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Abstract 

Recent advancements in machine vision, particularly through Convolutional 

Neural Networks (CNNs), have significantly enhanced object detection in 

maritime environments. This study focuses on the performance of different object 

detection algorithms and its respective variants: YOLOv8 and Faster-RCNN 

across two specialised maritime datasets: the SeaShip and Sea Maritime Dataset 

(SMD). Through comprehensive intra-domain and cross-domain evaluations, we 

analysed the models' precision, recall, and mean Average Precision (mAP) 

metrics over 50 training epochs. Notably, the YOLOv8x variant demonstrated 

exceptional adaptability to the SMD dataset, achieving high precision and recall 

rates with scores of 98.3% and 96.1%respectively. Whilst the YOLOv8m variant 

was more effective on the SeaShip dataset. The Faster R-CNN X101-FPN model 

variant shared similar metrics to the intra-domain evaluations for the YOLO 

comparisons, however showed significant improvement for cross-domain 

evaluation, noticeable for the SMD model, outperforming its YOLO counterpart 

with an improvement of 47.9% for the mAP(50) score. Likewise, the SeaShip 

model had an improvement of 4.48% for the same metric This paper highlights 

the challenges of applying machine vision in maritime settings due to 

environmental variability and dataset specificity. The cross-domain analysis 

revealed significant performance degradation when models were applied outside 

their training dataset, emphasising the need for robust domain adaptation 

strategies. Our findings underscore the importance of selecting appropriate object 

detection algorithms tailored to specific dataset characteristics to optimise object 

detection performance in diverse maritime environments. 

Keywords: Convolutional neural network, Domain adaptation, Faster-RCNN, 

Machine vision, Maritime object detection, YOLOv8. 
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1.  Introduction 

Machine vision, particularly using CNNs, has increasingly become integral to 

various fields, including maritime applications. Such cases include ship navigation 

and security [1, 2], highlighting the importance that machine vision plays in 

maritime industry. Furthermore, the creation of specialised datasets like the Multi-

Category Large-Scale Dataset for Maritime Object Detection (MCMOD) [3] has 

propelled advancements in object detection research specifically tailored for 

maritime environments. Such advancements are crucial for navigating the 

challenges posed by light conditions, horizon effects, and fog, which contribute to 

the complex environmental conditions [4], thereby a constraint training dataset may 

inhibit a model’s functionality due to the impacts of domain shifting. Therefore, 

the impact of a robust object detection model is critical, especially in cases where 

machine vision is needed to enhance navigational systems [5]. 

In real-world applications, the performance of models trained on labelled data 

often degrades when tested in new environments or with data from different sources. 

Lie et al. highlighted for domain adaptation that two algorithms exist: feature space 

adaptation and classifier adaptation. However, both have drawbacks as feature space 

adaption is limited to the minimising source-target domain differences whilst the 

latter requires pre-labelling from the target domain which is unsuitable for limited 

datasets [6]. Previous works have also tested the concept of two-stage detectors such 

as Faster R-CNN in successfully minimising the impact of domain adaptation [7, 8]. 

The drawback of Faster R-CNN is the underperformance in inference speed [9], 

however Domain Adaptive YOLOv3 models have also been implemented in order 

match Faster R-CNN adaptation capabilities without minimal inference speed lost by 

incorporating Regressive Image Alignment followed by Multi-Scale Image 

Alignment [10]. As such this study will reflect the cross-domain evaluation between 

one and two detectors in maritime scenarios. 

Object Detection can be generalised into two categories: regression/classification 

and region proposal based such as YOLO and R-CNN models respectively [11, 12]. 

Both rely on the concept CNNs which can visualise a series of vertical layered stages 

that incorporate convolutional and pooling layers that aid in the extraction and 

retaining of features from the input [13]. Within this study the effectiveness of each 

type of detection algorithm will be evaluated when a single model is trained on a 

constrained dataset limited to a particular scene, then cross-evaluated with a testing 

set with different environmental factors. The objective of this study is to highlight the 

effectiveness of a model’s ability to adapt for detection in different situational 

backgrounds when the initial model is trained from a limited dataset. 

2.  Materials and Methods  

2.1.  Model selection 

In this study, the YOLOv8, released and developed by Ultralytics in January 2024, is 

recognized for its effectiveness and scalability in object detection tasks. The 

architecture allowed for the training of several model detection variations that differ 

by the model parameters. To determine the trained model to represent the domain 

required for comparison, each dataset was used and trained under each model variant. 

These variants were nano(n), small(s), medium(m), large(l), and extra-large(x) 
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YOLOv8 models variants. Figure 1 provides a detailed illustration of the structural 

configurations of the YOLOv8 variants as adapted from Terven et al. [14]. 

 

Fig. 1. Architecture of YOLOv8 detection models (P5) -  

YOLOv8n, YOLOv8s, YOLOv8m, YOLOv8l, YOLOv8x. 

These variants range from compact models designed for operational speed to 

larger models optimised for accuracy. This broad spectrum allows for a 

comprehensive analysis of domain adaptation across different model capacities. 

Environmental variables for the captures varied in the time of day consisting of 

sunrise, midday, afternoon, evening, after sunset and the occurring weather that 

varied between haze, rain. SeasShip datasets were captured through monitoring 

cameras in a deployed coastline video surveillance system that ensured diverse data 

collection by having varied illumination, background, and occlusion captures [15]. 

Developing and implementing the Faster R-CNN model required the use of 

Detectron2, a library developed by Facebook AI Research (FAIR) in 2019 to aid in 

the computer visual research using easier implementation of object detection 

algorithms [16]. As Faster R-CNN is recognised as the successor to its predecessor 

Fast R-CNN and R-CNN due to its increased efficiency and speed, the development 

and implementation of RPN based model will inherit the Faster R-CNN architecture 

[17]. Detectron2 model library offers multiple model variants, the selection of which 

was determined by comparing the baseline parameters from its source page as well 

as comparing its performance metrics when tested on the “MS COCO Validation 

2017” set as performed by Oksuz et al. [18]. Hence it was recognised that the variant 

“X101-FPN” was proven to be more effective as it has seen academic implementation 

[19]. For these reasons, it was decided that the X101-FPN variant was implemented 

directly for training the RPN model for the Faster R-CNN model. 

2.2.  Dataset description 

Two online available datasets were chosen to evaluate domain adaptation in object 

detection models: the SeaShip and the SMD. The criteria of which both had to show were 

maritime elements that were localised to specific region, however, were distinct to one 

another, in order to better clearly demonstrate the domain shift effect. The datasets 

featured high-definition photographs of maritime locations of onshore locations that 

contained annotated labels of several categories of ships as shown in Fig. 2. 
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 (a)  

 
(b)  

Fig. 2. Maritime dataset (a) SeaShip and (b) SMD [5, 20]. 

The SMD Data consisted of several onshore videos and on-board videos that 

were acquired by placing Canon 70D cameras on fixed platforms and moving 

vessels respectively enabling high definition (1080X1920) captures. Moreover, 

Near InfraRed (NIR) videos were also captured and annotated using the Canon 70D 

camera with hot mirror removed and MID-Opt BP800 Near-IR Bandpass filter. The 

environmental conditions were consistent throughout and focused on a clear day 

coastline. The SeaShip dataset consisted of high-definition images from coastal 

surveillance systems, annotated with various ship categories such as ore carriers, 

container vessels, and passenger ships [20]. A full list of each class name and the 

number of occurrences is presented in Table 1 for the datasets. The image set was 

recorded from several viewpoints at Hengqin Island, Zhuhai city, China at varying 

points of time, limited to 6:00 to 20:00. The varying locations and time were 

selected to simulate the varying conditions between both datasets. 

Table 1. Maritime dataset ship categories. 

Dataset Classes Instances Percentage 

SeaShip Dataset Bulk cargo carrier 1406 19.85 

Ore carrier 1504 21.24 

Fishing boat 1986 28.05 

Container ship 742 10.48 

General cargo ship 1043 14.73 

Passenger ship 399 5.63 

 Total 7080 

Sea Maritime Dataset 

(SMD) 

Boat 382 0.79 

Buoy 750 1.55 
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Ferry 2237 4.62 

Flying bird-plane 231 0.47 

Kayak 865 1.79 

Speed boat 2227 4.60 

Sailboat 616 1.27 

Vessel-Ship 34597 71.60 

Other 6412 13.27 

 Total 48317 

Annotations across both datasets were standardised to "sea_obstacle" with an 

ID of 0 for consistency. Prior to training, the naming schema for each identifying 

class ID differed as it was sourced online and hence had different class names, 

hence for a fair and homogenous evaluation and model training, each annotated 

image was relabelled to have the same ID and name. This involved creating a script 

that edited all the annotation files and changing the ID to 0 and reference name to 

“sea_obstacle”. The pre and post processing results of the data can be viewed in 

Figs. 3(a) and 3(b) respectively. 

 
(a) 

 
(b) 

Fig. 3. Original label compared to modified class groups  

(a) original data set annotation (b) modified dataset. 

Each variant of the YOLOv8 model underwent training over 50 epochs with an 

initial learning rate of 0.001. To enhance model robustness, standard data 

augmentation techniques such as random scaling and cropping were applied. The 

training aimed to optimise the models for precision and recall, essential metrics for 

evaluating object detection systems.  
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2.3.  Evaluation metrics 

A comprehensive evaluation framework was implemented and can be visualised in 

Fig. 4, incorporating an array of performance metrics to scrutinise the efficacy of 

each YOLOv8 model variant. These metrics comprised the mean Average 

Precision (𝑚𝐴𝑃) at specific 𝐼𝑜𝑈 thresholds: 𝑚𝐴𝑃(50) and 𝑚𝐴𝑃(0.50 − 0.95), 
alongside precision (𝑃) and recall (𝑅). Precision, essential in domains where false 

positives have considerable implications, is calculated as the proportion of true 

positive detections (𝑇𝑃) to all positive detections, i.e., 𝑇𝑃 plus false positives (𝐹𝑃), 

as shown in Eq. (1). Recall, critical in scenarios where omissions of true positives 

are unacceptable, is quantified as the ratio of 𝑇𝑃 to the sum of 𝑇𝑃 and false 

negatives (𝐹𝑁), as encapsulated in Eq. (2). Recall measures the model’s capability 

to identify all relevant instances and is crucial in scenarios where missing a true 

detection could be detrimental [21]. 

𝑃 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 (1) 

𝑅 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 (2) 

A predefined Intersection over Union (𝐼𝑜𝑈) threshold is juxtaposed with the ground 

truth to determine if a detection qualifies as a TP or FP, adjudicated by the 𝐼𝑜𝑈 

computation as denoted by 𝐼𝑜𝑈(𝑏, 𝑏𝑔𝑡) in Eq. (3) [22]. The performance metric 

𝑚𝐴𝑃(50), specified in Eq. (4) [23], evaluates the precision of object detection by 

calculating the average precision through the integration of the precision-recall curve 

between recall values 0 and 1, ensuring a minimum IoU 50% overlap with the ground 

truth bounding boxes. The mean value is then calculated by summarising the precision-

recall and dividing by the number of classes, C. The metric 𝑚𝐴𝑃(0.50 − 0.95), 
articulated in Eq. (5), extrapolates and accumulates 𝑚𝐴𝑃 calculations across 𝐼𝑜𝑈 

thresholds from 0.50 to 0.95 in increments of 0.05 over the number of IoU thresholds, 

in this case 10. Thus, offering a more granular assessment of the model's detection 

proficiency across a continuum of precision thresholds. 

𝐼𝑜𝑈(𝑏, 𝑏𝑔𝑡) =
𝑏 ∩ 𝑏𝑔𝑡

𝑏 ∪ 𝑏𝑔𝑡
 

 

(3) 

𝑚𝐴𝑃(50) =
1

|𝐶|
∑∫ 𝑃(𝑟)𝑑𝑟

1

0

𝐶

𝑖=1

 (4) 

𝑚𝐴𝑃(0.50 − 0.95) =
1

10
∑ 𝑚𝐴𝑃(𝑡)

0.95

𝑡=0.5

 (5) 

2.4.  Evaluation strategy 

2.4.1.  Intra-domain evaluation 

The intra-domain evaluation serves as the initial step in assessing the performance 

of each model variant within the confines of the dataset on which it was trained as 

shown in Fig. 4. This evaluation is crucial for establishing baseline performance 
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metrics, which include 𝑃, 𝑅, and the 𝑚𝐴𝑃. By evaluating each model on its training 

dataset, we can determine its optimal performance metrics in a controlled 

environment. This phase allows for a thorough analysis of the model's capabilities 

and limitations without the added complexity of domain variability. 

 

Fig. 4. Intra-domain evaluation. 

2.4.2.  Cross-domain evaluation 

For the cross-domain evaluation, models trained on the SeaShip dataset were tested 

on the SMD, and vice versa as shown in Fig. 5. This process is designed to assess the 

effectiveness of domain adaptation strategies by evaluating how well a model trained 

in one visual domain performs when applied to a different, yet related, visual domain.  

 

Fig. 5. Cross-domain adaptation. 

The primary metric for evaluating adaptation effectiveness is the change in 

𝑚𝐴𝑃 from the training domain (intra-domain) to the new domain (cross-domain). 

The cross-domain performance degradation is quantified as the difference in 𝑚𝐴𝑃 

between the two datasets represented in Eq. (6). 

𝛥𝑚𝐴𝑃 = 𝑚𝐴𝑃𝑖𝑛𝑡𝑟𝑎−𝑑𝑜𝑚𝑎𝑖𝑛 −𝑚𝐴𝑃𝑐𝑟𝑜𝑠𝑠−𝑑𝑜𝑚𝑎𝑖𝑛  
      (6) 

The 𝑚𝐴𝑃 scores from the intra-domain evaluation establish a benchmark for 

performance. The performance degradation, a critical metric in this assessment, is 

determined by the difference in 𝑚𝐴𝑃 scores between the two domains. A smaller 

𝛥𝑚𝐴𝑃 indicates a more successful domain adaptation by the model. This method 

of cross-testing not only quantifies the effectiveness of adaptation but also provides 

insights into how model parameters and architectural choices impact performance 

when transitioning between domains.  

This cross-domain evaluation strategy is crucial for understanding the dynamics 

of domain adaptation in practical applications, where models must perform 



172       Z. Z. Abidin et al. 

 
 
Journal of Engineering Science and Technology        February 2025, Vol. 20(1) 

 

effectively across varied settings without the need for extensive retraining. Through 

this approach, the research aims to deliver valuable insights into the adaptability of 

deep learning models in diverse maritime surveillance contexts, thereby enhancing 

their practical utility in real-world scenarios. 

2.5.  Model robustness evaluation 

The robustness of each YOLOv8 model variant was evaluated by comparing 

performance metrics from intra-domain and cross-domain evaluations, highlighting 

the ability of each model to maintain consistency under different environmental 

conditions—a key factor for real-world applications. Each model underwent a 

standardised training regimen, keeping all parameters consistent except for the 

model variant type, to ensure fair comparison. Crucial training parameters such as 

learning rate, batch size, and number of epochs are explicitly listed in Table 2. 

Considering that Detectron2 is a separate library to YOLOv8 the configuration may 

differ. However, it was noted when training the Faster R-CNN model it would 

match any applicable argument from the YOLOv8 parameters to ensure an 

evaluation when comparing between both model frameworks. Furthermore, it's 

noted that any training parameter not specifically mentioned defaults to Ultralytics 

or Detectron2 documentation settings respectively, ensuring that the study adheres 

to established machine learning practices and that differences in model 

performance are attributable to the model variants themselves, rather than 

variations in training approach.   

Table 2. Training arguments for YOLOv8. 

Argument  Argument Value 

Epochs 50 

Patience 3 

Batch 5 

Imgsz 640 

The evaluation phase was systematically structured to ensure consistency across 

all model variants and types, with specific parameters detailed in Table 3. Like the 

training phase, any evaluation parameter not explicitly specified defaults to the 

recommended settings by Ultralytics and Detectron2 configuration files, 

standardising the evaluation process. 

Table 3. Evaluation arguments for YOLOv8 and detectron2. 

Argument Argument Value 

IOU 0.50 

Confidence 0.50 

Max Detection 30 

This approach allows for a direct comparison between control model evaluation 

metrics and cross-domain metrics, effectively determining whether there has been 

a significant drop in model performance.  
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3.  Results and Discussion 

3.1. Performance evaluation across datasets 

Figure 6 displays the precision and recall curves for the SMD model across 50 

training epochs, revealing varied performances among different YOLO variants. 

Initially, all models exhibit low precision; however, they quickly improve, with the 

YOLOv8x variant consistently achieving superior precision, effectively adapting 

to the SMD dataset. Significant improvements in recall are observed in the early 

epochs across all variants, with rapid enhancements in their ability to identify true 

positives. By the 50th epoch, both precision and recall stabilise near the optimal 

score of 1.0, demonstrating the models' high accuracy and robustness in detecting 

true instances without overfitting. 

  

(a) (b) 

Fig. 6. (a) SMD-model precision values  

across epoch step (b) SMD-model recall. 

Figure 7 presents the mAP(50) and mAP(50-95) metrics for the same training 

period. All variants start with similar mAP(50) values, suggesting uniform initial 

detection capabilities. Early in training, a steep increase highlights a swift 

enhancement in the models' ability to localise and classify objects accurately. The 

mAP(50) values approach a perfect score, indicating a potential saturation in model 

performance given the current architecture and dataset. In contrast, the mAP(50-

95) metrics, which evaluate performance across stricter IoU thresholds, show 

continuous improvement, suggesting ongoing refinement in object detection 

precision and potential for further optimization across a broader IoU range. 

3.2.  Intra- and cross-domain analysis 

Figure 8 tracks precision and recall metrics for various YOLO model variants over 

50 training epochs on the SeaShip dataset. Precision varies initially among the 

models but rises quickly, with the YOLOv8n variant displaying the highest and 

most consistent precision, indicating an optimal fit for the SeaShip dataset. Recall 

also improves swiftly, particularly for YOLOv8n, which leads in consistently 

identifying all relevant instances. As training progresses, precision and recall trends 

for all models gradually plateau, indicating that additional training yields 

diminishing returns and suggesting a learning threshold. 
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(a) (b) 

Fig. 7. (a) SMD-model mAP(50) across epoch step  

(b) SMD-model mAP(50-95) across epoch step. 

  

(a) (b) 

Fig. 8. (a) SeaShip-model precision across epoch  

step (b) SeaShip-model recall across epoch step. 

Table 4 provides a comparative analysis of the YOLOv8x and YOLOv8m 

variants on the SMD and SeaShip datasets, respectively. This table highlights the 

performance metrics of each variant, showing how well each adapts to different 

maritime environments. The YOLOv8x variant demonstrates remarkable 

effectiveness on the SMD dataset with higher precision and mAP scores compared 

to YOLOv8m, suggesting its suitability for environments like SMD. Conversely, 

YOLOv8m shows superior performance metrics on the SeaShip dataset, 

emphasising its adaptability to different maritime contexts. 

Table 4. Evaluated control models for YOLOv8 models. 

Metrics Dataset 

SMD-YOLOv8x SeaShip-YOLOv8m 

Precision 0.983 0.913 

Recall 0.961 0.889 

mAP(50) 0.988 0.954 

mAP(50-95) 0.839 0.686 

Regarding the evaluation for the Faster R-CNN model, precision could not 

directly be accessed through the Detectron2 framework; hence, recall and mAP will 

be analysed. Table 5 shows that for both SMD and SeaShip Faster R-CNN models 
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have fair effectiveness, with SMD showing slightly significant performance in 

terms of the mAP(50) scores compared to the SeaShip model. SeaShip was 

identified to have an underdeveloped recall rate, scoring 79.0%, compared to the 

SMD’s 90.2%, suggesting that the RPN was not able to fully propose suitable 

bounding boxes for further classification. When directly compared to the YOLOv8 

architecture, both models have a slight underperformance in all metrics, however 

none fall below a 10.0% difference. 

Table 5. Evaluated control models for faster R-CNN. 

Metrics Dataset 

SMD-X101-FPN SeaShip- X101-FPN 

Recall 0.902 0.801 

mAP(50) 0.979 0.927 

mAP(50-95) 0.772 0.650 

The evaluation of precision and recall metrics for the SMD model offers 

significant insights into the classification model's performance. Notably, the 

YOLOv8x variant shows consistently superior performance with a precision rate 

of 98.3% and a recall rate of 96.1% on the SMD dataset, confirming the 

completeness and accuracy of its predictions. This variant also demonstrates 

significant improvements in the mAP(50-95) metric compared to the mAP(50), due 

to its larger feature extraction network enhancing detection capabilities across 

various IoU thresholds. 

In contrast, the SeaShip dataset results indicate that the YOLOv8m variant excels 

in both precision and recall, as well as in the mAP(50) and mAP(50-95) metrics, leading 

to its selection alongside YOLOv8x for cross-domain evaluation. This evaluation 

assesses performance degradation when models trained on one dataset are applied to 

another, highlighting the adaptability and limitations of each model variant as detailed 

in Tables 6 and 7 for YOLOv8 and Faster R-CNN models, respectively.  

Table 6. Cross-domain evaluation for YOLOv8. 

Metrics SMD-Model with SeaShip 

Dataset-YOLOv8x Model 

SeaShip-Model with 

SMD Dataset-

YOLOv8m Model 

Precision 0.167 0.508 

Recall 0.424 0.301 

mAP(50) 0.144 0.446 

mAP(50-95) 0.0514 0.240 

Table 7. Cross-domain evaluation for faster R-CNN. 

Metrics SMD Faster R-CNN 

X101-FPN Model with 

SeaShip Dataset 

SeaShip Faster R-CNN 

X101-FPN Model with 

SMD Dataset 

Recall 0.557 0.524 

mAP(50) 0.612 0.483 

mAP(50-95) 0.318 0.208 
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Furthermore, Table 8 explores this degradation, revealing a significant drop 

across all metrics in the YOLOv8 and Faster R-CNN model. However, it should be 

noted the drop of these scores is more apparent in the YOLOv8 model with 

mAP(50) having a loss of 84.4% in the SMD cross evaluation. However, the Faster 

R-CNN SMD model has a loss of 36.7%, suggesting an improvement difference of 

47.4%. Regardless of this it shows that the substantial performance disparity 

emphasises the challenges of model generalisation and the impact of domain-

specific characteristics on model efficacy. 

Table 8. Cross-domain degradation. 

Metrics SMD-Model 

with SeaShip 

Dataset-

YOLOv8x 

Model (Δ%) 

SeaShip-Model 

with SMD 

Dataset-

YOLOv8x 

Model(Δ%) 

SMD Faster R-

CNN X101-FPN 

Model with 

SeaShip Dataset 

(Δ%) 

SeaShip Faster 

R-CNN X101-

FPN Model 

with SMD 

Dataset 

Precision -0.816 -0.405 - - 

Recall -0.537 -0.588 -0.345 -0.266 

mAP(50) -0.844 -0.508 -0.367 -0.444 

mAP(50-95) -0.7876 -0.446 -0.454 -0.442 

3.3.  Discussion 

Whilst both models face some loss in cross-domain performance, the extent of the 

degradation varies between the model and dataset, with YOLOv8 appearing to be 

more sensitive to the domain shift from the SMD to the SeaShip datasets. On the 

other hand, Faster R-CNN seems to be more stable with no degradation change 

exceeding 50% in any of the metrics. This could be attributed to the Faster R-

CNN’s two stage object detector: its RPN and classification stage. The RPN will 

propose appropriate bounding box locations and filter irrelevant regions, ensuring 

that the impact of domain shift is minimal [24].  

These findings aligned itself with researcher such as Huang et al. who compared 

the performances of multiple architectures namely Faster R-CNN, R-FCN and SSD 

suggesting Faster R-CNN provided the most accurate results and maintained 

optimal model performance between speed and accuracy if the proposal candidates 

remained minimal [25]. In training simple ground truths are used, this makes the 

model susceptible under complex scenarios hence Cho et al. proposed a method to 

improve mAP scores for Faster R-CNN by further training the data with false 

positives in the scenario where the RPN introduces too many hard negatives as 

candidates. Applying this method could lessen the impact of the domain shift [26].  

Another key difference that could account for the drastic change in degradation 

between models could be attributed to each architectures’ backbone. YOLOv8 

applies CSPDarknet which is recognised to be compact and efficient for real 

application, whilst Faster R-CNN uses ResNeXt-101 that has a more complex 

deeper model that utilises parallel branches for broader feature extraction which in 

turn can enable the model to understand more complex scenarios. Hence, the choice 

of method and backbone can also greatly affect the mAP scores [27, 28].  

Nakamura et al. conducted similar research comparing the mAP scores between 

YOLOv5 and Faster R-CNN X101-FPN for various datasets: Mask-Detection, 

Blood Count Cell Detection, Vehicle Detection with training set sizes following 

the ratio 105:765:435 respectively. In general, Faster R-CNN had significant 
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improvement, except in the situation for the Blood Count Cell Detection, in which 

YOLOv5 outperformed. However, it can be noted that the training set for this was 

much larger in comparison to the other datasets, indicating that Faster R-CNN is 

suitable for situations where the training set is limited [29]. Additionally further 

studies have shown Faster R-CNN performing better than YOLOv5 under some 

situational cases, however it was noted that the inference speed of Faster R-CNN 

was significantly slower to YOLOv5 [30]. Considering these factors, it is proposed 

that the significant degradation value during YOLOv8 cross evaluation arise due to 

its inability to identify more complex features that are to be expected during a 

sudden shift of domain prior to classification. Furthermore, the lack of varying data 

types could have undermined the mAP scores.  

4.  Conclusions 

This study systematically evaluated the performance of various regression YOLO 

model variants, namely YOLOv8x and YOLOv8m in addition to a region based 

Faster R-CNN detection method, across the SMD and SeaShip datasets.  Our 

findings reveal that YOLOv8x consistently outperforms other variants on the SMD 

dataset, achieving high precision and recall rates, which underscores its suitability 

for environments like SMD. This variant also demonstrated superior performance 

in handling diverse IoU thresholds, evidenced by its significantly improved 

mAP(50-95) scores.  Conversely, the YOLOv8m variant proved more effective on 

the SeaShip dataset, indicating that different model architectures may be optimised 

for specific types of datasets. In comparison, the Faster R-CNN model variant has 

a slight underperformance with metrics differing by less than 10.0%. Suggesting 

that in a controlled and consistent domain YOLOv8 would be an ideal model for 

development. However, upon cross-domain evaluation it highlighted the challenges 

associated with applying models to new environments, as each performance metric 

suffered drastically especially the YOLOv8 variants, calling for the need of some 

optimization. From the results it was highlighted that Faster R-CNN under similar 

training scenarios was able to reduce the extent of degradation. In the case of the 

SMD model, Faster R-CNN showed high effectiveness in preserving its mAP(50) 

seeing a drop of 36.7% as opposed to the YOLOv8 variant’s 84.4%. 

These results emphasise the importance of selecting an appropriate model and 

objection detection algorithm to maximise detection performance and utilising 

domain adaptation techniques to reduce the effects of domain shift when the need 

of a critical robust model is needed across multiple domains in practical 

applications. Future studies should focus on developing more adaptive model 

algorithms that can be trained on constrained datasets and dynamically adjusted to 

allow varying dataset characteristics without substantial degradation in 

performance, to allow better practicality in complex and varied environments. 
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Nomenclatures 

𝑏 Bounding Boxes 

𝑏𝑔𝑡 Ground Truth Bounding Boxes 

𝐹𝑁 False Negative 

𝐹𝑃 False Positive 

𝐼𝑜𝑈 Intersection over Union 

𝑚𝐴𝑃 Mean Average Precision 

𝑃 Precision 

𝑅 Recall 

𝑇𝑃 True Positive 

  

Abbreviations 

 

CNNs Convolutional Neural Networks 

ID Identification 

R-CNNs Regional Convolutional Neural Networks 

R-FCNs Regional Fully Convolutional Networks 

RPN Region Proposal Network 

SMD Sea Maritime Dataset 

SSD Single Shot Detector 

YOLO You Only Look Once 
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