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Abstract

Drones have emerged as transformative tools for executing aerial tasks that were
once challenging for manned aircraft, offering substantial safety benefits,
economic advantages, and environmental gains. This paper introduces an
innovative approach to the design and analysis of autonomous drones tailored for
smart navigation applications, underpinned by the fusion of LiDAR-Camera
technology and GNSS (Global Navigation Satellite System) integration. The
drone featured in this research is a Quadcopter, equipped with DYS D2836-6
1500KV motors and 30A BLDC ESCs for control. Its power source is an Orange
5200mAh 4S LiPo battery, providing both efficiency and longevity. The heart of
the drone lies in the ARM Cortex M4-based controller, which orchestrates its
autonomous flight. It exhibits a wide operational altitude range, maintaining a
constant height between 5 to 20 meters above ground level, while achieving a top
velocity of 2 meters per second. The core innovation of this research resides in
the integration of LIDAR-Camera fusion technology. Leveraging RPLiDAR with
a 180-meter range and a remarkable point cloud density of 1000 points per square
meter, the drone is equipped to perceive its surroundings with unprecedented
accuracy. The accompanying camera boasts a high-resolution 1920 x 1080 pixel
sensor with a 360-degree horizontal and 180-degree vertical field of view,
facilitating comprehensive visual data acquisition. For object recognition and
tracking, the drone employs the YOLOv4 algorithm for real-time identification
and utilizes the Kalman filter for precise object tracking. These advancements in
computer vision contribute significantly to the drone's autonomous navigation
capabilities. The drone's navigational prowess is complemented by the APM2.5
NEO-MS8N GNSS receiver, ensuring precise geospatial positioning.

Keywords: Autonomous drones, Computer vision, Obstacle recognition and
ranging, Navigation, Robot operating system.
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1. Introduction

Unmanned Aerial Vehicles (UAVs), commonly referred to as drones, have
proliferated across various industries, as illustrated in Fig. 1. They have found
widespread application in diverse fields, encompassing routine tasks such as
delivery, surveillance, construction, agriculture, and military operations [1, 2]. The
utilization of drones not only streamlines operational processes but also offers
notable advantages, both from environmental and financial perspectives, while
concurrently reducing risks to human life [3].

The soaring sales figures of drones, reaching millions, are indicative of their
growing significance, particularly in the recreational market [4]. This surge is propelled
by advancements in technology, adherence to regulatory frameworks, and the
increasing acceptance of drones by the public [5]. Despite the substantial progress in
drone technology, several challenges persist in the domain of drone-based applications.

These challenges encompass multiple facets, including the optimal placement
of drones, efficient path planning, enhancing payload capacity, effective drone
management, maximizing flight time, and ensuring secure communication among
flying drones. Addressing these multifaceted concerns necessitates the
development of minimal cryptographic primitives and protocols tailored to the
unique requirements of drone-based systems [6, 7].
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Fig. 1. Autonomous drone applications.

A LiDAR(Light Detection and Ranging) and Camera oriented 3D object
detector creates trajectory, object recognition, and ranging using data from the
LiDAR sensor and information from the camera [8, 9]. The quality of the data
collected by the LiDAR sensor directly affects effectiveness. Utilising point cloud
stitching to reduce the sparsely of a picture at locations far from the sensor makes
the challenge more difficult to solve [10].
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The trade-offs include the size and physical characteristics of objects that
require object detection or classification. A UAV with a LiDAR sensor obtained
the data set utilised to examine these trade-offs [11, 12]. The analytical method
being investigated uses convolutional neural networks, which were trained on
various objects to be classified in the LIDAR dataset.

Recently, several innovative techniques have been used to overcome the issues
with object recognition on point clouds [13, 14]. As illustrated in Fig. 2, the point-
cloud representation splits these methods into point-based, graph-based, and voxel-
based strategies. The point-based techniques have poor perceptual skills and take
too long to sample data compared to a CNN [15].

Point- Graph - Voxel -
based based based

Fig. 2. Types in point-cloud.

Graph-based techniques create a more obvious structure when the property is
considered. Sparse and erratic point clouds are converted into consistently sized
voxels by voxel-based techniques, which CNNs may be able to comprehend better
[16, 17]. Voxel-based algorithms frequently have high speeds and decent accuracy,
but they are extremely susceptible to hyperparameters.

Voxel-based approaches also inevitably lead to information loss, especially
regarding the precision of fine-grained localisation [18]. For a car to be self-driving,
high-precision GNSS technology must provide the accuracy, and reliability needed.
A fully autonomous vehicle requires a reliable localization system and the
assurance that it is accurate [19].

This paper is prepared as follows: Section 2 discusses the LIDAR-Camera and
GNSS based autonomous drone’s related work. With a preceding literature survey,
a clear problem statement and detailed methodology is discussed in Section 3. An
implementation aspects of autonomous drone with LiDAR-Camera, voxel-based
based point cloud, Deep learning approaches and GNSS are discussed in Section 4.
Results and discussions are described in Section 5. Finally, the paper was concluded
in Section 6.

2. Related Work

Autonomous drones are increasingly vital for various applications, including search
and rescue, precision agriculture, environmental monitoring, and infrastructure
inspection. The fusion of LiDAR and camera data in drone design plays a pivotal
role by enabling these aircraft to navigate and interact with their surroundings with
exceptional precision and safety [20]. LiDAR technology provides accurate
distance measurements, while cameras capture high-resolution visual data, and
when combined, they enhance the drone's ability to perceive its environment,
identify objects, and ensure obstacle avoidance, making autonomous drones
indispensable in critical tasks and enhancing their overall operational effectiveness.
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The autonomous drones with LiDAR-camera fusion and GNSS as per state-of-
art are listed in Table 1. And few commercially available LiDAR with
specifications is listed in Table 2. To examine the detection accuracy of LiDAR
system, the system SNRE is:

Y

SNR; = 20log

JV2, + V2 + V2,

(1)

where ¥, is indeed the RMS noise of the photoelectric detector, V, is the RMS noise
of the high-speed digitizer, and V), is just the peak voltage.

Table 1. Autonomous drones for smart applications state-of-art.

Ref. Description Board Calibration g(;;?lt(; GPS Dataset  Limitations

[21]  Modelling for a drone's SP Neato Point-  GPS NEO- KITTI Only fly, no
components has been Racing LiDAR based 6M navigation.
demonstrated. The F3
3DEXPERIENCE
programme, which
offers modelling,
simulation, and
optimization tools, was
used to simulate.

[22] Showed the advantages DJI - Graph- Ublox nuScenes Fly with
of swarms of based NEO-7M navigation
heterogeneous vehicles. but no
The algorithms are stability.
adaptable,
reconfigurable.

[23]  Tensor Processing Unit RC Flight Slamtec - APM2.5 KITTI Only fly, no
(TPU) devices for edge Controller = RPLiDAR NEO-M8N navigation.
computing were KK 2.1.5 AIMS GPS
suggested as hardware Module
support due to their GYGPSVI-
computational capability. &M

[24] Compared to ground Pixhawk  MakerFocus  Graph- -- ONCE Fly with
truth reference data, PX4 TFmins based navigation
measurements taken Autopilot Micro but
along a vertical flight 2.4ss.8 moderate
route showed potential. stability.

[25] UAV systems can APM 2.8 - Voxel- - nuScenes Fly with
efficiently collect the Flight based navigation
regular collection of Controller but
high-quality data needed with moderate
for emerging precision Built-in stability.
agriculture approaches. Compass

[26]  Utilizing the distributed Pixhawk - Voxel- GPS NEO- ONCE Fly with
swarm control algorithm, a PX4 based 6M navigation
multi-UAV system for Autopilot but
agriculture was developed, 2.4ss.8 moderate
and the system's stability.
performance was assessed.

[27] Demonstrates how to APM 2.8 Slamtec Graph- APM2.5 KITTI Only fly, no
perform vertical and Flight RPLiDAR based NEO-MSN navigation.
horizontal near-ground  Controller AIMS GPS
operations on a moving with Module
target without knowing Built-in GYGPSVI1-
the vehicle's height or Compass 8SM

the target's speed.
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https://www.amazon.com/Slamtec-RPLIDAR-Scanning-Avoidance-Navigation/dp/B07TJW5SXF/ref=sr_1_4?keywords=Lidar+Sensor&qid=1662098248&sr=8-4
https://www.amazon.com/Slamtec-RPLIDAR-Scanning-Avoidance-Navigation/dp/B07TJW5SXF/ref=sr_1_4?keywords=Lidar+Sensor&qid=1662098248&sr=8-4
https://www.amazon.com/Slamtec-RPLIDAR-Scanning-Avoidance-Navigation/dp/B07TJW5SXF/ref=sr_1_4?keywords=Lidar+Sensor&qid=1662098248&sr=8-4
https://www.amazon.com/MakerFocus-Single-Point-Ranging-Pixhawk-Compatible/dp/B075V5TZRY/ref=sr_1_6?keywords=Lidar+Sensor&qid=1662098248&sr=8-6
https://www.amazon.com/MakerFocus-Single-Point-Ranging-Pixhawk-Compatible/dp/B075V5TZRY/ref=sr_1_6?keywords=Lidar+Sensor&qid=1662098248&sr=8-6
https://www.amazon.com/MakerFocus-Single-Point-Ranging-Pixhawk-Compatible/dp/B075V5TZRY/ref=sr_1_6?keywords=Lidar+Sensor&qid=1662098248&sr=8-6
https://www.amazon.com/Slamtec-RPLIDAR-Scanning-Avoidance-Navigation/dp/B07TJW5SXF/ref=sr_1_4?keywords=Lidar+Sensor&qid=1662098248&sr=8-4
https://www.amazon.com/Slamtec-RPLIDAR-Scanning-Avoidance-Navigation/dp/B07TJW5SXF/ref=sr_1_4?keywords=Lidar+Sensor&qid=1662098248&sr=8-4
https://www.amazon.com/Slamtec-RPLIDAR-Scanning-Avoidance-Navigation/dp/B07TJW5SXF/ref=sr_1_4?keywords=Lidar+Sensor&qid=1662098248&sr=8-4
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Table 2. LIDAR’s for autonomous drone’s state-of-art [28-30].

LiDAR Feature Range TOF rl;::&l_ll;)
UART module for single-point ranging Jem-
TF-LC02 Supported by Raspberry Pi and Pixhawk for 180 -
H 200cm
drone obstacle avoidance.
Youyeetoo Single-Point Ranging Module for Drones that 0.1- 180 11000
TFmini-S works with Pixhawk and Raspberry Pi. 12m
Yahboom Robot Obstacle Avoidance and Navigation
LiDAR EAI with SHz-10Hz Adjustable 8m Radius Ranging 8m 360 3000
YDLIDAR X3  Scanning Supporting ROS1.
Youyeetoo Outdoor AGV Drones' Scanning Radius &
Slamtec Mute Brushless Motor LiDAR Sensor for 25m 360 16000
RPLiDAR A3 Obstacle Avoidance and Navigation.
Industrial-Grade Laser Radar Scanner for
VP300-30 Robotic Obstacle Avoidance Indoor and 30m 300 20000
Outdoor Waterproof Dust-Proof IP65 LiDAR.
The HDL-64E offers substantially more
Vel environmental data than was possib_le with its
HDL-64 full 360 HFOV by 26.8 VFOV. With a user- 120 m 360 -
selectable frame rate of 5-15 Hz and an output
rate of more than 1. 3 million points per second.
The RIEGL VUX-1HA is a very portable and
small laser scanner that can handle the system
?:IEAGL VUX- integration and measure airborne laser scanning 420 m 360 2 MHz

performance requirements by helicopter,
gyrocopter, and other small aircraft.

The high-speed digitizer's datasheet contains information on V3. The space
between the i item and LiDAR system is denoted as d; and determined after
Gaussian fitting.
di=(u—pT,C1< IS N @
where c is the laser broadcast speed, and T is the high-speed digitizer's sample
period. The Gaussian fitting approach involves fitting a typical laser pulse, #(n), to

_(n-up)?
t(n) = Ape FH/Um) 4 Ko+ er(n) 3)
where, n is the sampling time, A7, #r and Fr are the amplitude, mean and FWHM
respectively, er is the residual error. The received laser echo, s(n), is fitted using-
_ (n-pp?

s() = Ziy Ae T + Ky + eg(n) “@
where, N is the number of the Gaussian functions in s(n), KR is the DC offset of
s(n), and €R is the residual error [31].

Object detection and classification techniques that take advantage of
Convolutional Neural Network (CNN) architecture have recently been researched,
as shown in Table 3 [32, 33]. The ImageNet classification competition was won by
AlexNet, which utilized CNN for better performance.

Table 3. Different modules and algorithms for object detection and ranging.

Module Algorithms
Fusion Kalman filter, Extended Kalman filter, Unscented Kalman filter, Particle filter, Bayesian filter
Object YOLO, SSD, RCNN,
Detection Faster R-CNN, Mask R-CNN
. Time-of-flight, Phase-shift, FMCW,
Ranging

Triangulation, Stereovision
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https://www.amazon.com/TF-LC02-3cm-200cm-Short-Range-Single-Point-Compatible/dp/B09XDDS9FS/ref=sr_1_20?keywords=Lidar+Sensor&qid=1662098248&sr=8-20
https://www.amazon.com/sspa/click?ie=UTF8&spc=MTo0ODA0MzQwNjk3OTA3MTYzOjE2NjIwOTgyNDg6c3BfYnRmOjIwMDA0MTY4MDk4OTU2MTo6MDo6&sp_csd=d2lkZ2V0TmFtZT1zcF9idGY&url=%2Fyouyeetoo-Measurement-Single-Point-Compatible-Raspberry%2Fdp%2FB08FFFFQ65%2Fref%3Dsr_1_21_sspa%3Fkeywords%3DLidar%2BSensor%26qid%3D1662098248%26sr%3D8-21-spons%26psc%3D1
https://www.amazon.com/sspa/click?ie=UTF8&spc=MTo0ODA0MzQwNjk3OTA3MTYzOjE2NjIwOTgyNDg6c3BfYnRmOjIwMDA0MTY4MDk4OTU2MTo6MDo6&sp_csd=d2lkZ2V0TmFtZT1zcF9idGY&url=%2Fyouyeetoo-Measurement-Single-Point-Compatible-Raspberry%2Fdp%2FB08FFFFQ65%2Fref%3Dsr_1_21_sspa%3Fkeywords%3DLidar%2BSensor%26qid%3D1662098248%26sr%3D8-21-spons%26psc%3D1
https://www.amazon.com/sspa/click?ie=UTF8&spc=MTo0ODA0MzQwNjk3OTA3MTYzOjE2NjIwOTgyNDg6c3BfYnRmOjIwMDA2NzY2NzIzMDU5ODo6MDo6&sp_csd=d2lkZ2V0TmFtZT1zcF9idGY&url=%2FYahboom-EAI-YDLIDAR-X3-Adjustable%2Fdp%2FB0B4C49MLK%2Fref%3Dsr_1_22_sspa%3Fkeywords%3DLidar%2BSensor%26qid%3D1662098248%26sr%3D8-22-spons%26psc%3D1
https://www.amazon.com/sspa/click?ie=UTF8&spc=MTo0ODA0MzQwNjk3OTA3MTYzOjE2NjIwOTgyNDg6c3BfYnRmOjIwMDA2NzY2NzIzMDU5ODo6MDo6&sp_csd=d2lkZ2V0TmFtZT1zcF9idGY&url=%2FYahboom-EAI-YDLIDAR-X3-Adjustable%2Fdp%2FB0B4C49MLK%2Fref%3Dsr_1_22_sspa%3Fkeywords%3DLidar%2BSensor%26qid%3D1662098248%26sr%3D8-22-spons%26psc%3D1
https://www.amazon.com/sspa/click?ie=UTF8&spc=MTo0ODA0MzQwNjk3OTA3MTYzOjE2NjIwOTgyNDg6c3BfYnRmOjIwMDA2NzY2NzIzMDU5ODo6MDo6&sp_csd=d2lkZ2V0TmFtZT1zcF9idGY&url=%2FYahboom-EAI-YDLIDAR-X3-Adjustable%2Fdp%2FB0B4C49MLK%2Fref%3Dsr_1_22_sspa%3Fkeywords%3DLidar%2BSensor%26qid%3D1662098248%26sr%3D8-22-spons%26psc%3D1
https://www.amazon.com/youyeetoo-25meters-scanning-Avoidance-Navigation/dp/B07XCKB57T/ref=sr_1_11?keywords=Lidar+Sensor&qid=1662098248&sr=8-11
https://www.amazon.com/youyeetoo-25meters-scanning-Avoidance-Navigation/dp/B07XCKB57T/ref=sr_1_11?keywords=Lidar+Sensor&qid=1662098248&sr=8-11
https://www.amazon.com/youyeetoo-25meters-scanning-Avoidance-Navigation/dp/B07XCKB57T/ref=sr_1_11?keywords=Lidar+Sensor&qid=1662098248&sr=8-11
https://www.amazon.com/sspa/click?ie=UTF8&spc=MTo0ODA0MzQwNjk3OTA3MTYzOjE2NjIwOTgyNDg6c3BfYXRmOjIwMDA3MjE2NjA3MzU5ODo6MDo6&sp_csd=d2lkZ2V0TmFtZT1zcF9hdGY&url=%2F30-Industrial-Grade-Waterproof-Dust-Proof-Avoidance%2Fdp%2FB0B24V6YVC%2Fref%3Dsr_1_1_sspa%3Fkeywords%3DLidar%2BSensor%26qid%3D1662098248%26sr%3D8-1-spons%26psc%3D1
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Additionally, several works, including the PASCAL Visual Object Classed and
the ImageNet Big Scale Visual Recognition Challenge, have demonstrated good
classification performance on large datasets. While some earlier efforts concentrated
on their performance, architecture designs that reduced computing expenses are
available in the literature. The classification performance, however, could be
impacted if a model emphasises execution durations more than performance.

3. Problem Statement and Detailed Methodology

Achieving stability in autonomous aerial vehicles is a significant research
challenge, and the integration of a compass-equipped controller can be a valuable
solution to enhance drone stability. Furthermore, improving the accuracy of object
recognition and ranging, a crucial element in obstacle avoidance, is addressed
through the utilization of trained Deep Neural Networks in combination with
LiDAR-Camera fusion technology, resulting in enhanced precision and reliability,
as shown in Table 4.

By, ensuring high connectivity in autonomous vehicle navigation is vital, and
the implementation of advanced GNSS modules like the APM2.5 NEO-M8N offers
improved connectivity with reduced error, contributing to the efficiency and
reliability of navigation systems in autonomous drones. Aim to locate and detect
things in 3D space using a point cloud and picture data as inputs. 3D SLAM
techniques like Cartographer and LOAM to create 3D maps and predict high-
precision trajectories. The autonomous drones are become vital because of more
scalability and mobility the abilities help these drones to address many research
challenges in potential applications like agriculture, military, video surveillance
and delivery. These major requirements of the autonomous drones are navigation,
object recognition and ranging.

Table 4. Problem statement.

Parameter Research Description Possible Solution
Challenge
Drone Stability Design of drone with more The controller with
stability is really a potential compass helps to improve
research challenge in stability.
autonomous aerial vehicles.
Object Improving Obstacle avoidance with ranging  Trained Deep Neural
Recognition Accuracy is one of the primary Network with LiDAR-
and Ranging requirements in drones. Camera fusion addressed
the so many issues related
to Object Recognition and
Ranging with more
accuracy.
Navigation Connectivity ~ Autonomous vehicles demand The high end GNSS

high connectivity GNSS modules
with less error.

modules like APM2.5
NEO-MSN offer more
connectivity with less
error.

This paper presents a sturdy autonomous drone with navigation, object
recognition and ranging capabilities. The detailed methodology of this work is as
shown in Fig. 3. KITTI Dataset (5.1) The Toyota Technological Institute in Chicago
and the Karlsruhe Institute of Technology generated one of the earliest datasets.
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Fig. 3. Detailed methodology.

Localization data, a 360-degree point cloud derived from a Velodyne HDL-64E
LiDAR sensor mounted on top of the vehicle, and colour and grayscale photos
captured by two high-definition stereo camera systems looking ahead are all
included. The present work aims to address the need for a transformative and
innovative drone design that leverages LiDAR-Camera fusion technology and
GNSS integration. The specific challenges include achieving accurate
environmental perception, real-time object recognition and tracking, and precise
geospatial positioning, while maintaining a constant altitude between 5 to 20 meters
above ground level and a top velocity of 2 meters per second. The research seeks
to integrate these technologies to enhance the drone's autonomous navigation
capabilities, thus addressing the need for safer, more efficient, and environmentally
friendly aerial tasks compared to traditional manned aircraft.

4. Implementation

The Quadcopter was implemented with DYS D2836-6 1500KV motors and 30A
BLDC ESCs. Its power source is an Orange 5200mAh 4S LiPo battery, providing
both efficiency and longevity as shown in Fig. 4. The heart of the drone lies in the
ARM Cortex M4-based controller, which orchestrates its autonomous flight. The
LiDAR-Camera calibration helps to estimation relative position and orientation
between a LiDAR and a camera in a system. Cameras provides colour information,
while a LIDAR sensor provides an accurate 3D structural and locational information
of the objects. When fuse together we can enhance the performance of perception and
mapping algorithms for autonomous driving and robotic applications.

LiDAR and camera fusion is a technology that combines the capabilities of a
LiDAR sensor and a camera to provide more accurate and comprehensive object
detection and ranging. LiDAR is a remote sensing technology that uses laser light
to measure distances, while a camera captures images using visible light. By
combining the data from both sensors, LIDAR and camera fusion can provide a
more detailed understanding of the environment and objects.

Journal of Engineering Science and Technology = December 2024, Vol. 19(6)
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Fig. 4. Autonomous drone with object detection-ranging and navigation.

The drone should be able to carry a camera and LiDAR sensor, have a flight time
of at least 30 minutes, fly up to 400 feet, and have a maximum speed of 50 mph. Once
the requirements are gathered, the next step is to design the frame of the drone. The
frame should be lightweight, durable, and able to accommodate all the necessary
components. It should also be aerodynamic to improve the drone's flight performance.
The next step is to choose the necessary components, including the motors, Pixhawk
flight controller, ECS, battery, and camera and LiDAR sensors (Table 5).

Table 5. Autonomous navigation drone specifications.

Parameters Details
Drone Type Quadcopter
Motors DYS D2836-6 1500KV
Electronic Speed Controllers 30A BLDC ESC
Battery Orange 5200mAh 4S 40C/80C
Processor ARM cortex M4
Maximum Constant Height 20m
(Altitude)
Minimum Constant Height 5m
(Altitude)
Velocity 2 m/s
Object LiDAR RPLiDAR
Recognition Dataset KITTI

and ranging

Camera resolution
Camera field of view

LiDAR range

LiDAR point cloud density
Object detection algorithm
Object tracking algorithm

1920 x 1080 pixels

360 degrees horizontal, 180 degrees
vertical

180 meters

1000 points per square meter
YOLOv4

Kalman filter

Navigation

GPS
Monitoring

APM2.5 NEO-M8N
Ardupilot Mission Planar

Journal of Engineering Science and Technology

December 2024, Vol. 19(6)



Autonomous Drone with LIDAR-Camera Fusion Based Calibration and GNSS . . . . 2099

The motors should be chosen based on the drone's weight and flight
requirements. The Pixhawk flight controller is responsible for controlling the
drone's flight, while the ECS controls the speed of the motors. The battery should
provide enough power to allow the drone to fly for the required amount of time,
and the camera and LiDAR sensors should be chosen based on the required
resolution and range. Once all the components are chosen, the next step is to
integrate them into the drone and test their functionality.

This includes testing the motor speed control, the Pixhawk flight controller, and
the camera and LiDAR sensors. The GNSS system should also be integrated and
tested for navigation. With the drone's components working, the object detection
and ranging system can be developed using camera and LiDAR fusion. The system
should be able to detect objects in real-time and provide the drone with the
necessary data to avoid obstacles.

To estimate an object 3D bounding box size, range, and angle using a 360-degree
camera and LiDAR fusion with the following specifications. Acquire the KITTI dataset,
which consists of labelled images and corresponding LiDAR point cloud data. Train an
object detection model using the KITTI dataset. There are various approaches you can
take, such as using deep learning frameworks like TensorFlow. The model training and
optimize completed it is deployed on a resource-constrained device like Raspberry Pi.
This may involve model compression techniques or quantization to reduce the model's
size and computational requirements.

Algorithm

Pre-requisites:

Object detection and Ranging.

{Train Network with KITTI dataset and deploy it in raspberry pi;

Connect LiDAR and Camera with Raspberry Pi;

LiDAR-Camera fusion image is given as input to Trained Network for Object Detection and
Ranging.

Connect Rapberry Pi to Pixhawk drone controller;}

Position Monitoring.

{Connect GNSS to Pixhawk drone controller;}

Start.

Define input variable i.e., GNSS (Longitude (Lo), Latitude(La)), and LiDAR-Camera (Object
detection(O), Ranging (R));

Define output variables i.e., Fly(F), Speed (S), Throttle (T), Rudder (Ru), Right (Ri), Left(Le) and
Land (L).

Input Variable Initialization Lo=0, La=0,0=0,R=0;

Output Variable Initialization F=0,S=0,T=0,Ru=0,Ri=0,Le=0,L=0;

Read Input (Lo & La);

If (0==0)

{F=15}

Elseif(O==1)

1F=0;}

The software module on the Raspberry Pi that receives input from both the
LiDAR and camera. Develop an algorithm that fuses the LiDAR and camera data to
generate a combined image. Feed the fused image as input to the trained object
detection model to perform object detection and ranging. Identify the communication
interfaces available on both the Raspberry Pi and Pixhawk drone controllers.

Ensure compatibility between the interfaces of the Raspberry Pi and Pixhawk.
Establish the connection between the Raspberry Pi and Pixhawk using appropriate
cables or connectors. Set up the necessary software communication protocols
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between the Raspberry Pi and Pixhawk, such as MAVLink, to enable data exchange
between the two devices.

The GNSS module connected to the Pixhawk using the appropriate interface. The
Pixhawk was configured to receive and process the GNSS data. The GNSS connection
was verified by checking the position information reported by the Pixhawk.

5. Results and Discussions

The presented drone flying in autonomous mode as shown in Fig. 5. The camera
and LiDAR fusion details are as listed in Table 6. The camera has a resolution of
1920 x 1080 pixels, which means it captures images with 1920 pixels in width and
1080 pixels in height.

Table 6. Camera and LiDAR fusion details.

Parameter Description

Camera resolution 1920x1080 pixels

Camera field of view 360 degrees horizontal, 180 degrees vertical
LiDAR range 180 meters

LiDAR point cloud density 1000 points per square meter
Object detection algorithm YOLOv4
Object tracking algorithm  Kalman filter

The camera has a wide field of view, covering 360 degrees horizontally and 180
degrees vertically. This means it capture a full panoramic view horizontally and
half of a sphere vertically. The LiDAR system has a range of 180 meters, meaning
it detect objects up to a maximum distance of 180 meters from the sensor. LIDAR
system generates a point cloud representing the 3D environment. The specified
density of 1000 points per square meter means that for every square meter of the
scene, the LIDAR system captures 1000 individual points. The YOLOv4 algorithm
is used for object detection. YOLO stands for "You Only Look Once," and it is a
popular algorithm for real-time object detection in images and videos.

Fig. 5. Presented autonomous drone in fly mode.

YOLOvV4 is an improved version of the YOLO algorithm, known for its
accuracy and speed in detecting objects. The Kalman filter is used for object
tracking. The Kalman filter is a recursive algorithm that estimates the state of a
system over time, incorporating new measurements while considering the system's
dynamics and uncertainty. The framework was tested within a collapsed building
through simulation and actual flight tests. False positive readings from particular
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object visualisations were the reason for the varied distribution of victim GNSS
locations in mission mode.

Drone location monitoring using Ardupilot Mission Planner involves using a
GCS to view and monitor the drone's location in real-time. Ardupilot is an open-
source autopilot system that is widely used in UAVs and drones, and Mission
Planner is a GCS software that enables users to plan missions, monitor telemetry
data, and control the drone's flight. By using the Mission Planner software and
connect to the drone by selecting the appropriate communication port and baud
rate. The GCS will display various telemetry data such as the drone's altitude,
speed, and location as shown in Fig. 6.

Fig. 6. Drone location monitoring using Ardupilot mission planner.

The map will display the drone's current location as well as its flight path. Users
can also view other useful information such as the battery level, GPS signal
strength, and altitude. In addition to monitoring the drone's location, users can also
use Mission Planner to plan and execute autonomous missions, set waypoints, and
perform various other flight operations. The drone leverages a high-resolution
camera with a capability of 1920 x 1080 pixels and an expansive field of view
encompassing 360 degrees horizontally and 180 degrees vertically.

Utilizing the YOLOV4 object detection algorithm, the camera processes each
frame and identifies the presence and position of an aeroplane within the 2D image.
The algorithm locates the aeroplane in the frame, specifying its coordinates in a
bounding box. Simultaneously, a LIDAR system with a range of 180 meters and a
point cloud density of 1000 points per square meter is engaged to generate 3D point
cloud data. By analysing the LiDAR point cloud, the system accurately computes
the aeroplanes distance from the sensor.

The integrated Kalman Filter then ensures that the aeroplanes trajectory is
precisely tracked over time by predicting its future position and enhancing the
overall accuracy of the system in detecting and determining the range of aeroplane
within the captured environment. LIDAR and Camera Data Fusion to Detect and
Range the Object in Different Positions as shown in Fig. 7. The system's
comprehensive approach combines data from the camera image, which identifies
the 2D position of an aeroplane, and information from the LiDAR point cloud,
which provides the 3D position and distance of the aeroplane.
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Number of Objects: 1

oeroplone: 93.26% Range: 109.89

Number of Objects: 1 = 6.00 Hz (360 rpm)
A 2 8
D: 5601.0

oeroplone: 79.25% Range: 134.23

D:6113.0

Fig. 7. LIDAR and camera data fusion to detect
and range the object in different positions.

Through the coordinated use of the YOLOV4 object detection algorithm and the
Kalman Filter for tracking, the system offers a robust solution for aeroplane
detection and range estimation. If the camera image, with a resolution of 1920 x
1080, captures the scene. Let's say it identifies an aeroplane and its 2D position in
the image with bounding box coordinates (x/, y/) and (x2, y2). The centre of the
aeroplane in the image is (x_center, y_center, z_center).

The LiDAR, with a range of 100 meters and a point cloud density of 1000 points
per square meter, scans the environment. It identifies a cluster of points
corresponding to the detected pedestrian. LiDAR point cloud indicates the
pedestrian's 3D position as (x_LiDAR, y LiDAR, z LiDAR). Calculate the distance
from the LiDAR sensor to the pedestrian,

(x_LiDAR — x_Center)? +
Range = |(y_LiDAR —y_Center)? + 5)
(z_LiDAR — z_center)?

By fusing data from the camera and LiDAR, the system effectively combines 2D
position information from the camera with 3D range information from the LiDAR.
The integrated information enables accurate detection and precise range as listed in
Table 7. The Presented work was compared with the state of art as listed in Table 8.
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Table 7. Object range in different positions.

Camera LiDAR Range in
Position (x_center, y_center, (x_LiDAR, y_LiDAR, Meters
Z_center) z LiDAR)
Position 1 (700, 550, 0.0) (10, 5, 0.5) 11.18
Position 2 (600, 600, 0.0) (15, 10, 0.6) 11.07
Position 3 (800, 700, 0.0) (30,20, 0.7) 10.88

Table 8. Present work comprehensive analysis with state-of-art.

Parameter [34] [35] [36] Present Work

Drone Type Quadcopter Quadcopter Quadcopter Quadcopter

GPS GPS NEO-6M APM2.5 NEO-M8N GPSQI:I/IEO- APM2.5 NEO-M8N
. Youyeetoo Yahboom Lidar EAI . .

LiDAR TFmini-S YDLIDAR X3 RP LiDAR RP LiDAR

Dataset KITTI ONCE ONCE KITTI

DL Res

Approach CNN GoogleNet NET101 CNN

Application Agriculture Monitoring Industry DT

and Navigation

6. Conclusion

This paper presents a comprehensive design and analysis of an autonomous drone
equipped with LiDAR, camera, and GPS technologies for smart navigation
applications. The Quadcopter drone, driven by an ARM Cortex M4-based controller,
integrates LIDAR for obstacle detection and ranging, and GPS for precise localization.
The utilization of a high-resolution camera with a wide field of view enables detailed
visual data acquisition essential for navigation tasks. The LiDAR boasts a remarkable
range of 180 meters and a dense point cloud density of 1000 points per square meter,
ensuring accurate obstacle detection and environmental perception.

One of the key findings of this study is the successful deployment of the
YOLOvV4 object detection algorithm coupled with the Kalman filter for robust
object tracking. This combination enhances the drone's ability to identify and track
objects in real-time, contributing to safer and more efficient navigation in dynamic
environments. Additionally, the integration of LiDAR, camera, and GPS
technologies provides a holistic solution for autonomous navigation, enabling the
drone to navigate with precision and reliability.

Nomenclatures

Ar Amplitude of the Gaussian function

C Laser transmission speed

d; Distance between the i item and LiDAR system
Fr FWHM of the Gaussian function

Kr DC offset of the emitted laser pulse

N Sampling time

s(n) Received laser echo

Ts High-Speed Digitizer's Sample Period.
Greek Symbols

er Residual error
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Ur Mean of the Gaussian function
Abbreviations
CNN Convolutional Neural Network

GCS Ground Control Station

GNSS Global Navigation Satellite System
GPS Global Position System

SSD Single Shot MultiBox Detector
UAV Unmanned Arial Vehicle

YOLO You Only Look Once
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