solving the integer 

factorization problem efficiently through the continued fractions algorithm and 

Coppersmith's theorem. In the key generation of the RSA cryptosystem, the chosen 

primes should be of the same bit size to enhance its security. Allowing uneven 

factors is a potential security risk because the “small” factor could be easily found 

[8]. Thus, the notation 𝑞 < 𝑝 < 2𝑞 is employed to signify that the primes 𝑝 and 𝑞 

are balanced. In this section, we standardize the sizes of the prime factors 𝑝 and 𝑞 

of the RSA modulus as stated in Lemma 1, and we also establish the bounds for the 

term 𝑝 + 𝑞 in Lemma 2. 

Lemma 1. [3]. Let 𝑁 = 𝑝𝑞 be an RSA modulus with the same bit size primes 

written as 𝑞 < 𝑝 < 2𝑞. Then 
√2𝑁

2
< 𝑞 < √𝑁 < 𝑝 < √2𝑁. 

Lemma 2. [3]. Let 𝑁 = 𝑝𝑞  be the RSA modulus with 𝑞 < 𝑝 < 2𝑞 . Then       

2√𝑁 < 𝑝 + 𝑞 <
3√2𝑁

2
. 

In the first cryptanalysis, we manipulate the key structure having the form  

𝑒𝑟 − (𝑁 − 𝑝 +  𝑞 +  𝑢)𝑠 =  𝑡 meanwhile, in the second cryptanalysis, we 

employ the key structure 𝑒𝑟 − (𝑁 − 𝑝 − 𝑞 + 𝑢)𝑠 = 𝑡, as follows. 

3.1. Cryptanalysis of key equation 𝒆𝒓 − (𝑵 − 𝒑 + 𝒒 + 𝒖)𝒔 = 𝒕 

Theorem 4. Consider an RSA modulus 𝑁 = 𝑝𝑞  where 𝑞 < 𝑝 < 2𝑞. Let 𝑒  be a 

public exponent that satisfies the equation 𝑒𝑟 − (𝑁 − 𝑝 + 𝑞 + 𝑢)𝑠 = 𝑡,  where 

gcd(𝑟, 𝑠) = 1 and 

|𝑡| < 𝑠|𝑝 − 𝑞 − 𝑢| 𝑎𝑛𝑑 𝑟𝑠 <
𝑁

4|𝑝 − 𝑞 − 𝑢|
 𝑎𝑛𝑑 |

𝑡

𝑠
+ 𝑢| < 𝑁

1
4. 

Under these conditions, the factorization of 𝑁  can be achieved in 

polynomial time. 

Proof. Consider an RSA modulus 𝑁 = 𝑝𝑞  where the RSA primes abide by      

𝑞 < 𝑝 < 2𝑞 and its corresponding public exponent 𝑒. We can express the equation 

𝑒𝑟 − (𝑁 − 𝑝 + 𝑞 + 𝑢)𝑠 = 𝑡 as follows: 

𝑒𝑟 − 𝑁𝑠 = 𝑡 − (𝑝 − 𝑞 − 𝑢)𝑠                                                                                                          (5) 

By simplifying Eq. (5) and dividing it by 𝑁𝑟, we obtain: 
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𝑒𝑟

𝑁𝑟
−

𝑁𝑠

𝑁𝑟
=

𝑡

𝑁𝑟
−

(𝑝 − 𝑞 − 𝑢)𝑠

𝑁𝑟
 

which also can be expressed as: 

|
𝑒

𝑁
−

𝑠

𝑟
| =

|𝑡−(𝑝−𝑞−𝑢)𝑠|

𝑁𝑟
≤

|𝑡|+|𝑝−𝑞−𝑢|𝑠

𝑁𝑟
                                                                                         (6) 

If we suppose |𝑡| < |𝑝 − 𝑞 − 𝑢|𝑠, we get: 

|𝑡| + |𝑝 − 𝑞 − 𝑢|𝑠

𝑁𝑟
<

2|𝑝 − 𝑞 − 𝑢|𝑠

𝑁𝑟
 

Consequently, we can establish that 𝑟𝑠 <
𝑁

4|𝑝−𝑞−𝑢|
. This allows us to derive the 

following expression:  

2|𝑝 − 𝑞 − 𝑢|𝑠

𝑁𝑟
<

1

2𝑟2
. 

Hence, we deduce the following 

|
𝑒

𝑁
−

𝑠

𝑟
| <

1

2𝑟2
; 

which satisfies Theorem 1 such that 
𝑠

𝑟
 is among the convergent of the continued 

fraction expansion of 
𝑒

𝑁
. Thus, the unknown values of 𝑠 and r can be determined 

efficiently in polynomial time. 

Subsequently, with the knowledge of 𝑠 and 𝑟, we define 

𝐴 = 𝑁 −
𝑒𝑟

𝑠
, 𝐵 = √𝐴2 + 4𝑁. 

Dividing both sides of the equation 𝑒𝑟 − (𝑁 − 𝑝 + 𝑞 + 𝑢)𝑠 = 𝑡 by 𝑠, we obtain 

𝑒𝑟 − (𝑁 − 𝑝 + 𝑞 + 𝑢)𝑠 = 𝑡 

𝑒𝑟

𝑠
− 𝑁 + 𝑝 − 𝑞 − 𝑢 =

𝑡

𝑠
 

𝑝 − 𝑞 − (𝑁 −
𝑒𝑟

𝑠
) =

𝑡

𝑠
+ 𝑢 

𝑝 − 𝑞 − 𝐴 =
𝑡

𝑠
+ 𝑢. 

Assuming |
𝑡

𝑠
+ 𝑢| < 𝑁

1

4, we can get 

|𝑝 − 𝑞 − 𝐴| = |
𝑡

𝑠
+ 𝑢| < 𝑁

1

4                                                                                   (7) 

According to the difference between two squares formula, expressed as: 

(𝑝 − 𝑞)2 − 𝐴2 = (𝑝 + 𝑞)2 − 4𝑝𝑞 − 𝐴2 = (𝑝 + 𝑞)2 − 4𝑁 − 𝐴2 = (𝑝 + 𝑞)2 −

(𝐴2 + 4𝑁) = (𝑝 + 𝑞)2 − (√𝐴2 + 4𝑁)
2

= (𝑝 + 𝑞)2 − 𝐵2                                          (8) 

We observe that (𝑝 + 𝑞)2 − 𝐵2 =  (𝑝 − 𝑞)2 − 𝐴2.  By applying the squared 

difference formula to expand both sides of Eq. (8), we obtain: 

(𝑝 + 𝑞)2 − 𝐵2 =  (𝑝 − 𝑞)2 − 𝐴2 

(𝑝 + 𝑞 + 𝐵)(𝑝 + 𝑞 − 𝐵) = (𝑝 − 𝑞 + 𝐴)(𝑝 − 𝑞 − 𝐴),  
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which can be simplified as: 

𝑝 + 𝑞 − 𝐵 =
(𝑝−𝑞+𝐴)(𝑝−𝑞−𝐴)

𝑝+𝑞+𝐵
                                                                                             (9) 

Taking absolute values for both sides of Eq. (9) results in: 

|𝑝 + 𝑞 − 𝐵| = |
(𝑝 − 𝑞 + 𝐴)(𝑝 − 𝑞 − 𝐴)

𝑝 + 𝑞 + 𝐵
| 

Considering the positivity of 𝐴 and 𝐵, and since 𝑝 > 𝑞 implies 𝑝 − 𝑞 > 0, we can 

deduce that 𝑝 − 𝑞 + 𝐴 and 𝑝 + 𝑞 + 𝐵 are also positive. Therefore: 

|𝑝 + 𝑞 − 𝐵| = |
(𝑝 − 𝑞 + 𝐴)(𝑝 − 𝑞 − 𝐴)

𝑝 + 𝑞 + 𝐵
| 

                       = |
(𝑝 − 𝑞 + 𝐴)|𝑝 − 𝑞 − 𝐴|

𝑝 + 𝑞 + 𝐵
| 

                       =
(𝑝 − 𝑞 + 𝐴)

𝑝 + 𝑞 + 𝐵
∙ |𝑝 − 𝑞 − 𝐴|. 

As defined earlier, we have 𝐵 = √𝐴2 + 4𝑁, hence 𝐴 < 𝐵. This implies 𝑝 − 𝑞 +

𝐴 < 𝑝 + 𝑞 + 𝐵, leading to 
𝑝−𝑞+𝐴

𝑝+𝑞+𝐵
< 1. Combining this with Eq. (7), we can derive: 

|𝑝 + 𝑞 − 𝐵| =
(𝑝−𝑞+𝐴)

𝑝+𝑞+𝐵
∙ |𝑝 − 𝑞 − 𝐴| < |𝑝 − 𝑞 − 𝐴| < 𝑁

1

4                                          (10) 

Summarizing the conclusion from Eqs. (7) and (10), 

|𝑝 − 𝑞 − 𝐴| < 𝑁
1

4,         |𝑝 + 𝑞 − 𝐵| < 𝑁
1

4                                                                            (11) 

Therefore, using the conclusions given by Eq. (11), we have the following: 

|𝑝 −
𝐴 + 𝐵

2
| = |

𝑝

2
−

𝐴

2
+

𝑝

2
−

𝐵

2
| 

 = |
𝑝

2
−

𝑞

2
−

𝐴

2
+

𝑝

2
+

𝑞

2
−

𝐵

2
| 

 = |
𝑝−𝑞−𝐴

2
+

𝑝+𝑞−𝐵

2
| 

 ≤ |
𝑝−𝑞−𝐴

2
| + |

𝑝+𝑞−𝐵

2
| 

 =
1

2
∙ |𝑝 − 𝑞 − 𝐴| +

1

2
∙ |𝑝 + 𝑞 − 𝐵| 

 <
1

2
∙ 𝑁

1

4 +
1

2
∙ 𝑁

1

4 

 = 𝑁
1

4. 

As a result, |𝑝 −
𝐴+𝐵

2
| < 𝑁

1

4. Consequently, 
𝐴+𝐵

2
 serves as an approximation of 

𝑝 with an additive term of at most 𝑁
1

4. By employing Coppersmith's technique from 

Theorem 2, this approximation facilitates the factorization of 𝑁.  

Following this, we present Algorithm 1 to illustrate the procedure for 

factorizing 𝑁 = 𝑝𝑞 using the method outlined in Theorem 4. 

Next, Example 1 illustrates the attack proposed in Theorem 4 using Algorithm 

1. The factorization of 𝑁 detailed in Example 1 was performed on a Windows 10 
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environment, using a computer equipped with an Intel (R) Core (TM) i5-8265U 

CPU running at 1.60 GHz and having 12.0 GB of RAM. 

Algorithm 1: Factorization of Weak RSA Modulus Using Theorem 4 

Input: RSA moduli 𝑁 and public exponent 𝑒. 
Output: The corresponding prime numbers 𝑝, 𝑞, 𝑜𝑟 ⊥. 

1. Find the continued fraction expansion of 
𝑒

𝑁
. 

2. For every convergent 
𝑠

𝑟
 of 

𝑒

𝑁
, calculate  

𝐴 = 𝑁 −
𝑒𝑟

𝑠
, 𝐵 = √𝐴2 + 4𝑁, and 𝑝̃ =

𝐴+𝐵

2
,  

3. Define the function 𝑔(𝑥) as 𝑔(𝑥) = (𝑥 + 𝑝̃) and identify polynomials 

with same root modulo 𝑝. 

4. Using the polynomials identified in Step 3, construct a matrix ℳ. 
5. Apply the LLL algorithm to ℳ yields the result denoted as ℳ𝐿𝐿𝐿. 
6. Based on the outcomes of matrix ℳ𝐿𝐿𝐿's first row, construct polynomial 

ℳ′(𝑥). 
7. Determine the small solution 𝑥0 by computing the roots of ℳ′(𝑥). 

8. Determine the values of 𝑝 and 𝑞 by 𝑝 = 𝑝̃ + 𝑥0 and 𝑞 =
𝑁

𝑃
 respectively. 

9. if 𝑞 is an integer, then output values of 𝑝 and 𝑞. 

10. else, output ⊥. 

Next, Example 1 illustrates the attack proposed in Theorem 4 using Algorithm 

1. The factorization of 𝑁 detailed in Example 1 was performed on a Windows 10 

environment, using a computer equipped with an Intel (R) Core (TM) i5-8265U 

CPU running at 1.60 GHz and having 12.0 GB of RAM. 

Example 1. Consider a scenario where an adversary gains access to an RSA-1024 

modulus, along with its respective public exponent 𝑒, as outlined below: 

𝑁 = 14023867055077450419114747427450708244956229205332010283416

68707195092609991060310452366437240732855646993299625893106587840

25949148036097122968882592669088781358786718568318594808775805832

50992513122185369348564981343765273811106683698242607757640432328

5810707084274299366266631462469082622609121926110391069. 

𝑒 = 29773425744057223779682753630015059850702579668940519613049

81733320544849172783036346313285606028758738150392996378279624271

07826528362876404927904126796502471936574570517013773902833113566

68590397766683046160281736845538534181880531942344712074245795899

417714946441042228487641041315963841107083747. 

The convergents of the continued fraction expansion 
𝑒

𝑁
 are outlined below. 

[0,
1

4710195990
,

11

51812155891
,

12

56522351881
,

23

108334507772
,

35

164856859653
,

583

2746044262220
,

⋯ ,
1565313

7372931015829113
,

3012892

14191311816961469
,

4578205

21564242832790582
,

94576992

445476168472773109
,

99155197

467040411305563691
,

193732189

912516579778336800
,

3586334599

16892338847315626091
, ⋯ ] 

By analysing this list, we can determine the values of 𝑟 and 𝑠. From the above 

list of convergents, the values of  
𝑠

𝑟
=

3586334599

16892338847315626091
.  Subsequently, we 

calculate 𝐴 = 𝑁 −
𝑒𝑟

𝑠
 and 𝐵 = √𝐴2 + 4𝑁 such that: 
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𝐴 = 19144088890978932971652493195908517559765153507956364410247

16626917565641102365723566056366549803198773542930741957813507156

399847723745307597325840823844, 

𝐵 = 23761726443963516151531440732949946961854472284862688425632

27703951377741524720963902317929707840974220528446079472093434363

9876221026693236850999606852183. 

Upon obtaining the values of 𝐴  and 𝐵 , we are able to compute the 

approximation of 𝑝; which in this case is 𝑝̃ =
𝐴+𝐵

2
, such that 

𝑝̃ = 12838067666530704724348345026270399358915493817829162433328

49683321567152817478768129461783181410647048941369576833937392539

8138034375219272224162723838013. 

Define 𝑔(𝑥) = (𝑥 + 𝑝̃). Given 𝑋 as an upper bound for the unknown |𝑝 − 𝑝̃|, where  

𝑋 = 10882206092031840708888616847141323607249182434952004276774

0845925196781544801. 

Let 𝑥0  be the common root of polynomials 𝑁, 𝑔(𝑥), 𝑥 ∙ 𝑔(𝑥),  and 𝑥2 ∙ 𝑔(𝑥) 

modulo 𝑝. Here, we construct a matrix ℳ to represent these polynomials. 

ℳ = [

  𝑁 0
   𝑝̃  𝑋

0    0
 0    0

      0 𝑝̃ ∙ 𝑋
      0 0

𝑋2 0   
𝑝̃ ∙ 𝑋2 𝑋3

] 

Next, applying the LLL algorithm to ℳ yields the result denoted as ℳ𝐿𝐿𝐿. Based 

on matrix ℳ𝐿𝐿𝐿's first row outcomes, construct polynomial ℳ′(𝑥) as follows. 

ℳ′(𝑥) =
𝑥3 −189395102662987171583253662071594618256𝑥2 −101485358174393913

98191158937365218948905129115584189651681707961196485954095139642

682502772398364915502117982921820𝑥 +10928191336891506051683498
57024804561838711663613144098360792574609911230387038200208
67730795409668161106209218533353562230024960912. 

Then, we determine the integer root of ℳ′(𝑥), resulting in:       

𝑥0 = 1076824433935814. 
Thus, we obtain the values of 𝑝 denoted as 𝑝 = 𝑝̃ + 𝑥0 which returns: 

𝑝 = 12838067666530704724348345026270399358915493817829162433328

49683321567152817478768129461783181410647048941369576833937392539

8138034375219273300987157773827. 

Finally, we complete the factorization of 𝑁 by calculating 𝑞 =
𝑁

𝑝
  which outputs: 

𝑞 = 10923658777432811427183095706679547602938978467033525992303

78020629810588707242195772856146526430327171587076502638156041824

1738186651473963710588193175647. 

3.2.  Cryptanalysis of key equation 𝒆𝒓 − (𝑵 − 𝒑 − 𝒒 + 𝒖)𝒔 = 𝒕 

Theorem 5. Consider an RSA modulus 𝑁 = 𝑝𝑞 where 𝑞 < 𝑝 < 2𝑞 . Let 𝑒 be a 

public exponent satisfying the equation 𝑒𝑟 − (𝑁 − 𝑝 − 𝑞 + 𝑢)𝑠 = 𝑡, with gcd(𝑟,
𝑠) = 1 and 
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|𝑡| < 𝑠|𝑝 + 𝑞 − 𝑢| and 𝑟𝑠 <
𝑁

4|𝑝+𝑞−𝑢|
 and |

𝑡

𝑠
+ 𝑢| <

𝑝−𝑞

𝑝+𝑞
∙ 𝑁

1

4. 

Under these conditions, the factorization of 𝑁  can be accomplished in 

polynomial time. 

Proof. Consider an RSA modulus 𝑁 = 𝑝𝑞  where 𝑞 < 𝑝 < 2𝑞  and a public 

exponent 𝑒. The equation 𝑒𝑟 − (𝑁 − 𝑝 − 𝑞 + 𝑢)𝑠 = 𝑡 can be expressed as follows: 

𝑒𝑟 − 𝑁𝑠 = 𝑡 − (𝑝 + 𝑞 − 𝑢)𝑠                                                                                                      (12) 

Simplifying Eq. (12) and dividing it by 𝑁𝑟, we obtain: 

𝑒𝑟

𝑁𝑟
−

𝑁𝑠

𝑁𝑟
=

𝑡

𝑁𝑟
−

(𝑝 + 𝑞 − 𝑢)𝑠

𝑁𝑟
 

which can be expressed as: 

|
𝑒

𝑁
−

𝑠

𝑟
| =

|𝑡−(𝑝+𝑞−𝑢)𝑠|

𝑁𝑟
≤

|𝑡|+|𝑝+𝑞−𝑢|𝑠

𝑁𝑟
                                                               (13) 

Assuming |𝑡| < 𝑠|𝑝 + 𝑞 − 𝑢|, then 

|𝑡| + |𝑝 + 𝑞 − 𝑢|𝑠

𝑁𝑟
<

2|𝑝 + 𝑞 − 𝑢|𝑠

𝑁𝑟
 

Consequently, we can establish that 𝑟𝑠 <
𝑁

4|𝑝+𝑞−𝑢|
. This leads to the following expression: 

2|𝑝 + 𝑞 − 𝑢|𝑠

𝑁𝑟
<

1

2𝑟2
. 

Hence, we deduce the following 

|
𝑒

𝑁
−

𝑠

𝑟
| <

1

2𝑟2
; 

which satisfies Theorem 1, indicating that 
𝑠

𝑟
 is a convergent of the continued 

fraction expansion of 
𝑒

𝑁
. Thus, the unknown values of 𝑠  and 𝑟  can be found in 

polynomial time. 

As a result, with the knowledge of 𝑠 and 𝑟, we define 

𝐴′ = 𝑁 −
𝑒𝑟

𝑠
,            𝐵′ = √|𝐴′2 − 4𝑁| . 

By dividing both sides of the equation 𝑒𝑟 − (𝑁 − 𝑝 − 𝑞 + 𝑢)𝑠 = 𝑡 by 𝑠, we derive 

𝑒𝑟 − (𝑁 − 𝑝 − 𝑞 + 𝑢)𝑠 = 𝑡  
𝑒𝑟

𝑠
− 𝑁 + 𝑝 + 𝑞 − 𝑢 =

𝑡

𝑠
  

𝑝 + 𝑞 − (𝑁 −
𝑒𝑟

𝑠
) =

𝑡

𝑠
+ 𝑢  

𝑝 + 𝑞 − A′ =
𝑡

𝑠
+ 𝑢                                                                                                                            (14) 

If |
𝑡

𝑠
+ 𝑢| <

𝑝−𝑞

𝑝+𝑞
∙ 𝑁

1

4, we can establish 

|𝑝 + 𝑞 − 𝐴′| = |
𝑡

𝑠
+ 𝑢| <

𝑝−𝑞

𝑝+𝑞
∙ 𝑁

1

4                                                                        (15) 

According to the difference between two squares formula, expressed as: 
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(𝑝 + 𝑞)2 − 𝐴′2
= (𝑝 − 𝑞)2 + 4𝑝𝑞 − 𝐴′2

= (𝑝 − 𝑞)2 + 4𝑁 − 𝐴′2
= (𝑝 − 𝑞)2 − (𝐴′2

−

4𝑁)  ≥ (𝑝 − 𝑞)2 − (√|𝐴′2 + 4𝑁|)

2

= (𝑝 − 𝑞)2 − 𝐵′2                              (16) 

Consequently, we derive (𝑝 − 𝑞)2 − 𝐵′2 ≤ (𝑝 + 𝑞)2 − 𝐴′2 . Next, apply the 

squared difference formula to expand both sides of Eq. (16): 

(𝑝 − 𝑞)2 − 𝐵′2 ≤ (𝑝 + 𝑞)2 − 𝐴′2 

(𝑝 − 𝑞 + 𝐵′)(𝑝 − 𝑞 − 𝐵′) ≤ (𝑝 + 𝑞 + 𝐴′)(𝑝 + 𝑞 − 𝐴′) 

 𝑝 − 𝑞 − 𝐵′ ≤
(𝑝+𝑞+𝐴′)(𝑝+𝑞−𝐴′)

𝑝−𝑞+𝐵′
                                                                    (17) 

Taking absolute values for both sides of Eq. (17) results in: 

|𝑝 − 𝑞 − 𝐵′| ≤ |
(𝑝+𝑞+𝐴′)(𝑝+𝑞−𝐴′)

𝑝−𝑞+𝐵′
|                                                                                              (18) 

From Eq. (15), we can deduce: 

𝑝 + 𝑞 −
𝑝 − 𝑞

𝑝 + 𝑞
∙ 𝑁

1
4 ≤ 𝐴′ ≤ 𝑝 + 𝑞 +

𝑝 − 𝑞

𝑝 + 𝑞
∙ 𝑁

1
4 

𝑝 + 𝑞 − (𝑝 − 𝑞) ∙
𝑁

1
4

𝑝+𝑞
≤ 𝐴′ ≤ 𝑝 + 𝑞 + (𝑝 − 𝑞) ∙

𝑁
1
4

𝑝+𝑞
                                               (19) 

Since 𝑝 + 𝑞 > 𝑁
1

4,  we get 
𝑁

1
4

𝑝+𝑞
< 1 , so (𝑝 − 𝑞) ∙

𝑁
1
4

𝑝+𝑞
< 𝑝 − 𝑞.  Considering that 

both 𝐴′ and 𝐵′ are positive, and since 𝑝 > 𝑞 implies 𝑝 − 𝑞 > 0, we can deduce that 

𝑝 − 𝑞 + 𝐴′ and 𝑝 + 𝑞 + 𝐵′ are also positive. Therefore: 

𝑝 + 𝑞 − (𝑝 − 𝑞) ≤ 𝐴′ ≤ 𝑝 + 𝑞 + (𝑝 − 𝑞) 

2𝑞 ≤ 𝐴′ ≤ 2𝑝                                                                                                                       (20) 

Given 𝐴′ > 0, 𝐵′ > 0 and 𝑞 < 𝑝, we can deduce that 𝑝 + 𝑞 + 𝐴′ > 0 and 𝑝 − 𝑞 +
𝐵′ > 0, allowing further discussion of Eq. (18): 

|𝑝 − 𝑞 − 𝐵′| <
𝑝+𝑞+𝐴′

𝑝−𝑞+𝐵′
∙ |𝑝 + 𝑞 − 𝐴′|  

Here, 𝑝 + 𝑞 + 𝐴′ < 𝑝 + 𝑞 + 2𝑝 = 3𝑝 + 𝑞,    𝑝 − 𝑞 + 𝐵′ > 𝑝 − 𝑞, |𝑝 + 𝑞 − 𝐴′| <
𝑝−𝑞

𝑝+𝑞
∙ 𝑁

1

4. Consequently, we can derive: 

|𝑝 − 𝑞 − 𝐵′| <
3𝑝+𝑞

𝑝−𝑞
∙

𝑝−𝑞

𝑝+𝑞
∙ 𝑁

1

4 =
3𝑝+𝑞

𝑝+𝑞
𝑁

1

4                                                                      (21) 

Summarizing the conclusions from Eqs. (15) and (21), we obtain: 

|𝑝 + 𝑞 − 𝐴′| <
𝑝 − 𝑞

𝑝 + 𝑞
∙ 𝑁

1
4,      |𝑝 − 𝑞 − 𝐵′| <

3𝑝 + 𝑞

𝑝 + 𝑞
∙ 𝑁

1
4 

Using these conclusions, we can derive: 

|𝑝 −
𝐴′ + 𝐵′

2
| = |

𝑝

2
−

𝐴′

2
+

𝑝

2
−

𝐵′

2
| 

                          = |
𝑝

2
+

𝑞

2
−

𝐴′

2
+

𝑝

2
−

𝑞

2
−

𝐵′

2
| 

                         =  |
𝑝 + 𝑞 − 𝐴′

2
+

𝑝 − 𝑞 − 𝐵′

2
| 
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                          ≤ |
𝑝 + 𝑞 − 𝐴′

2
| + |

𝑝 − 𝑞 − 𝐵′

2
| 

                           =
1

2
∙ |𝑝 + 𝑞 − 𝐴′| +

1

2
∙ |𝑝 − 𝑞 − 𝐵′| 

                           <
1

2
∙

𝑝 − 𝑞

𝑝 + 𝑞
∙ 𝑁

1
4 +

1

2
∙

3𝑝 + 𝑞

𝑝 + 𝑞
𝑁

1
4 

                           =
1

2
∙ (

𝑝 − 𝑞 + 3𝑝 + 𝑞

𝑝 + 𝑞
) ∙ 𝑁

1
4 

                           =
1

2
∙ (

4𝑝

𝑝 + 𝑞
) ∙ 𝑁

1
4 

                           =
2𝑝

𝑝 + 𝑞
∙ 𝑁

1
4 

Now, we have  

|𝑝 −
𝐴′+𝐵′

2
| <

2𝑝

𝑝+𝑞
∙ 𝑁

1

4                                                                                                                     (22) 

Considering Lemma 1 and Lemma 2, this implies 𝑝 + 𝑞 > 2𝑁
1

2 and 𝑝 < √2𝑁
1

2, 
respectively. Substituting these into Eq. (22), we get 

|𝑝 −
𝐴′ + 𝐵′

2
| <

2𝑝

𝑝 + 𝑞
∙ 𝑁

1
4 <

2 ∙ √2𝑁
1
2

2𝑁
1
2

∙ 𝑁
1
4 = √2𝑁

1
4. 

Therefore, |𝑝 −
𝐴′+𝐵′

2
| < √2𝑁

1

4. Thus, 
𝐴′+𝐵′

2
 serves as an approximation of 𝑝 up 

with an additive term at most √2𝑁
1

4. By utilizing the Coppersmith’s technique of 

Theorem 3 enables the factorization of 𝑁. 

Following this, we present Algorithm 2 to illustrate the procedure for 

factorizing 𝑁 = 𝑝𝑞 using the method outlined in Theorem 5. 

Algorithm 2: Factorization of Weak RSA Modulus Using Theorem 5 

Input: RSA moduli 𝑁 and public exponent 𝑒. 
Output: The corresponding prime numbers 𝑝, 𝑞, 𝑜𝑟 ⊥. 

1. Find the continued fraction expansion of 
𝑒

𝑁
. 

2. Calculate 𝐴′ = 𝑁 −
𝑒𝑟

𝑠
, 𝐵′ = √𝐴′2 + 4𝑁, and 𝑝̃ =

𝐴′+𝐵′

2
, for every convergent 

𝑠

𝑟
 of 

𝑒

𝑁
. 

3. Define the function 𝑔(𝑥) as 𝑔(𝑥) = (𝑥 + 𝑝̃) and identify polynomials with same root 

modulo 𝑝. 

4. Using the polynomials identified in Step 3, construct a matrix ℳ. 
5. Apply the LLL algorithm to ℳ yields the result denoted as ℳ𝐿𝐿𝐿.  

6. Based on the outcomes of matrix ℳ𝐿𝐿𝐿's first row, construct polynomial ℳ′(𝑥). 

7. Determine the small solution 𝑥0 by computing the roots of ℳ′(𝑥). 

8. Determine the values of 𝑝 and 𝑞 by 𝑝 = 𝑝̃ + 𝑥0 and 𝑞 =
𝑁

𝑝
 respectively. 

9. if 𝑞 is an integer, then output values of 𝑝 and 𝑞. 

10. else, output ⊥. 

Next, Example 2 illustrates the attack proposed in Theorem 5 using Algorithm 

2 as follows. 

Example 2. Suppose the adversary has been granted access to an RSA-1024 

modulus, along with its respective public exponent 𝑒, as outlined below: 

𝑁 = 14023867055077450419114747427450708244956229205332010283416

68707195092609991060310452366437240732855646993299625893106587840
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25949148036097122968882592669088781358786718568318594808775805832

50992513122185369348564981343765273811106683698242607757640432328

5810707084274299366266631462469082622609121926110391069. 

𝑒 =320861722579068925318686905744593994178297164789293265309311

04939765288929941957895600409803125517854675737653736570949654895

73015007643415348356148431543306644559875445978417746497284637181

00716760619181769027328382484352493718313152894905469682110828974

27707738167202926938544945369241783623157927. 

The list of convergent of the continued fraction expansion 
𝑒

𝑁
 are as follows. 

[0,
1

4370688701
,

6

26224132207
,

7

30594820908
,

20

87413774023
,

127

555077465046
,

274

1197568704115
,  

⋯ ,
33750269

147511919379060766
,

34573563

151110281162585053
,

172044521 

751953044029400978
,

206618084

903063325191986031
,  

⋯ ,
585280689

2558079694413373040
,

3305066050

14445414841288252209
,

3890346739

17003494535701625249
, ⋯ ]  

From the above list of convergent, we can determine the values of 𝑠 and 𝑟 such 

that 
𝑠

𝑟
=

3890346739

17003494535701625249
. Next, we proceed to compute the values 𝐴′ and 𝐵′ 

using the formulas 𝐴′ = 𝑁 −
𝑒𝑟

𝑠
 and 𝐵′ = √|𝐴′2 − 4𝑁|. After acquiring the values 

of 𝐴′ and 𝐵′, we can estimate 𝑝 by calculating the expression 
𝐴′+𝐵′

2
. 

In this case, the approximation of 𝑝  is given by 𝑝̃ =
𝐴′+𝐵′

2
 where: 

𝑝̃ = 12838067666530704724348345026270399358915493817829162433
32849683321567152817478768129461783181410647048941369576833
9373925398138034375219273300721807265449. 

Next, we apply Step 3  – Step 7 of Algorithm 2, which returns 𝑏0 =
265350508378. Hence the value of prime 𝑝 = 𝑝̃ + 𝑏0 is: 

𝑝 =128380676665307047243483450262703993589154938178291624333284

96833215671528174787681294617831814106470489413695768339373925398

138034375219273300987157773827. 

Thus, we complete the factorization of 𝑁 by computing the prime 𝑞 =
𝑁

𝑝
 given by: 

𝑞 = 10923658777432811427183095706679547602938978467033525992303

78020629810588707242195772856146526430327171587076502638156041824

1738186651473963710588193175647. 

3.3. Comparison with Existing Results 

Researchers have increasingly recognized the importance of exploring 

generalizations of the RSA Diophantine key equation to deepen our 

understanding of their impact on RSA modulus security. Building on this 

foundation, we conducted a comparative analysis of the structure and specific 

conditions of the key equations outlined in Theorems 4 and 5, which are 

summarized in Table 1. 

Table 1 provides a detailed comparison of our findings with those from existing 

attacks in the literature. Since Wiener's pioneering cryptanalysis [4], numerous 
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researchers have dedicated efforts to developing new attacks that expand the 

boundaries of the private key 𝑑. Notable contributions in this area include many 

works [11-15]. While these studies have significantly focus on the standard 

modulus 𝑁 = 𝑝𝑞, the work of [16] specifically addressing the weaknesses on the 

RSA-type modulus  𝑁 =  𝑝2𝑞 . Additionally, [17] proposed small private key 

attacks on common prime RSA, further illustrating the diverse approaches to 

compromising RSA security. 

Table 1. Comparison of our results with related existing attacks. 

Reference 
Key Equation’s 

Structure 
Conditions 

[4] 𝑒𝑑 − 𝜙(𝑁)𝑘 = 1 
𝑑 <

1

3
𝑁0.25 

[9] 𝑒𝑑 − 𝜙(𝑁)𝑘 = 1 𝑑 < 𝑁0.292 

[10] 𝑒𝑥 − 𝜙(𝑁)𝑦 = 𝑧 
𝑥 <

1

3
𝑁0.25 and |𝑦| = 𝒪(𝑁−0.75𝑒𝑥) 

[3] 𝑒𝑥 − 𝜙(𝑁)𝑦 = 𝑧 
𝑥𝑦 <

𝑁

4(𝑝 + 𝑞)
, |𝑧| <

(𝑝 − 𝑞)𝑁0.25𝑦

3(𝑝 + 𝑞)
 

Theorem 4 𝑒𝑟 − (𝑁 − 𝑝 + 𝑞 + 𝑢)𝑠 = 𝑡 
|𝑡| ≤ 𝑠|𝑝 − 𝑞 − 𝑢|, 𝑟𝑠 ≤

𝑁

4|𝑝 − 𝑞 − 𝑢|
,  

|
𝑡

𝑠
+ 𝑢| < 𝑁

1
4 

Theorem 5 𝑒𝑟 − (𝑁 − 𝑝 − 𝑞 + 𝑢)𝑠 = 𝑡 
|𝑡| ≤ 𝑠|𝑝 + 𝑞 − 𝑢|, 𝑟𝑠 ≤

𝑁

4|𝑝 + 𝑞 − 𝑢|
,      

|
𝑡

𝑠
+ 𝑢| <

𝑝 − 𝑞

𝑝 + 𝑞
∙ 𝑁

1
4 

In our research, we identified that when the parameter 𝑢 is set to 1, the equation aligns 

with the weak key equation equation  𝑒𝑥 − 𝜙(𝑁)𝑦 = 𝑧 as proposed by [9]. Moreover, 

when both 𝑢 = 1 and 𝑡 = 1, the equation simplifies to the original RSA key equation 

𝑒𝑑 − 𝜙(𝑁)𝑘 = 1 . Our work builds on and extends existing RSA cryptanalysis, 

particularly in the context of non-standard RSA moduli and key equations. By exploring 

these generalizations and comparing them with established attacks, we contribute to a 

more comprehensive understanding of the vulnerabilities inherent in RSA cryptosystems. 

4.  Conclusions 

In conclusion, this work introduces a novel approach to exploit a weak RSA key 

equation structure, leading to a polynomial-time solution for the integer 

factorization problem using the continued fractions algorithm and Coppersmith's 

theorem. Two distinct attacks are proposed, targeting key structures of the form 

𝑒𝑟 − (𝑁 − 𝑝 + 𝑞 + 𝑢)𝑠 = 𝑡 and 𝑒𝑟 − (𝑁 − 𝑝 − 𝑞 + 𝑢)𝑠 = 𝑡. 

This study includes a practical demonstration illustrating the proposed attack 

and conducts a comparative evaluation against relevant existing research. The 

findings are based on the RSA cryptographic system with modulus 𝑁 = 𝑝𝑞. 
Significantly, our research broadens the scope of insecure RSA decryption 

exponents, providing valuable insights into cryptographic security. The employed 

techniques exhibit generality and applicability, suggesting their potential 

adaptation to variant RSA moduli, such as 𝑁 = 𝑝𝑣𝑞 or 𝑁 = 𝑝𝑣𝑞𝑤 where 𝑣 ≠ 𝑤. 

Examining different moduli contributes to a more comprehensive understanding of 

RSA system security. 
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