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Abstract 

Drones have emerged as transformative tools for executing aerial tasks that were 
once challenging for manned aircraft, offering substantial safety benefits, 
economic advantages, and environmental gains. This paper introduces an 
innovative approach to the design and analysis of autonomous drones tailored for 
smart navigation applications, underpinned by the fusion of LiDAR-Camera 
technology and GNSS (Global Navigation Satellite System) integration. The 
drone featured in this research is a Quadcopter, equipped with DYS D2836-6 
1500KV motors and 30A BLDC ESCs for control. Its power source is an Orange 
5200mAh 4S LiPo battery, providing both efficiency and longevity. The heart of 
the drone lies in the ARM Cortex M4-based controller, which orchestrates its 
autonomous flight. It exhibits a wide operational altitude range, maintaining a 
constant height between 5 to 20 meters above ground level, while achieving a top 
velocity of 2 meters per second. The core innovation of this research resides in 
the integration of LiDAR-Camera fusion technology. Leveraging RPLiDAR with 
a 180-meter range and a remarkable point cloud density of 1000 points per square 
meter, the drone is equipped to perceive its surroundings with unprecedented 
accuracy. The accompanying camera boasts a high-resolution 1920 x 1080 pixel 
sensor with a 360-degree horizontal and 180-degree vertical field of view, 
facilitating comprehensive visual data acquisition. For object recognition and 
tracking, the drone employs the YOLOv4 algorithm for real-time identification 
and utilizes the Kalman filter for precise object tracking. These advancements in 
computer vision contribute significantly to the drone's autonomous navigation 
capabilities. The drone's navigational prowess is complemented by the APM2.5 
NEO-M8N GNSS receiver, ensuring precise geospatial positioning.  

Keywords: Autonomous drones, Computer vision, Obstacle recognition and 
ranging, Navigation, Robot operating system. 
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1.  Introduction 
Unmanned Aerial Vehicles (UAVs), commonly referred to as drones, have 
proliferated across various industries, as illustrated in Fig. 1. They have found 
widespread application in diverse fields, encompassing routine tasks such as 
delivery, surveillance, construction, agriculture, and military operations [1, 2]. The 
utilization of drones not only streamlines operational processes but also offers 
notable advantages, both from environmental and financial perspectives, while 
concurrently reducing risks to human life [3].  

The soaring sales figures of drones, reaching millions, are indicative of their 
growing significance, particularly in the recreational market [4]. This surge is propelled 
by advancements in technology, adherence to regulatory frameworks, and the 
increasing acceptance of drones by the public [5]. Despite the substantial progress in 
drone technology, several challenges persist in the domain of drone-based applications.  

These challenges encompass multiple facets, including the optimal placement 
of drones, efficient path planning, enhancing payload capacity, effective drone 
management, maximizing flight time, and ensuring secure communication among 
flying drones. Addressing these multifaceted concerns necessitates the 
development of minimal cryptographic primitives and protocols tailored to the 
unique requirements of drone-based systems [6, 7].  

  
Fig. 1. Autonomous drone applications. 

A LiDAR(Light Detection and Ranging) and Camera oriented 3D object 
detector creates trajectory, object recognition, and ranging using data from the 
LiDAR sensor and information from the camera [8, 9]. The quality of the data 
collected by the LiDAR sensor directly affects effectiveness. Utilising point cloud 
stitching to reduce the sparsely of a picture at locations far from the sensor makes 
the challenge more difficult to solve [10].  
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The trade-offs include the size and physical characteristics of objects that 
require object detection or classification. A UAV with a LiDAR sensor obtained 
the data set utilised to examine these trade-offs [11, 12]. The analytical method 
being investigated uses convolutional neural networks, which were trained on 
various objects to be classified in the LiDAR dataset.  

Recently, several innovative techniques have been used to overcome the issues 
with object recognition on point clouds [13, 14]. As illustrated in Fig. 2, the point-
cloud representation splits these methods into point-based, graph-based, and voxel-
based strategies. The point-based techniques have poor perceptual skills and take 
too long to sample data compared to a CNN [15].  

  
Fig. 2. Types in point-cloud.  

Graph-based techniques create a more obvious structure when the property is 
considered. Sparse and erratic point clouds are converted into consistently sized 
voxels by voxel-based techniques, which CNNs may be able to comprehend better 
[16, 17]. Voxel-based algorithms frequently have high speeds and decent accuracy, 
but they are extremely susceptible to hyperparameters.  

Voxel-based approaches also inevitably lead to information loss, especially 
regarding the precision of fine-grained localisation [18]. For a car to be self-driving, 
high-precision GNSS technology must provide the accuracy, and reliability needed. 
A fully autonomous vehicle requires a reliable localization system and the 
assurance that it is accurate [19]. 

This paper is prepared as follows: Section 2 discusses the LiDAR-Camera and 
GNSS based autonomous drone’s related work. With a preceding literature survey, 
a clear problem statement and detailed methodology is discussed in Section 3. An 
implementation aspects of autonomous drone with LiDAR-Camera, voxel-based 
based point cloud, Deep learning approaches and GNSS are discussed in Section 4. 
Results and discussions are described in Section 5. Finally, the paper was concluded 
in Section 6.  

2.  Related Work 
Autonomous drones are increasingly vital for various applications, including search 
and rescue, precision agriculture, environmental monitoring, and infrastructure 
inspection. The fusion of LiDAR and camera data in drone design plays a pivotal 
role by enabling these aircraft to navigate and interact with their surroundings with 
exceptional precision and safety [20]. LiDAR technology provides accurate 
distance measurements, while cameras capture high-resolution visual data, and 
when combined, they enhance the drone's ability to perceive its environment, 
identify objects, and ensure obstacle avoidance, making autonomous drones 
indispensable in critical tasks and enhancing their overall operational effectiveness.  
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The autonomous drones with LiDAR-camera fusion and GNSS as per state-of-
art are listed in Table 1. And few commercially available LiDAR with 
specifications is listed in Table 2. To examine the detection accuracy of LiDAR 
system, the system SNRE is:  

𝑆𝑆𝑆𝑆𝑅𝑅𝐸𝐸 = 20 log
𝑉𝑉𝑝𝑝

�𝑉𝑉2𝑏𝑏 + 𝑉𝑉2𝑑𝑑 + 𝑉𝑉2ℎ
                                                                           (1) 

where Vd is indeed the RMS noise of the photoelectric detector, Vh is the RMS noise 
of the high-speed digitizer, and Vp is just the peak voltage. 

Table 1. Autonomous drones for smart applications state-of-art. 

Ref. Description Board Calibration Point-
Cloud GPS Dataset Limitations 

[21] Modelling for a drone's 
components has been 
demonstrated. The 
3DEXPERIENCE 
programme, which 
offers modelling, 
simulation, and 
optimization tools, was 
used to simulate. 

SP 
Racing 

F3 

Neato 
LiDAR 

Point-
based 

GPS NEO-
6M 

KITTI Only fly, no 
navigation. 

[22] Showed the advantages 
of swarms of 
heterogeneous vehicles. 
The algorithms are 
adaptable, 
reconfigurable. 

DJI --- Graph-
based 

Ublox 
NEO-7M 

nuScenes Fly with 
navigation 

but no 
stability. 

[23] Tensor Processing Unit 
(TPU) devices for edge 
computing were 
suggested as hardware 
support due to their 
computational capability. 

RC Flight 
Controller 
KK 2.1.5 

Slamtec 
RPLiDAR 

A1M8  

--- APM2.5 
NEO-M8N 

GPS 
Module 

GYGPSV1-
8M 

KITTI Only fly, no 
navigation. 

[24] Compared to ground 
truth reference data, 
measurements taken 
along a vertical flight 
route showed potential.  

Pixhawk 
PX4 

Autopilot 
2.4ss.8 

MakerFocus 
TFmins 
Micro  

Graph-
based 

-- ONCE Fly with 
navigation 

but 
moderate 
stability. 

[25] UAV systems can 
efficiently collect the 
regular collection of 
high-quality data needed 
for emerging precision 
agriculture approaches.  

APM 2.8 
Flight 

Controller 
with 

Built-in 
Compass 

--- Voxel-
based 

--- nuScenes Fly with 
navigation 

but 
moderate 
stability. 

[26] Utilizing the distributed 
swarm control algorithm, a 
multi-UAV system for 
agriculture was developed, 
and the system's 
performance was assessed.  

Pixhawk 
PX4 

Autopilot 
2.4ss.8 

--- Voxel-
based 

GPS NEO-
6M 

 

ONCE Fly with 
navigation 

but 
moderate 
stability. 

[27] Demonstrates how to 
perform vertical and 
horizontal near-ground 
operations on a moving 
target without knowing 
the vehicle's height or 
the target's speed.  

APM 2.8 
Flight 

Controller 
with 

Built-in 
Compass 

Slamtec 
RPLiDAR 

A1M8  

Graph-
based 

APM2.5 
NEO-M8N 

GPS 
Module 

GYGPSV1-
8M 

KITTI Only fly, no 
navigation. 

https://www.amazon.com/Slamtec-RPLIDAR-Scanning-Avoidance-Navigation/dp/B07TJW5SXF/ref=sr_1_4?keywords=Lidar+Sensor&qid=1662098248&sr=8-4
https://www.amazon.com/Slamtec-RPLIDAR-Scanning-Avoidance-Navigation/dp/B07TJW5SXF/ref=sr_1_4?keywords=Lidar+Sensor&qid=1662098248&sr=8-4
https://www.amazon.com/Slamtec-RPLIDAR-Scanning-Avoidance-Navigation/dp/B07TJW5SXF/ref=sr_1_4?keywords=Lidar+Sensor&qid=1662098248&sr=8-4
https://www.amazon.com/MakerFocus-Single-Point-Ranging-Pixhawk-Compatible/dp/B075V5TZRY/ref=sr_1_6?keywords=Lidar+Sensor&qid=1662098248&sr=8-6
https://www.amazon.com/MakerFocus-Single-Point-Ranging-Pixhawk-Compatible/dp/B075V5TZRY/ref=sr_1_6?keywords=Lidar+Sensor&qid=1662098248&sr=8-6
https://www.amazon.com/MakerFocus-Single-Point-Ranging-Pixhawk-Compatible/dp/B075V5TZRY/ref=sr_1_6?keywords=Lidar+Sensor&qid=1662098248&sr=8-6
https://www.amazon.com/Slamtec-RPLIDAR-Scanning-Avoidance-Navigation/dp/B07TJW5SXF/ref=sr_1_4?keywords=Lidar+Sensor&qid=1662098248&sr=8-4
https://www.amazon.com/Slamtec-RPLIDAR-Scanning-Avoidance-Navigation/dp/B07TJW5SXF/ref=sr_1_4?keywords=Lidar+Sensor&qid=1662098248&sr=8-4
https://www.amazon.com/Slamtec-RPLIDAR-Scanning-Avoidance-Navigation/dp/B07TJW5SXF/ref=sr_1_4?keywords=Lidar+Sensor&qid=1662098248&sr=8-4
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Table 2. LiDAR’s for autonomous drone’s state-of-art [28-30]. 

LiDAR Feature Range TOF Frame 
rate(Hz) 

TF-LC02   
UART module for single-point ranging 
Supported by Raspberry Pi and Pixhawk for 
drone obstacle avoidance. 

3cm-
200cm 180 -- 

Youyeetoo 
TFmini-S  

Single-Point Ranging Module for Drones that 
works with Pixhawk and Raspberry Pi. 

0.1-
12m 180  1~1000 

Yahboom 
LiDAR EAI 
YDLIDAR X3  

Robot Obstacle Avoidance and Navigation 
with 5Hz–10Hz Adjustable 8m Radius Ranging 
Scanning Supporting ROS1. 

8m 360 3000 

Youyeetoo 
Slamtec 
RPLiDAR A3  

Outdoor AGV Drones' Scanning Radius & 
Mute Brushless Motor LiDAR Sensor for 
Obstacle Avoidance and Navigation. 

25 m 360 16000 

VP300-30 
Industrial-Grade Laser Radar Scanner for 
Robotic Obstacle Avoidance Indoor and 
Outdoor Waterproof Dust-Proof IP65 LiDAR. 

30 m 300 20000 

Velodyne 
HDL-64 

The HDL-64E offers substantially more 
environmental data than was possible with its 
full 360 HFOV by 26.8 VFOV. With a user-
selectable frame rate of 5–15 Hz and an output 
rate of more than 1. 3 million points per second. 

120 m 360 --- 

RIEGL VUX-
1HA 

The RIEGL VUX-1HA is a very portable and 
small laser scanner that can handle the system 
integration and measure airborne laser scanning 
performance requirements by helicopter, 
gyrocopter, and other small aircraft.  

420 m 360 2 MHz 

The high-speed digitizer's datasheet contains information on Vh. The space 
between the ith item and LiDAR system is denoted as di and determined after 
Gaussian fitting. 

𝑑𝑑𝑖𝑖 = 1
2

(𝜇𝜇𝑖𝑖 − 𝜇𝜇𝑇𝑇)𝑇𝑇𝑠𝑠𝐶𝐶 1 ≤ 𝑖𝑖 ≤ 𝑁𝑁                                                                           (2) 
where c is the laser broadcast speed, and Ts is the high-speed digitizer's sample 
period. The Gaussian fitting approach involves fitting a typical laser pulse, t(n), to  

𝑡𝑡(𝑛𝑛) = 𝐴𝐴𝑇𝑇𝑒𝑒
− (𝑛𝑛−𝜇𝜇𝑇𝑇)2

𝐹𝐹𝑇𝑇
2/(4𝑖𝑖𝑖𝑖2) + 𝐾𝐾𝑇𝑇 + 𝜀𝜀𝑇𝑇(𝑛𝑛)                                                                     (3) 

where, n is the sampling time, AT, 𝜇𝜇T and FT are the amplitude, mean and FWHM 
respectively, ɛT is the residual error. The received laser echo, s(n), is fitted using- 

𝑠𝑠(𝑛𝑛) = ∑ 𝐴𝐴𝑖𝑖𝑒𝑒
−

(𝑛𝑛−𝜇𝜇𝑖𝑖)
2

𝐹𝐹𝑖𝑖
2/(4𝑖𝑖𝑖𝑖2) + 𝐾𝐾𝑅𝑅 + 𝜀𝜀𝑅𝑅(𝑛𝑛)𝑁𝑁

𝑖𝑖=1                                                (4) 
where, N is the number of the Gaussian functions in s(n), KR is the DC offset of 
s(n), and ɛR is the residual error [31].  

Object detection and classification techniques that take advantage of 
Convolutional Neural Network (CNN) architecture have recently been researched, 
as shown in Table 3 [32, 33]. The ImageNet classification competition was won by 
AlexNet, which utilized CNN for better performance.  

Table 3. Different modules and algorithms for object detection and ranging. 
Module Algorithms 
Fusion Kalman filter, Extended Kalman filter, Unscented Kalman filter, Particle filter, Bayesian filter 
Object 
Detection 

YOLO, SSD, RCNN, 
Faster R-CNN, Mask R-CNN 

Ranging Time-of-flight, Phase-shift, FMCW, 
Triangulation, Stereovision 

https://www.amazon.com/TF-LC02-3cm-200cm-Short-Range-Single-Point-Compatible/dp/B09XDDS9FS/ref=sr_1_20?keywords=Lidar+Sensor&qid=1662098248&sr=8-20
https://www.amazon.com/sspa/click?ie=UTF8&spc=MTo0ODA0MzQwNjk3OTA3MTYzOjE2NjIwOTgyNDg6c3BfYnRmOjIwMDA0MTY4MDk4OTU2MTo6MDo6&sp_csd=d2lkZ2V0TmFtZT1zcF9idGY&url=%2Fyouyeetoo-Measurement-Single-Point-Compatible-Raspberry%2Fdp%2FB08FFFFQ65%2Fref%3Dsr_1_21_sspa%3Fkeywords%3DLidar%2BSensor%26qid%3D1662098248%26sr%3D8-21-spons%26psc%3D1
https://www.amazon.com/sspa/click?ie=UTF8&spc=MTo0ODA0MzQwNjk3OTA3MTYzOjE2NjIwOTgyNDg6c3BfYnRmOjIwMDA0MTY4MDk4OTU2MTo6MDo6&sp_csd=d2lkZ2V0TmFtZT1zcF9idGY&url=%2Fyouyeetoo-Measurement-Single-Point-Compatible-Raspberry%2Fdp%2FB08FFFFQ65%2Fref%3Dsr_1_21_sspa%3Fkeywords%3DLidar%2BSensor%26qid%3D1662098248%26sr%3D8-21-spons%26psc%3D1
https://www.amazon.com/sspa/click?ie=UTF8&spc=MTo0ODA0MzQwNjk3OTA3MTYzOjE2NjIwOTgyNDg6c3BfYnRmOjIwMDA2NzY2NzIzMDU5ODo6MDo6&sp_csd=d2lkZ2V0TmFtZT1zcF9idGY&url=%2FYahboom-EAI-YDLIDAR-X3-Adjustable%2Fdp%2FB0B4C49MLK%2Fref%3Dsr_1_22_sspa%3Fkeywords%3DLidar%2BSensor%26qid%3D1662098248%26sr%3D8-22-spons%26psc%3D1
https://www.amazon.com/sspa/click?ie=UTF8&spc=MTo0ODA0MzQwNjk3OTA3MTYzOjE2NjIwOTgyNDg6c3BfYnRmOjIwMDA2NzY2NzIzMDU5ODo6MDo6&sp_csd=d2lkZ2V0TmFtZT1zcF9idGY&url=%2FYahboom-EAI-YDLIDAR-X3-Adjustable%2Fdp%2FB0B4C49MLK%2Fref%3Dsr_1_22_sspa%3Fkeywords%3DLidar%2BSensor%26qid%3D1662098248%26sr%3D8-22-spons%26psc%3D1
https://www.amazon.com/sspa/click?ie=UTF8&spc=MTo0ODA0MzQwNjk3OTA3MTYzOjE2NjIwOTgyNDg6c3BfYnRmOjIwMDA2NzY2NzIzMDU5ODo6MDo6&sp_csd=d2lkZ2V0TmFtZT1zcF9idGY&url=%2FYahboom-EAI-YDLIDAR-X3-Adjustable%2Fdp%2FB0B4C49MLK%2Fref%3Dsr_1_22_sspa%3Fkeywords%3DLidar%2BSensor%26qid%3D1662098248%26sr%3D8-22-spons%26psc%3D1
https://www.amazon.com/youyeetoo-25meters-scanning-Avoidance-Navigation/dp/B07XCKB57T/ref=sr_1_11?keywords=Lidar+Sensor&qid=1662098248&sr=8-11
https://www.amazon.com/youyeetoo-25meters-scanning-Avoidance-Navigation/dp/B07XCKB57T/ref=sr_1_11?keywords=Lidar+Sensor&qid=1662098248&sr=8-11
https://www.amazon.com/youyeetoo-25meters-scanning-Avoidance-Navigation/dp/B07XCKB57T/ref=sr_1_11?keywords=Lidar+Sensor&qid=1662098248&sr=8-11
https://www.amazon.com/sspa/click?ie=UTF8&spc=MTo0ODA0MzQwNjk3OTA3MTYzOjE2NjIwOTgyNDg6c3BfYXRmOjIwMDA3MjE2NjA3MzU5ODo6MDo6&sp_csd=d2lkZ2V0TmFtZT1zcF9hdGY&url=%2F30-Industrial-Grade-Waterproof-Dust-Proof-Avoidance%2Fdp%2FB0B24V6YVC%2Fref%3Dsr_1_1_sspa%3Fkeywords%3DLidar%2BSensor%26qid%3D1662098248%26sr%3D8-1-spons%26psc%3D1
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Additionally, several works, including the PASCAL Visual Object Classed and 
the ImageNet Big Scale Visual Recognition Challenge, have demonstrated good 
classification performance on large datasets. While some earlier efforts concentrated 
on their performance, architecture designs that reduced computing expenses are 
available in the literature. The classification performance, however, could be 
impacted if a model emphasises execution durations more than performance. 

3.  Problem Statement and Detailed Methodology 
Achieving stability in autonomous aerial vehicles is a significant research 
challenge, and the integration of a compass-equipped controller can be a valuable 
solution to enhance drone stability. Furthermore, improving the accuracy of object 
recognition and ranging, a crucial element in obstacle avoidance, is addressed 
through the utilization of trained Deep Neural Networks in combination with 
LiDAR-Camera fusion technology, resulting in enhanced precision and reliability, 
as shown in Table 4. 

By, ensuring high connectivity in autonomous vehicle navigation is vital, and 
the implementation of advanced GNSS modules like the APM2.5 NEO-M8N offers 
improved connectivity with reduced error, contributing to the efficiency and 
reliability of navigation systems in autonomous drones. Aim to locate and detect 
things in 3D space using a point cloud and picture data as inputs. 3D SLAM 
techniques like Cartographer and LOAM to create 3D maps and predict high-
precision trajectories. The autonomous drones are become vital because of more 
scalability and mobility the abilities help these drones to address many research 
challenges in potential applications like agriculture, military, video surveillance 
and delivery. These major requirements of the autonomous drones are navigation, 
object recognition and ranging. 

Table 4. Problem statement. 

Parameter Research 
Challenge Description Possible Solution 

Drone Stability Design of drone with more 
stability is really a potential 
research challenge in 
autonomous aerial vehicles. 

The controller with 
compass helps to improve 
stability. 

Object 
Recognition 
and Ranging 

Improving 
Accuracy 

Obstacle avoidance with ranging 
is one of the primary 
requirements in drones. 

Trained Deep Neural 
Network with LiDAR-
Camera fusion addressed 
the so many issues related 
to Object Recognition and 
Ranging with more 
accuracy. 

Navigation Connectivity Autonomous vehicles demand 
high connectivity GNSS modules 
with less error.  

The high end GNSS 
modules like APM2.5 
NEO-M8N offer more 
connectivity with less 
error. 

This paper presents a sturdy autonomous drone with navigation, object 
recognition and ranging capabilities. The detailed methodology of this work is as 
shown in Fig. 3. KITTI Dataset (5.1) The Toyota Technological Institute in Chicago 
and the Karlsruhe Institute of Technology generated one of the earliest datasets.  
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Fig. 3. Detailed methodology. 

Localization data, a 360-degree point cloud derived from a Velodyne HDL-64E 
LiDAR sensor mounted on top of the vehicle, and colour and grayscale photos 
captured by two high-definition stereo camera systems looking ahead are all 
included. The present work aims to address the need for a transformative and 
innovative drone design that leverages LiDAR-Camera fusion technology and 
GNSS integration. The specific challenges include achieving accurate 
environmental perception, real-time object recognition and tracking, and precise 
geospatial positioning, while maintaining a constant altitude between 5 to 20 meters 
above ground level and a top velocity of 2 meters per second. The research seeks 
to integrate these technologies to enhance the drone's autonomous navigation 
capabilities, thus addressing the need for safer, more efficient, and environmentally 
friendly aerial tasks compared to traditional manned aircraft. 

4.  Implementation  
The Quadcopter was implemented with DYS D2836-6 1500KV motors and 30A 
BLDC ESCs. Its power source is an Orange 5200mAh 4S LiPo battery, providing 
both efficiency and longevity as shown in Fig. 4. The heart of the drone lies in the 
ARM Cortex M4-based controller, which orchestrates its autonomous flight. The 
LiDAR-Camera calibration helps to estimation relative position and orientation 
between a LiDAR and a camera in a system. Cameras provides colour information, 
while a LiDAR sensor provides an accurate 3D structural and locational information 
of the objects. When fuse together we can enhance the performance of perception and 
mapping algorithms for autonomous driving and robotic applications. 

LiDAR and camera fusion is a technology that combines the capabilities of a 
LiDAR sensor and a camera to provide more accurate and comprehensive object 
detection and ranging. LiDAR is a remote sensing technology that uses laser light 
to measure distances, while a camera captures images using visible light. By 
combining the data from both sensors, LiDAR and camera fusion can provide a 
more detailed understanding of the environment and objects. 

Performance Analysing 

Implementation

Abstacle Aoidance and Navigation
LiDAR -Camera GNSS

Design of Drone
Frame Motors Speed Controllers Controller Battery

Mathematical Analysis 

Start with Specification of Autonomouse Vehicle
Fly Abstacle Avoidance Navigate
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Fig. 4. Autonomous drone with object detection-ranging and navigation. 

The drone should be able to carry a camera and LiDAR sensor, have a flight time 
of at least 30 minutes, fly up to 400 feet, and have a maximum speed of 50 mph. Once 
the requirements are gathered, the next step is to design the frame of the drone. The 
frame should be lightweight, durable, and able to accommodate all the necessary 
components. It should also be aerodynamic to improve the drone's flight performance. 
The next step is to choose the necessary components, including the motors, Pixhawk 
flight controller, ECS, battery, and camera and LiDAR sensors (Table 5).  

Table 5. Autonomous navigation drone specifications. 
Parameters Details  
Drone Type Quadcopter 

Motors DYS D2836-6 1500KV 
Electronic Speed Controllers 30A BLDC ESC 
Battery Orange 5200mAh 4S 40C/80C 
Processor ARM cortex M4 
Maximum Constant Height 
(Altitude) 20 m 

Minimum Constant Height 
(Altitude) 5 m 

Velocity 2 m/s 
Object 
Recognition  
and ranging 

LiDAR RPLiDAR 
Dataset KITTI 
Camera resolution 1920 x 1080 pixels 
Camera field of view 360 degrees horizontal, 180 degrees 

vertical 
LiDAR range 180 meters 
LiDAR point cloud density 1000 points per square meter 
Object detection algorithm YOLOv4 
Object tracking algorithm Kalman filter 

Navigation GPS APM2.5 NEO-M8N 
Monitoring Ardupilot Mission Planar  
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The motors should be chosen based on the drone's weight and flight 
requirements. The Pixhawk flight controller is responsible for controlling the 
drone's flight, while the ECS controls the speed of the motors. The battery should 
provide enough power to allow the drone to fly for the required amount of time, 
and the camera and LiDAR sensors should be chosen based on the required 
resolution and range. Once all the components are chosen, the next step is to 
integrate them into the drone and test their functionality.  

This includes testing the motor speed control, the Pixhawk flight controller, and 
the camera and LiDAR sensors. The GNSS system should also be integrated and 
tested for navigation. With the drone's components working, the object detection 
and ranging system can be developed using camera and LiDAR fusion. The system 
should be able to detect objects in real-time and provide the drone with the 
necessary data to avoid obstacles. 

To estimate an object 3D bounding box size, range, and angle using a 360-degree 
camera and LiDAR fusion with the following specifications. Acquire the KITTI dataset, 
which consists of labelled images and corresponding LiDAR point cloud data. Train an 
object detection model using the KITTI dataset. There are various approaches you can 
take, such as using deep learning frameworks like TensorFlow.  The model training and 
optimize completed it is deployed on a resource-constrained device like Raspberry Pi. 
This may involve model compression techniques or quantization to reduce the model's 
size and computational requirements.  

Algorithm  
Pre-requisites: 
Object detection and Ranging. 
{Train Network with KITTI dataset and deploy it in raspberry pi;  
Connect LiDAR and Camera with Raspberry Pi; 
LiDAR-Camera fusion image is given as input to Trained Network for Object Detection and 
Ranging.  
Connect Rapberry Pi to Pixhawk drone controller;} 
Position Monitoring. 
{Connect GNSS to Pixhawk drone controller;} 
Start. 
Define input variable i.e., GNSS (Longitude (Lo), Latitude(La)), and LiDAR-Camera (Object 
detection(O), Ranging (R)); 
Define output variables i.e., Fly(F), Speed (S), Throttle (T), Rudder (Ru), Right (Ri), Left(Le) and 
Land (L). 
Input Variable Initialization Lo=0, La=0,O=0,R=0; 
Output Variable Initialization  F=0,S=0,T=0,Ru=0,Ri=0,Le=0,L=0; 
Read Input (Lo & La); 
If (O==0) 
{F=1;} 
Elseif(O==1) 
{F=0;} 

The software module on the Raspberry Pi that receives input from both the 
LiDAR and camera. Develop an algorithm that fuses the LiDAR and camera data to 
generate a combined image. Feed the fused image as input to the trained object 
detection model to perform object detection and ranging. Identify the communication 
interfaces available on both the Raspberry Pi and Pixhawk drone controllers.  

Ensure compatibility between the interfaces of the Raspberry Pi and Pixhawk. 
Establish the connection between the Raspberry Pi and Pixhawk using appropriate 
cables or connectors. Set up the necessary software communication protocols 
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between the Raspberry Pi and Pixhawk, such as MAVLink, to enable data exchange 
between the two devices. 

The GNSS module connected to the Pixhawk using the appropriate interface. The 
Pixhawk was configured to receive and process the GNSS data. The GNSS connection 
was verified by checking the position information reported by the Pixhawk. 

5.  Results and Discussions  
The presented drone flying in autonomous mode as shown in Fig. 5. The camera 
and LiDAR fusion details are as listed in Table 6.  The camera has a resolution of 
1920 x 1080 pixels, which means it captures images with 1920 pixels in width and 
1080 pixels in height.  

Table 6. Camera and LiDAR fusion details. 
Parameter Description 
Camera resolution 1920×1080 pixels 
Camera field of view 360 degrees horizontal, 180 degrees vertical 
LiDAR range 180 meters 
LiDAR point cloud density 1000 points per square meter 
Object detection algorithm YOLOv4 
Object tracking algorithm Kalman filter 

The camera has a wide field of view, covering 360 degrees horizontally and 180 
degrees vertically. This means it capture a full panoramic view horizontally and 
half of a sphere vertically. The LiDAR system has a range of 180 meters, meaning 
it detect objects up to a maximum distance of 180 meters from the sensor. LiDAR 
system generates a point cloud representing the 3D environment. The specified 
density of 1000 points per square meter means that for every square meter of the 
scene, the LiDAR system captures 1000 individual points. The YOLOv4 algorithm 
is used for object detection. YOLO stands for "You Only Look Once," and it is a 
popular algorithm for real-time object detection in images and videos.  

 
Fig. 5. Presented autonomous drone in fly mode. 

YOLOv4 is an improved version of the YOLO algorithm, known for its 
accuracy and speed in detecting objects. The Kalman filter is used for object 
tracking. The Kalman filter is a recursive algorithm that estimates the state of a 
system over time, incorporating new measurements while considering the system's 
dynamics and uncertainty. The framework was tested within a collapsed building 
through simulation and actual flight tests. False positive readings from particular 
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object visualisations were the reason for the varied distribution of victim GNSS 
locations in mission mode. 

Drone location monitoring using Ardupilot Mission Planner involves using a 
GCS to view and monitor the drone's location in real-time. Ardupilot is an open-
source autopilot system that is widely used in UAVs and drones, and Mission 
Planner is a GCS software that enables users to plan missions, monitor telemetry 
data, and control the drone's flight. By using the Mission Planner software and 
connect to the drone by selecting the appropriate communication port and baud 
rate. The GCS will display various telemetry data such as the drone's altitude, 
speed, and location as shown in Fig. 6.  

 
Fig. 6. Drone location monitoring using Ardupilot mission planner.  

The map will display the drone's current location as well as its flight path. Users 
can also view other useful information such as the battery level, GPS signal 
strength, and altitude. In addition to monitoring the drone's location, users can also 
use Mission Planner to plan and execute autonomous missions, set waypoints, and 
perform various other flight operations. The drone leverages a high-resolution 
camera with a capability of 1920 x 1080 pixels and an expansive field of view 
encompassing 360 degrees horizontally and 180 degrees vertically.  

Utilizing the YOLOv4 object detection algorithm, the camera processes each 
frame and identifies the presence and position of an aeroplane within the 2D image. 
The algorithm locates the aeroplane in the frame, specifying its coordinates in a 
bounding box. Simultaneously, a LiDAR system with a range of 180 meters and a 
point cloud density of 1000 points per square meter is engaged to generate 3D point 
cloud data. By analysing the LiDAR point cloud, the system accurately computes 
the aeroplanes distance from the sensor.  

The integrated Kalman Filter then ensures that the aeroplanes trajectory is 
precisely tracked over time by predicting its future position and enhancing the 
overall accuracy of the system in detecting and determining the range of aeroplane 
within the captured environment. LiDAR and Camera Data Fusion to Detect and 
Range the Object in Different Positions as shown in Fig. 7. The system's 
comprehensive approach combines data from the camera image, which identifies 
the 2D position of an aeroplane, and information from the LiDAR point cloud, 
which provides the 3D position and distance of the aeroplane. 
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Fig. 7. LiDAR and camera data fusion to detect  
and range the object in different positions. 

Through the coordinated use of the YOLOv4 object detection algorithm and the 
Kalman Filter for tracking, the system offers a robust solution for aeroplane 
detection and range estimation. If the camera image, with a resolution of 1920 x 
1080, captures the scene. Let's say it identifies an aeroplane and its 2D position in 
the image with bounding box coordinates (x1, y1) and (x2, y2). The centre of the 
aeroplane in the image is (x_center, y_center, z_center).  

The LiDAR, with a range of 100 meters and a point cloud density of 1000 points 
per square meter, scans the environment. It identifies a cluster of points 
corresponding to the detected pedestrian. LiDAR point cloud indicates the 
pedestrian's 3D position as (x_LiDAR, y_LiDAR, z_LiDAR). Calculate the distance 
from the LiDAR sensor to the pedestrian,   

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 = �
(𝑥𝑥_𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 − 𝑥𝑥_𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶)2 +
(𝑦𝑦_𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 − 𝑦𝑦_𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶)2 +
(𝑧𝑧_𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 − 𝑧𝑧_𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐)2

                                                                    (5) 

By fusing data from the camera and LiDAR, the system effectively combines 2D 
position information from the camera with 3D range information from the LiDAR. 
The integrated information enables accurate detection and precise range as listed in 
Table 7. The Presented work was compared with the state of art as listed in Table 8. 
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Table 7. Object range in different positions. 

Position 
Camera 

(x_center, y_center, 
z_center) 

LiDAR 
(x_LiDAR,  y_LiDAR, 

z_LiDAR) 

Range in 
Meters 

Position 1 (700, 550, 0.0) (10, 5, 0.5) 11.18 
Position 2 (600, 600, 0.0) (15, 10, 0.6) 11.07 
Position 3 (800, 700, 0.0) (30, 20, 0.7) 10.88 

Table 8. Present work comprehensive analysis with state-of-art.  
Parameter [34] [35] [36] Present Work 
Drone Type Quadcopter Quadcopter Quadcopter Quadcopter 

GPS GPS NEO-6M APM2.5 NEO-M8N GPS NEO-
6M APM2.5 NEO-M8N 

LiDAR Youyeetoo 
TFmini-S  

Yahboom Lidar EAI 
YDLIDAR X3  RP LiDAR RP LiDAR 

Dataset KITTI ONCE ONCE KITTI 
DL 
Approach CNN GoogleNet Res 

NET101 CNN 

Application Agriculture Monitoring Industry  Smart monitoring 
and Navigation 

6.  Conclusion 
This paper presents a comprehensive design and analysis of an autonomous drone 
equipped with LiDAR, camera, and GPS technologies for smart navigation 
applications. The Quadcopter drone, driven by an ARM Cortex M4-based controller, 
integrates LiDAR for obstacle detection and ranging, and GPS for precise localization. 
The utilization of a high-resolution camera with a wide field of view enables detailed 
visual data acquisition essential for navigation tasks. The LiDAR boasts a remarkable 
range of 180 meters and a dense point cloud density of 1000 points per square meter, 
ensuring accurate obstacle detection and environmental perception.  

One of the key findings of this study is the successful deployment of the 
YOLOv4 object detection algorithm coupled with the Kalman filter for robust 
object tracking. This combination enhances the drone's ability to identify and track 
objects in real-time, contributing to safer and more efficient navigation in dynamic 
environments. Additionally, the integration of LiDAR, camera, and GPS 
technologies provides a holistic solution for autonomous navigation, enabling the 
drone to navigate with precision and reliability. 

 

Nomenclatures 
 
AT Amplitude of the Gaussian function 
C Laser transmission speed  
di Distance between the ith item and LiDAR system 
FT FWHM of the Gaussian function 
KT DC offset of the emitted laser pulse  
N Sampling time 
s(n) Received laser echo 
Ts High-Speed Digitizer's Sample Period.  
 
Greek Symbols 
ɛT Residual error 

https://www.amazon.com/sspa/click?ie=UTF8&spc=MTo0ODA0MzQwNjk3OTA3MTYzOjE2NjIwOTgyNDg6c3BfYnRmOjIwMDA0MTY4MDk4OTU2MTo6MDo6&sp_csd=d2lkZ2V0TmFtZT1zcF9idGY&url=%2Fyouyeetoo-Measurement-Single-Point-Compatible-Raspberry%2Fdp%2FB08FFFFQ65%2Fref%3Dsr_1_21_sspa%3Fkeywords%3DLidar%2BSensor%26qid%3D1662098248%26sr%3D8-21-spons%26psc%3D1
https://www.amazon.com/sspa/click?ie=UTF8&spc=MTo0ODA0MzQwNjk3OTA3MTYzOjE2NjIwOTgyNDg6c3BfYnRmOjIwMDA0MTY4MDk4OTU2MTo6MDo6&sp_csd=d2lkZ2V0TmFtZT1zcF9idGY&url=%2Fyouyeetoo-Measurement-Single-Point-Compatible-Raspberry%2Fdp%2FB08FFFFQ65%2Fref%3Dsr_1_21_sspa%3Fkeywords%3DLidar%2BSensor%26qid%3D1662098248%26sr%3D8-21-spons%26psc%3D1
https://www.amazon.com/sspa/click?ie=UTF8&spc=MTo0ODA0MzQwNjk3OTA3MTYzOjE2NjIwOTgyNDg6c3BfYnRmOjIwMDA2NzY2NzIzMDU5ODo6MDo6&sp_csd=d2lkZ2V0TmFtZT1zcF9idGY&url=%2FYahboom-EAI-YDLIDAR-X3-Adjustable%2Fdp%2FB0B4C49MLK%2Fref%3Dsr_1_22_sspa%3Fkeywords%3DLidar%2BSensor%26qid%3D1662098248%26sr%3D8-22-spons%26psc%3D1
https://www.amazon.com/sspa/click?ie=UTF8&spc=MTo0ODA0MzQwNjk3OTA3MTYzOjE2NjIwOTgyNDg6c3BfYnRmOjIwMDA2NzY2NzIzMDU5ODo6MDo6&sp_csd=d2lkZ2V0TmFtZT1zcF9idGY&url=%2FYahboom-EAI-YDLIDAR-X3-Adjustable%2Fdp%2FB0B4C49MLK%2Fref%3Dsr_1_22_sspa%3Fkeywords%3DLidar%2BSensor%26qid%3D1662098248%26sr%3D8-22-spons%26psc%3D1
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μT Mean of the Gaussian function 
 
Abbreviations 

CNN Convolutional Neural Network 
GCS Ground Control Station 
GNSS Global Navigation Satellite System 
GPS Global Position System 
SSD Single Shot MultiBox Detector 
UAV Unmanned Arial Vehicle  
YOLO You Only Look Once 
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