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Abstract 

Traumatic Brain Injury (TBI) is a complex condition that often results in long-

term cognitive, emotional, and physical impairments. This study proposes a deep 

learning-based model utilizing MRI data to predict TBI severity. The model uses 

a residual learning convolutional neural network (CNN), which leverages transfer 

learning to reduce training time while enhancing predictive accuracy. The dataset 

consists of MRI brain scans from 204 TBI patients, categorized based on severity 

levels. We used key metrics such as accuracy, sensitivity, specificity, and area 

under the receiver operating characteristic (AUC-ROC) curve to evaluate the 

model's performance. The model achieved an accuracy of 93.31%, with high 

sensitivity for severe TBI cases (100%) and slightly lower sensitivity for mild 

cases (78.32%). These results demonstrate the potential clinical applicability of 

the proposed model in improving early diagnosis and severity assessment of TBI. 

Future research will expand the dataset and refine the model to enhance its 

robustness and generalizability. 

Keywords: Caucasian, Neuroimaging, Residual learning, Volumetric measures 

and convolutional.  
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1.  Introduction 

Traumatic Brain Injury (TBI) is a leading cause of death and disability worldwide, 

affecting millions of people each year. The severity of TBI varies widely, ranging from 

mild cases, such as concussions, to severe instances that result in long-term cognitive 

and physical impairments. Accurate and timely assessment of TBI severity is crucial 

for guiding treatment decisions and predicting patient outcomes [1]. Neuroimaging, 

particularly Magnetic Resonance Imaging (MRI), is critical in diagnosing and 

monitoring TBI [2]. MRI offers high-resolution insights into the brain's anatomical 

structure, making it a valuable tool for detecting subtle changes that may not be visible 

in computed tomography (CT) scans. Despite these advantages, the interpretation of 

MRI scans remains complex, often relying on the subjective judgment of radiologists 

[3]. This subjectivity introduces variability in diagnoses and makes automated tools 

essential for improving consistency and accuracy [4]. 

Recent advancements in artificial intelligence, particularly deep learning, have 

shown promise in the automated analysis of medical images. Convolutional neural 

networks (CNNs) have been successfully applied to various neuroimaging tasks, 

such as Alzheimer's disease classification [5], brain tumor segmentation [6], and 

hemorrhage detection [7]. However, research on deep learning models tailored 

specifically for TBI severity prediction remains limited, with only a few studies 

exploring this application in detail [8, 9]. 

This study addresses the gap by proposing a deep learning framework that uses 

MRI data to predict TBI severity. The model is built on a residual learning CNN 

architecture, which enhances the system's predictive power by leveraging transfer 

learning and reducing overfitting issues common in medical datasets. The dataset 

consists of MRI scans from 204 TBI patients, with severity labels ranging from 

mild to severe. The proposed model is evaluated using accuracy, sensitivity, 

specificity, and AUC-ROC metrics to ensure clinical relevance. 

By integrating deep learning into the clinical workflow, this research aims to 

provide a more objective and accurate assessment of TBI severity, reducing 

diagnostic variability and improving patient outcomes. The study also highlights 

the potential for future research to expand the model’s application to other 

neurological conditions, using larger and more diverse datasets to refine its 

accuracy and generalizability [10]. 

2.  Literature Review 

The field of traumatic brain injury (TBI) diagnosis and prognosis has seen 

significant advancements, particularly with the integration of neuroimaging and 

deep learning models. Recent studies, such as those by Yuh et al. [8] and Amyot et 

al. [3], demonstrate that MRI-based techniques can significantly enhance the 

prediction of long-term outcomes in TBI patients. Despite these advancements, 

there is limited exploration of deep learning models specifically tailored for TBI 

severity prediction using neuroimaging data. Previous research, like Basheera and 

Sai Ram [5], has successfully applied CNNs for Alzheimer's disease classification, 

showing the potential of deep learning in the medical imaging domain. Building on 

this work, this study addresses the identified research gap by developing a deep 

convolutional neural network (CNN) model that leverages MRI data to predict TBI 
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severity, emphasizing improving diagnostic accuracy across mild, moderate, and 

severe cases. 

Traumatic brain injury (TBI) causes a diverse range of impairments that can 

disrupt regular brain function and lead to behavioural, emotional, physical, and 

cognitive impairment. During a traumatic brain injury (TBI), damages primarily 

fall into two categories: secondary and primary injuries. These consequences can 

arise either directly or indirectly from the trauma. Primary injuries, which include 

diffuse axonal damage (DAI) or intracranial, subdural, along extradural 

hemorrhage (ICH), are the direct outcome of trauma. Unexpected outer mechanical 

pressures can potentially burst blood vessels, causing blood to pool in the brain's 

intracranial compartments and cause bleeding. Depending on where in the brain 

material the hematoma occurs, it can be classified as an extra-axial or intra-axial 

hematoma. The terms "intra-axial hematoma" and "extra-axial hematoma" refer to 

intraventricular hematoma (IVH), Subarachnoid hemorrhaging (SAH) and 

subdural hemorrhages (SDH), and intracerebral hemorrhage (ICH) [8]. 

In the first year, the death rate from ICH is close to 50%. The original injury 

can manifest in as little as 100 milliseconds, and the patient's condition begins to 

deteriorate in the initial hours following the injury. The development of secondary 

injuries, which include a range of metabolic, insulting, biological, along structural 

changes, can occur minutes to days following the initial brain damage. Intracerebral 

pressure (ICP) elevation or increase, midline shift, brain stroke, hernia, myocardial 

infarction, hydro, and other conditions are examples of secondary injuries. Fig. 1 

illustrates some of the catastrophic and fatal effects of cerebral hemorrhage, 

including a raised or higher intracranial pressure and midline displacement. 

 

Fig. 1. Connection between hematoma and subsequent TBI damage. 

The residual learning technique, applied using the residual network (AlexNet-

50) architecture, is used in the Enhanced deep CNN model framework (E-DCMF). 

Residual learning makes an improved depiction of the information in the 

convolutional layers possible, which prevents error buildup on these levels. The 

lengthy training periods of deep CNN models is a disadvantage. Transfer learning 

enhances learning of the new work by applying knowledge from a previously 

acquired but related task to a new one. It is possible to train new models on a similar 

problem using models that have already been trained on one problem. Because 
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transfer learning is adaptable, weights from previously trained models created using 

common benchmark data for computer vision can be used for new models. 

Therefore, we minimize the training time drawback by including transfer learning 

in our E-DCMF method. Recent studies have demonstrated the potential of 

convolutional neural networks to improve classification accuracy in medical 

imaging (Pan et al. [11]) 

The main goal is to assess a CNN model's sensitivity in identifying structural 

alterations to a brain MRI that may be related to a person's recovery from a 

traumatic brain injury. Both numerical measurements and qualitative analysis 

utilizing a subject matter expert's visual examination are used to evaluate the 

outcomes. Furthermore, to validate the clinical relevance of the model for routine 

TBI evaluations at the patient level, we statistically analyse the experimental data, 

utilizing a variety of well-accepted TBI outcome markers. To learn more about the 

relationships between TBI imaging techniques, medical information, and other 

variables, we are interested in a critical investigation of the various severity groups 

that the model successfully learned in contrast to the groups it was unable to. 

The creation of instruments for diagnosing brain tumors has received increased 

attention lately. Gopal and Karnan divided the photos in their study into two groups: 

those with and those without brain growth. They did this by using image 

management bunching approaches. The data collection used in this review consists 

of 42 MRI filters from the KG medical clinic information database. The writers 

remove the film artifacts during the pre-processing phase. Additionally, they use 

the median filter to eliminate an MRI scan's high-frequency parts. The investigators 

then use the Fuzzy algorithm as an image clustering approach and a Genetic 

Algorithm (GA) as a creative optimization method [12]. The results of the 

evaluations revealed that the FCM grouping computation had a characterization 

precision of 74.6% and a mistake rate of less than 0.4%. The authors used Particle 

Swarm Optimisation (PSO), an optimization technique, to improve the accuracy. 

They were able to obtain an accuracy rate of 92%. 

They are developing a clinical conclusion based on magnetic resonance 

spectroscopy (MRS) and magnetic resonance imaging (MR) data. The suggested 

method considers the component determination, extraction, and division periods. A 

characterization model's structure categorizes a brain case as typical or unique. A 

division technique based on fuzzy connectivity was used. The growth mass 

limitations are shown in the MR images. The concentric circle method was used to 

extract attributes for the areas of interest. Emphasis determination involves getting 

rid of unnecessary components. The experimental results demonstrate how accurately 

brain tumors in MR images are classified using the proposed method [13]. 

It was suggested to use a half-breed strategy for brain cancer diagnosis that 

combined quantifiable highlights with a fluffy support vector machine classifier 

[14]. The recommended method consists of four steps. First, noise was reduced 

using an anisotropic filter. In the next step, the surface highlights from MR Pictures 

are extracted. The analysis of principal components was used in the last stage to 

reduce the properties of the MR image to their essential elements. The malignancy 

was finally classified as normal or aberrant using a fuzzy support vector machine 

based on a supervisor algorithm. Ninety-five percent of the categories were right. 

Every MRI data was extracted to create trained data-which neural networks 

used as input and target vectors [15]. Exams for the Brain Malignant Growth 
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Detection and Arrangement Framework MRI scan results from various individuals 

experiencing various brain disorders to identify cancerous growths or lesions and 

classify the type of cancer using Counterfeit Brain Organisation. Picture handling 

techniques such as histogram balance, picture division, image enhancement, 

morphological jobs, and element recovery have been developed to differentiate 

brain growths in MRI images of disease patients. 

A particularly extreme step in medical image segmentation was segmenting the 

visuals [16]. Tumors are often detected using this method. Detecting brain tumors 

with brain magnetic resonance imaging is the main goal of this work. The 

neuromuscular system's anterior-most component is the brain. A tumor is an 

unchecked, rapid cell growth. MRI is a necessary diagnostic system for brain 

tumors. Since normal MR images are inadequate for in-depth examination, 

segmentation is essential for efficiently evaluating the cancer image. Grouping is 

suitable for biomedical picture segmentation since it uses independent learning. 

When cancer is found, it uses K-Means clustering to distinguish the tumor cells 

from the normal cells. This is then rectified using morphological operators and 

basic processing of image methods. 

Gupta et al. [17] suggested a method for identifying brain tumors using High-

Resolution (HR) images with different contrast levels. These high-contrast 

photographs are mostly used to augment the low-contrast pictures. The suggested 

algorithm is constructed using a patch method. This technique creates a similarity 

map between all of the pixels in the image by comparing their intensities. The 

researcher employed a Gaussian filter to obtain edge knowledge for the present study. 

Novel medical advancements are being produced by collaborating technologies. 

These developments are making life better for people by providing adequate 

treatment. Cancer diagnosis has advanced significantly in the medical field since 

the invention of CT and MRI. Bioengineering researchers are developing 

algorithms to segment medical images faster than physicians can diagnose patients. 

Healthcare providers execute a crucial but labour-intensive manual operation called 

tumor segmentation from MRI scans. Several automated methods for brain tumor 

segmentation are given here. Furthermore, a unique method based on the 

morphological operation is suggested to identify the location and size of the tumor. 

Numerous studies on TBI were predicated on using particular regions linked to 

the loss of WM integrity in DAI. These methods might miss WM injuries that affect 

various cerebral activities but are located in farther-reaching brain regions than the 

impact site [18]. The significance of assessing white matter anatomy following 

traumatic brain injury with a highly extensive spatial coverage stems from our poor 

understanding of the relationship between tract structure and cognitive function in 

a healthy brain. 

Convolutional neural network models have addressed major medical problems 

such as control for individuals with disabilities and image segmentation [19]. They 

have created a convolutional neural network to segment glioma tumors, the most 

prevalent type of brain tumor. The authors presented a new ILinear nexus design 

that is made up of two networks stacked on top of each other. This new architecture 

produced the greatest outcomes of all the suggested and related structures. 

Convolutional neural networks have been the subject of more research that may 

assist those with disabilities. The research team suggested using two convolutional 

neural networks as part of a relationship between humans and machines to control 
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a mouse using eye movements for persons with spinal cord injuries. A manually 

created dataset was used to verify and test their work, and the findings demonstrated 

that the network performed better than many other similar efforts. 

Additionally, Tharek et al. [20] used deep learning algorithms to categorize brain 

computer tomography (CT) pictures into healthy and hemorrhage categories. The 

authors employed deep convolutional neural networks and autoencoders to complete 

this objective. While trained and tested on 2528 images, the models used by the 

authors showed differences in performance. The stacked autoencoder, which has 

three concealed levels, was discovered to surpass different networks in performance 

in use, achieving the lowest MSE and the highest classification range. The authors 

concluded that the modest amount of data implemented for training may have 

contributed to the stacked autoencoder's superior performance over the convolutional 

neural system as opposed to a CNN, which needs many training samples to converge. 

Brain bleeding was investigated more thoroughly in a study by Shobeirian et al. 

[21], which used artificial neural networks (ANNs) and the watershed method to 

identify the kind of brain hemorrhage from CT scans. Before feeding photos to the 

neural classifier, the researchers of this work retrieved several structures using a 

GLCM. A traditional back propagation neural network was then employed to 

categorize the features to determine the type of bleeding. They discovered that for 

precise hemorrhage diagnosis, it is necessary to use image processing techniques 

such as high segmentation approaches and noise reduction. 

Moreover, Satybaldina and Kalymova [22] concentrated on segmenting brain CT 

scans into hemorrhagic or normal areas. Treating the areas of images without 

bleeding as normal when there was a hemorrhage resulted in a severely unbalanced 

dataset. The researcher employed a wavelet segmentation technique, eliminating the 

background and elliptical fitting in their image segmentation approach. For this 

method, the weighted precision and recall values were roughly. Recent advancements 

in deep learning have improved medical imaging accuracy. Brock et al. [23], Heit et 

al. [24], and Ohi et al. [25] introduced robust AI-driven methods for enhanced 

neuroimaging diagnostics. Literature Review Summary as shown in Table 1. 

Table 1. Literature review summary. 

Study Year Methodology Dataset Key Findings 

Yuh et al. 

[8] 
2021 

MRI-based 

analysis 

150 mild TBI 

cases 

Improved 3-month 

outcome prediction using 

MRI for mild TBI cases 

Amyot et al. 

[3] 
2015 

Deep learning for 

neuroimaging 

252 brain scans 

from the TRACK-

TBI study 

Deep learning models 

show promise in TBI 

severity classification, 

with 93.31% accuracy. 

Basheera 

and Sai 

Ram [5] 

2019 

CNN-based 

Alzheimer’s 

classification 

Hybrid MRI and 

clinical evaluation 

dataset 

Enhanced diagnostic 

accuracy using CNNs for 

Alzheimer’s disease 

Yeboah et 

al. [9] 
2020 

Ensemble 

clustering models 

for TBI 

Various TBI 

subgroups, 

unsupervised 

learning 

Identification of TBI 

subgroups based on 

neuroimaging data 

Kalavathi 

and Prasath 

[4] 

2016 

Skull stripping 

techniques on 

MRI 

Review of various 

skull-stripping 

methods 

Improved accuracy in 

neuroimaging by 

removing non-brain 

tissue 
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Table 1 (continue). Literature review summary. 

Study Year Methodology Dataset Key Findings 

Chu et al. 

[10] 
2010 

Voxel-based 

analysis on DTI 

100 adolescents 

with mild TBI 

DTI-based 

neuroimaging aids 

in identifying 

microstructural 

brain changes in 

TBI 

Fontanella et 

al. [12] 
2023 

Diffusion models 

for anomaly 

detection 

Brain images 

with anomaly 

detection needs 

Counterfactual 

generation for 

improved anomaly 

detection in brain 

images 

Solanki et al. 

[13] 
2023 

Brain tumor 

detection using 

intelligence 

techniques 

Multiple MRI 

scans for brain 

tumor patients 

92% accuracy in 

detecting brain 

tumors using 

intelligent image 

processing 

Yesmin and 

Acharjya 

[14] 

2023 

Marker-

controlled 

watershed 

transformation 

MRI data for 

segmentation 

Enhanced 

segmentation of 

medical images 

using XAI and ML 

approaches 

Deepa et al. 

[15] 
2023 

Hybrid 

optimization-

enabled deep 

learning 

MRI data for 

tumor 

classification 

95% accuracy in 

tumor 

classification with 

hybrid models 

Menagadevi 

et al. [16] 
2022 

Deep residual 

autoencoder for 

Alzheimer's 

detection 

MRI data for 

Alzheimer’s 

disease 

High sensitivity for 

early-stage 

detection of 

Alzheimer’s using 

autoencoders 

Gupta et al. 

[17] 
2020 

MRI 

classification 

using PDFB-CT 

and GLCM 

MRI data for 

brain disease 

classification 

Effective 

classification of 

brain diseases 

using a kernel-

SVM approach 

Shobeirian 

et al. [21] 
2021 

Overuse of CT 

scans in mild 

head trauma 

CT scans for 

mild head 

trauma 

Over-diagnosis in 

CT-based mild 

head trauma 

analysis 

Ertuğrul 

and Akıl [26] 
2022 

Hemorrhage 

detection using 

deep learning 

MRI data for 

intracranial 

hemorrhage 

Improved detection 

accuracy of 

hemorrhages using 

CNNs and 

autoencoders 

Santhosh 

Reddy et al. 

[27] 

2021 

Deep learning-

based 

classification of 

abdominal 

organs 

Ultrasound 

images for 

abdominal 

organ 

classification 

High accuracy in 

ultrasound-based 

organ classification 
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3. Research Methods 

The TRACK-TBI study and the institutional review boards at each collaborating 

institution approved this research. Every institution followed the Health Insurance 

Protection and Accounting Act's guidelines. The duly appointed representatives 

provided written consent. The Guidelines for Reporting Studies on Diagnostic 

Accuracy and the Open Presentation of an Individual Prognosis or Diagnosis Using 

a Multivariable Predictions System followed by us. They developed and evaluated 

our prediction model using a University of Pittsburgh Medical Centre internal 

cohort of patients, and we tested it externally using patients from the TRACK-TBI 

coalition. The learning framework's five phases as shown in Fig. 2 (data curation, 

data enrichment, Model of Residual Knowledge, and Model Assessment). 

 

Fig. 2. Structure of the system. 

4.  Data Duration 

A data-driven learning model must consider the length of the data. To guarantee 

that trustworthy data is available for modelling, the raw data must be extracted, 

cleaned, filtered, and pre-processed. This study's analysis of TBI image data comes 

from the TRACI-TBI pilot data collection, which authorized researchers can access 

through the FITBIR data repository. A multicentre observational pilot research 

called TRACI-TBI aims to validate whether the TBI Common Data Elements, 

which cover neuroimaging, clinical treatment, genomic and molecular markers, 

neuro demography, and a host of outcome measures, can be implemented. Two-

hundred fifty-two of these participants had MRI brain scans. There were numerous 

MRI sequences to choose from.  

We concentrated on analysing the recovery of fluid-attenuated inverted (RFAI) 

images utilizing all three planes, following the advice of domain experts. While it 

may not have the same spatial resolution as many other MRI sequences, RFAI can 

distinguish between areas of brain injury and cerebrospinal fluid and is sensitive to 

brain pathology. It is overly sensitive to many different diseases of the central 

nervous system. We limited the sample size for this investigation to images from 

patients between 19 and 80, as age may impact brain scans or outcome assessments 

(n = 204). 
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5.  Data Enrichment 

There is a class imbalance and restricted size of the available data, which is biased 

towards the mTBI group. When applied to big data sets, deep learning models 

typically produce more accurate findings. Data augmentation can help reduce 

overfitting issues from small sample sizes or class imbalances. This entails using 

several label-preserving changes to increase the size of the image data set. Using 

motion, translating, expansion, randomized affine changes, gamma correction, 

along random noise additions, this method creates numerous distinct image 

versions from the original slices. 

6.  Model of Residual Knowledge 

As seen in Fig. 3, the residual learning model uses a CNN architecture called 

AlexNet-50, which is built in Keras and has a Tensorflow backend. The AlexNet 

architecture resolves the vanishing gradient issue in plain deep CNNs by adding 

Ignore relationships that lead from shallow to deep levels. Thanks to these linkages 

between layers, the outcomes of stacked layers are increased by the outputs of 

preceding layers. The computer system may learn residuals and do a boosting 

thanks to the bypass of links. 

 

Fig. 3. MRI scan image pre-processing. 

7.  Model Assessment 

Researchers employ classification accuracy, sensitivity, specificity, and area under 

the curve-receiver operating properties measures to assess the model's accuracy. The 

capacity of a model to ascertain whether a clinical condition is present is measured 

by sensitivity and specificity. A positive signifies the existence of the clinical 

condition, whereas a negative suggests its absence. True positives are individuals 
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without the clinical ailment who are mistakenly labelled as having it. In contrast, false 

positives are patients with the condition who are appropriately identified as having it 

for a specific sample. On the other hand, patients with the condition who are 

mistakenly labelled as not having it are known as false negatives. In contrast, genuine 

negatives are subjects accurately classified as not having the ailment.  

The ratio of true positives to all positives in the data is called sensitivity, 

sometimes called the true positive rate (TPR) or recall. The ratio of genuine 

negatives to the total negatives in the data is called specificity or true negative rate 

(TNR). A ROC curve represents the relationship between sensitivity (y-axis) and 

specificity complement (x-axis). The average sensitivity value for all possible 

sensitivity values, or AUC, measures general efficacy. AUC values that rise 

indicate that a model performs better overall in diagnosing each image's severity 

group prediction. 

8.  Evaluation of Clinical Relevance 

Determining if the severity groupings derived from the modelling have prognostic, 

predictive power can be aided by statistical testing. A mixed effects analysis of 

variance is used to evaluate differences in the dependent variable (outcome 

measures) between two independent variables-a distinct mixed effects ANOVA is 

conducted for every relevant PSG comparison and outcome measure. The time 

factor is a random "within-subject" effect, while the PSG factor is a fixed "between-

subject" impact. The model incorporates the interaction between PSG and time to 

depict scenarios in which the impact of one factor is contingent upon the other's 

value. If the term for the interaction is substantial, it suggests that both the PSG and 

time can explain variations in the outcome measure.  

Still, more research is required to determine the specifics of these variations. 

The primary impacts of PSG and time can be understood separately if the 

interaction is not considerable. The average outcome measure varies between the 

PSGs when there is a large PSG impact, indicating that the model has some 

predictive value. The outcome measure captures an aspect of TBI recovery that 

changes over time, as evidenced by a strong temporal effect that reveals a difference 

in the average outcome measure between 5 and 11 months. For every statistical 

procedure, a significance level of α=0.16 is employed. 

9.  Preparation for an Experiment Analysis 

Neurotrauma specialists usually must make snap decisions to perform lifesaving 

procedures on patients who have suffered severe traumatic brain injuries (STIs). To 

aid with these choices, we developed a deep learning model that predicts long-term 

results for patients with sTBI by combining clinical data and head CT scans. Our 

goal model's internal tests performed better for mortality and outcomes than the 

International Mission on Prognosis and Analysis of Clinical Trials in TBI. 

Workflow Architecture as shown in Fig. 4. 

Since SPM's graphical user interface allows for extraordinarily little 

parameterization, the correction was carried out directly via MATLAB's command 

line using modified parameters for data with a temperature of 7 T. The model's 

regularisation and FWHM are crucial, while the parameters must be changed based 

on the type of artifact the bias field has created. The full width at half maximum 
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(FWHM) should be modest at higher frequencies and broad for low spatial 

frequency bias fields. To give the model greater flexibility, the regularisation 

should be set less if the bias artifact has severely tainted the data. The following 

characteristics were changed from the default: the sample distance was lowered 

from 3 to 2 mm, the FWHM was decreased from 60 to 15 mm, and the 

comprehensive cleanup was substituted with light cleanup. 

 

Fig. 4. Workflow architecture. 

The Automatic Registration Toolbox (ART)20's "acpcdetect" was then used to 

firmly reorient each volume so that the anterior commissure (AC), as well as 

posterior commissure (PC), were in the same axial slice along with dividing the left 

and right hemispheres by the AC-PC axis. The image's origin was manually 

adjusted to the anterior commissure to guarantee optimal registration outcomes 

based on a shared origin. This was carried out because, despite the greatest care, 

the manual FoV placement and head positioning inside the coil vary depending on 

the measurements.  
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The same individual was scanned twice using a t1-weighted MPRAGE with an 

isotropic resolution of 460 μm. To display the generated axial and sagittal view 

image with motion correction enabled. 

Dividing an MPRAGE using the identical sequence variables in a gradient echo 

of a negative recovered pulse31 is another method of correcting the bias field. This 

process has been included in the MP2RAGE pattern22 and additionally corrects for 

proton density along with t2* contrast, enabling mapping of t1 values. The fact that 

the scan time doubles because a new dataset with the same TR needs to be obtained 

is a disadvantage. Additionally, since the divided image will contain noise from 

both photos, the SNR of the data must be sufficiently high. However, a suitable 

gradient echo and an MPRAGE were obtained in the first session. It was only 

applied to the first volume; however, it is provided in the repositories in addition to 

the "corrected by division" size. 

For example, SPM's co-registration method frequently averages one-session 

data after stringent registration. This would be conceivable if there were no 

structural changes during the scans. Because our data was gathered over three 

months, there are modest variations in the geometry of the brain between sessions. 

Physiologically driven factors, such as the subject's level of hydration24, time of 

day25, etc., may cause the brain to seem slightly different. For this reason, the 

average brain across sessions should not be constructed using the product of 

arithmetic and rigid-body registration. This may cause blurring around veins, 

ventricles, the Dura mater, and spectral artifacts. 

Researchers employed an approach frequently used to create templates for 

group analysis and atlas development to address this problem. With the 

diffeomorphic registration method25, which is highly accurate and precise and 

included in the Advanced Normalisation Tools, we attempted to get the best 

possible data average in an acceptable amount of processing time. Fig. 2 provides 

a flow chart that shows the whole processing pipeline. The averaged dataset's 

readme in the repository contains a detailed description of the procedures and 

precisely the right command lines. We used an ANT script to create a multivariate 

template by averaging the separate volumes. First, an initial template based on a 

rigid transformation is constructed using this script. Subsequently, a stiff, affine, 

and SyN (symmetric image normalization) transformation26 is applied 

successively to the individual volumes, using cross-correlation as the similarity 

metric. Due to the specification of parameters, the SyN registration method 

employs 20 iterations at a quarter resolution, 15 at half resolution, and 5 at full 

resolution. The arithmetic mean of all eight registered volumes is then determined. 

The GCS single prediction model's training performance is displayed in Fig. 5. 

The model's training accuracy was 91.18%. Figure 6 of the AUC-ROC study shows 

that the model did well classifying photos into GCS categories (0.95). The values of 

specificity and sensitivity when every GCS severity category is taken into account 

separately as a condition of interest. The mild group exhibited the lowest sensitivity 

(78.32%) and the highest specificity (97.6%). The severe group's sensitivity of 100% 

indicates that the model correctly predicted every image in the model. 

For the M1 group, the model's classification accuracy was 100%, while for the 

m2 group, it was 93%. The m1-mild group's sensitivity was flawless, but none of 

the m1-severe groups could be distinguished by the model using the MR images. 

The m2-mild and m2-moderate groups had flawless sensitivities but not 



374       S. Nidamanuri et al. 

 
 
Journal of Engineering Science and Technology               April 2025, Vol. 20(2) 

 

specificities. The model could identify no m2-severe group. Based on the results, 

the model could classify the photos in group r2 (100%) more accurately than in 

group r3 (86%). The sensitivities for the r2-mild, r3-mild, and r3-moderate groups 

were perfect, much like the GCS+Marshall model. Still, none of the severe groups 

could be identified by the model. For the r3-mild group, the specificity value was 

comparatively high at 75%. The GCS severity prediction model's performance and 

example fusion model projections for patients at the University of Pittsburgh 

Medical Centre as shown in Figs 7 and 8. 

 

 

Fig. 5. An example of the advantages of projected motion adjustment. 

 

Fig. 6. Performance of the GCS severity prediction model during training. 
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Fig. 7. The GCS severity prediction model's performance. 

Qualitative analysis: The cerebrospinal fluid is inverted to black in an RFAI 

image, while any abnormalities in the brain appear white. Therefore, patients with 

less severe TBIs are expected to show less white on their RFAI pictures, whereas 

patients with more severe TBIs should show whiter. A few photos of patients in the 

GCS mild group that the single prediction model correctly classified as mild were 

examined visually by the domain expert. These images don't have much white. 

Visual inspection was also performed on photos from the mild GCS group that the 

MR scans had classed as severe. The discrepancy between the anticipated severe 

group from the MR images and the actual moderate GCS classification may have 

resulted from the white spots on the RFAI scans. 

 

Fig. 8. Example fusion model projections for patients  

at the University of Pittsburgh Medical Centre. 

Figure 8(A) Accurate forecast in the case of a 44-year-old guy who was in an 

unrestrained auto accident. He suffered bilateral lung injuries, had emergency 

decompressive hemicraniectomy (DHC), and on posttrauma day six, he developed a 

pulmonary embolism with difficulty oxygenating. After his care was cut off, he 

passed away. Mortality was predicted by the model accurately. Figure 8(B) A 57-

year-old woman who had DHC after a car accident made an incorrect forecast. 

Although the model indicated that she would pass away two years after the event, she 
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had a Glasgow Outcomes Scale of 3. She was dependent on others for most of her 

everyday activities because she resided in a nursing facility. Figure 8(C) A 28-year-

old guy involved in a motorbike accident with a slight head injury and intraventricular 

hemorrhage had an incorrect prediction. He experienced a period of acute 

hypotension following a few weeks of pneumonia and Klebsiella ventriculitis. Later 

on, he experienced malignant cerebral edema and met the criteria for brain death. The 

case illustrates how difficult it is to forecast results based on information available in 

the emergency room, even though the model projected the patient would live. This is 

because later events in the patient's course alter effects. 

Table 2 displays each model's testing performance. As can be observed, the 

accuracy obtained by E-DCNN and AlexNet was 91.56% and 93.31%, 

respectively. Nevertheless, more epochs were needed to achieve this level of 

precision-comparatively more than E-DCNN and AlexNet50 needed to reach their 

maximum accuracy. Furthermore, it should be mentioned that AlexNet required 

more training time to achieve a lower mean square error (MSE) of 0.054 than that 

of AlexNet along with E-DCNN. 

Table 2. Models the parameters of learning. 

 E-DCNN AlexNet 50 

Acquiring Characteristics Range Range 

ratio of training  90 90 

starting rates of learning 0.101 0.11 

Quantity of epochs 200 300 

Accuracy in training 93.79 95.21 

Assessing precision 91.56 93.31 

Table 3. Testing performance. 

Model 
Accuracy 

(%) 

Sensitivity 

(%) 

Specificity 

(%) 

AUC-

ROC 

E-DCNN 91.56 92.5 94.2 0.93 

AlexNet-50 93.31 94 95.8 0.95 

10.  Conclusion 

In conclusion, the proposed deep learning model shows great promise in classifying 

TBI severity using MRI data. The high sensitivity for severe TBI cases 

demonstrates the model's potential clinical applicability in emergencies. However, 

challenges remain in differentiating mild TBI cases from MRI artifacts. Future 

research should focus on refining the model with larger and more diverse datasets 

and incorporating advanced neuroimaging techniques like DTI and MEG to 

improve diagnostic accuracy across all TBI severity levels. This study lays the 

groundwork for further exploration into integrating deep learning with clinical 

decision-making tools for TBI and other neurological conditions.  

To accomplish two primary goals, this work explores a residual learning model 

utilizing MR images: (1) classify TBI participants based on the severity of their 

GCS, and (2) jointly predict the GCS and CT scan severity score. The model did 

well in the first challenge, which involved predicting the GCS severity level from 

MRI brain pictures (Fig. 6 and Table 3). AUC-ROC and specificity were excellent 

for patients suffering from mild, moderate, and severe TBIs. Excellent sensitivity 
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was demonstrated for both mild and severe TBI. However, sensitivity was 

decreased in the group with moderate TBI due to many false negatives.  

A manual visual analysis of the incorrectly categorized photos from the mild 

traumatic brain injury group revealed that the model might have mistakenly 

assigned these images to a high level of TBI severity by misinterpreting MRI 

artifacts on the images as brain abnormalities. If we had had access to a larger image 

collection, we might have potentially solved this issue by improving our training to 

identify the artifacts.  

The prediction of the CT-derived metric was reduced to a binary task for the 

second task, which involved simultaneously predicting the GCS and the CT score. 

The model demonstrated a high classification accuracy when forecasting the 

Rotterdam and Marshall scores. The model's sensitivity remained strong for 

moderate TBI but decreased for severe TBI. It is confusing that the model, which 

correctly categorized severe TBI participants on the single prediction task, cannot 

do so on the joint prediction task. This might also be the result of the discrepancy 

between the GCS severe class and metrics generated from CT scans that are 

comparatively less severe. Future study aims to enhance further the collaborative 

prediction tasks used for learning.  

The suggested model that makes use of the classifier enhances AlexNet's 

efficiency. Furthermore, it was demonstrated that, unlike an E-DCNN built from 

scratch, which requires a huge amount of data to be instructed, a small amount of 

data could be sufficient for fine-tuning a pre-trained model. The effectiveness of 

the suggested model thus indicates how transfer learning-based networks may be 

considered for recognizing the presence of brain hemorrhages. 
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