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Abstract 

In recent years, a great number of studies have been conducted around the 

dynamic analysis of parallel robots. In these studies, kinetic equations are 

established by Lagrange formula, the principle of virtual work and other methods, 

among which Newton-Euler formula is rarely employed. Featured by clear 

physical process and available intermediate quantity, Newton-Euler formula was 

applied in this paper to model a 3-RRR parallel robot. First of all, a kinematic 

equation of the system was established based on the closed vector correlation, 

and the singularity was analysed. Subsequently, the Newton-Euler recurrence 

formula of a single branch chain was established, and three branch chains were 

closed in the end effector by virtue of the constraints, so as to obtain the closed 

chain kinetic equation. The modular structure is conducive to programming 

calculation and its popularization to other models. Then, numerical simulation 

was carried out on three driving torque distribution modes, and the results were 

compared and analysed. It is found that different driving torque distribution 

modes have their respective characteristics and advantages. Finally, forward 

dynamics verification of the model was carried out by MSC.ADAMS®. 

Keywords: Dynamics, Kinematics, Newton-Euler formula, Parallel robot, Redundant 

actuation. 
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1.  Introduction 

Recently, with the rapid industrial development, serial robots have been applied to 

spraying, machining, welding, assembly and other fields more widely and maturely. 

But the open chain topological structure leads to the increase in error accumulation, 

poor accuracy and insufficient rigidity. In contrast, parallel robots are characterized 

by strong carrying capacity, high mechanical rigidity, high accuracy, fast response, 

strong positioning capacity, etc. and have been widely applied to aviation 

manufacturing, motion simulation, medicine, etc. at present [1-11]. However, due to 

small workspace, complex singularities in the space and dynamic coupling, the 

development of parallel robots has been restricted to some extent. 

As everyone knows, the complex singularity problem is a characteristic of 

parallel robots. How to expand the workspace and avoid singularities in the 

workspace has always been an important research content in the studies on parallel 

robots. In general, singularities can be divided into the first kind of singularity and 

the second kind of singularity [12]. For the second kind of singularity, Jacobian 

matrix method, screw theory and exponential product method can be adopted for 

analysis, among which Jacobian matrix method is a common analysis method. 

Near the singular configuration, the driver will be unable to bear the force or 

torque applied on the end effector. The rigidity, accuracy and other performance of 

the mechanism will get worse, and the mechanism will acquire uncontrollable 

degrees of freedom (DOF). In such case, the mechanism is extremely prone to getting 

out of control. Therefore, during the design and application of parallel robots, the 

singular configuration should be avoided, mainly the second kind of singularity. 

The common methods for avoiding the second kind of singularity mainly 

include structure design method, path planning method and redundancy method 

[13-15]. Among them, redundancy method is proved to be an extremely effective 

way to avoid the second kind of singularity. The said method includes kinematical 

redundancy and actuation redundancy [16, 17]. Contrarily speaking, the actuation 

redundancy method can avoid the second kind of singularity without introducing 

new DOF, and also improve the dynamic performance of the mechanism [18, 19]. 

Thus, it is a highly effective method to avoid singularity. 

There are numerous research methods for dynamic modelling of parallel robots, 

including Newton-Euler formula, Kane formula, Lagrange formula, etc. However, in 

order to obtain the kinetic equation of the system, many researchers choose Lagrange 

formula and the principle of virtual [20, 21], while only a few researchers adopt 

Newton-Euler formula for dynamic modelling of parallel robots [22]. Newton-Euler 

formula has some unique advantages in modelling, such as clear physical process, the 

availability of intermediate quantity, etc. These characteristics are of great significance 

for optimizing the torque distribution, improving the dynamic performance of parallel 

robots and reducing the acting force of robot joints in operation. 

Parallel robots suffer from singularities during movement, which can affect 

their dynamic performance and even lead to failure. This paper aims to address this 

issue by introducing redundant drives to eliminate the singularities and adopting 

the Newton-Euler method to build the model, followed by optimization of the 

torque distribution to enhance the dynamic performance of the parallel robot and 

reduce the force on its joints during operation, which is of great significance for the 

reliability and safety of the robot. 
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In this paper, a planar 3-RRR redundant robot was studied, with the specific 

contents as follows: In Part I, a brief description of the model was made. In Part II, 

kinematic and singularity analysis of the mechanism was carried out, a kinematic 

model was established based on the closed vector correlation, and its workspace 

was analysed. Besides, singularity analysis of the mechanism was made by 

Jacobian matrix method. In Part III, dynamic modelling was conducted, and 

Newton-Euler formula was employed to establish the kinetic equation of open 

chain system. Three branch chains were made to converge on the end effector 

according to the closed chain constraints, and a complete kinetic equation of the 

system was established. In Part IV, numerical analysis was conducted under non-

redundant drive and redundant drive modes respectively, and the kinematic 

performance under the two modes was compared and analysed. 

In addition, numerical simulation and analysis were carried out on the following 

three driving torque distribution modes: (a) non-redundant driving torque; (b) driving 

torque under the minimum norm of internal force of the passive joint B_i in the 

redundant drive mode; (c) driving torque under the minimum power of active joint in 

the redundant drive mode. In Part V, the forward rigid body dynamics simulation was 

verified based on Adams software. In Part VI, the conclusion was drawn. 

2.  Model Description 

Let 𝐴𝑖  represent the active joint position of the ith branch chain and record its 

coordinate as (𝑥𝐴𝑖 , 𝑦𝐴𝑖) and its angle as 𝛼𝑖. Then let 𝐵𝑖  represent the joint position 

at the end of driven link of the ith branch chain and record its coordinate as 

(𝑥𝐵𝑖 , 𝑦𝐵𝑖) and its angle as 𝛽𝑖. The end effector position is marked as P, with its 

coordinate recorded as (𝑥𝑃 , 𝑦𝑃), and it is expressed in the vector form as X𝑃 =
[𝑥𝑃 𝑦𝑃]𝑇 . Select a set of coordinates as the active joint position, i.e., 

𝐴1(0,289) , 𝐴2(250, −144)  and 𝐴3(−250, −144) . Figure 1 shows the 3-RRR 

redundant parallel robot. 

 

Fig. 1. 3-RRR redundant parallel robot. 

When 𝐴1,𝐴2,𝐴3 are selected as driving joints, a 3-RRR (R denotes the passive 

revolute joint and R denotes the active revolute joint ) redundant parallel robot will 
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be formed. As the robot is of rotational symmetry, any two active joints can be 

selected as driving joints to form a 3-RRR non-redundant parallel robot. 

3.  Kinematic Analysis and Singularity Analysis  

As shown in Fig. 1, the closed chain geometric equation of branch chain i can be 

written as 

𝑂𝑃 = 𝑂𝐴𝑖 + 𝐴𝑖𝐵𝑖 + 𝐵𝑖𝑃               𝑖 = 1,2,3                                                          (1) 

Set out its scalar relations and process them to obtain 

𝑙2 𝑐𝑜𝑠 𝛽𝑖 = 𝑥𝑃 − 𝑥𝐴𝑖 − 𝑙1 𝑐𝑜𝑠 𝛼𝑖                                                           (2) 

𝑙2 𝑠𝑖𝑛 𝛽𝑖 = 𝑦𝑃 − 𝑦𝐴𝑖 − 𝑙1 𝑠𝑖𝑛 𝛼𝑖                                                                                                     (3) 

where, l1 is the length of the driving rod, and l2 is the length of the passive arm. 

Square both sides at the same time to eliminate𝛽𝑖 and obtain 

(𝑥𝑃 − 𝑥𝐴𝑖 − 𝑙1 𝑐𝑜𝑠 𝛼𝑖)
2 + (𝑦𝑃 − 𝑦𝐴𝑖 − 𝑙1 𝑠𝑖𝑛 𝛼𝑖)

2 = 𝑙2
2
                                                 (4) 

The expression of active joint angle can be acquired according to Eq.(4). 

𝛼𝑖 = 𝑎 𝑡𝑎𝑛 2 (𝑦𝑃 − 𝑦𝐴𝑖 , 𝑥𝑃 − 𝑥𝐴𝑖) + 𝑎𝑟𝑐𝑐𝑜𝑠 (
𝑙𝐴𝑖𝑃

2𝑙
)                                                             (5) 

where,  

𝑙𝐴𝑖𝑃 = √(𝑥𝑃 − 𝑥𝐴𝑖)
2 + (𝑦𝑃 + 𝑦𝐴𝑖)2 

Similarly, the expression of driven joint angle can be acquired. 

𝛽𝑖 = 𝑎 𝑡𝑎𝑛 2 (𝑦𝑃 − 𝑦𝐴𝑖 − 𝑙1 𝑠𝑖𝑛( 𝛼𝑖), 𝑥𝑃 − 𝑥𝐴𝑖 − 𝑙1 𝑐𝑜𝑠( 𝛼𝑖)),     𝑖 = 1,2,3            (6) 

When the initial position of the end effector P is at the origin of coordinates, 

there are 6 possible initial configurations, and one of them is selected as the initial 

configuration for follow-up study. 

3.1. Velocity and acceleration analysis: 

For a parallel robot, to make its end effector move according to the planned 

trajectory, the input motion of active joints will have a quantitative relationship 

with the output motion of end effector, that is, inverse velocity Jacobian between 

the input and the output. Derive the closed chain equation (1) for time t to obtain: 

𝑋̇𝑃 = 𝑙1𝛼̇1𝐸̃𝑙𝑖1 + 𝑙2𝛽̇𝑖𝐸̃𝑙𝑖2                     (7) 

where,𝑋̇𝑃 = [𝑥̇𝑃 𝑦̇𝑃]𝑇 represents the velocity vector of the end effector.𝛼̇𝑖 and 𝛽̇𝑖  

represent the angular velocity of active joint and driven joint respectively. 

𝐸̃ = [
0 −1
1 0

]  is the planar cross operator of 2×2. 𝑙𝑖1 = [𝑐𝑜𝑠 𝛼𝑖 𝑠𝑖𝑛 𝛼𝑖]
𝑇 

and 𝑙𝑖2 = [𝑐𝑜𝑠 𝛽𝑖 𝑠𝑖𝑛 𝛽𝑖]
𝑇 represent the unit direction vector of driving link and 

driven link of the ith branch chain respectively. 

Premultiply Eq.(7) by 𝑙𝑖2
𝑇
 to obtain 

𝑙1𝛼̇𝑖𝑙𝑖2
𝑇𝐸̃𝑙𝑖1 = 𝑙𝑖2

𝑇𝑋̇𝑃                (𝑖 = 1, 2, 3)                 (8) 
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Further process Eq.(8) to obtain 

𝛼̇𝑖 = 𝐽𝛼𝑖𝑋̇𝑃                   (9) 

where,𝐽𝛼𝑖 = (𝑙1𝑙𝑖2
𝑇𝐸̃𝑙𝑖1)−1𝑙𝑖2

𝑇
 is defined as the inverse velocity Jacobian matrix of 

active joint 𝛼𝑖; 

The 3 branch chains can be uniformly expressed as the following matrix 

relation: 

𝛼̇ = 𝐽𝛼𝑋̇𝑃                (10) 

where, 𝛼̇ = [𝛼̇1 𝛼̇2 𝛼̇3]𝑇  represents the angular velocity vector of active 

joint, 𝑋̇𝑃 = [𝑥̇𝑃 𝑦̇𝑃]𝑇 refers to the velocity vector of the end effector, and 𝐽𝛼 =
[𝐽𝛼1

𝑇 𝐽𝛼2
𝑇 𝐽𝛼3

𝑇]𝑇 is defined as the inverse angular velocity Jacobian matrix of 

active joint. 

Solve the reciprocal of time based on Eq.(10) to obtain 

𝛼̈ = 𝐽𝛼̇𝑋̇𝑃 + 𝐽𝛼𝑋̈𝑃                 (11) 

where, 𝛼̈ = [𝛼̈1 𝛼̈2 𝛼̈
3]

𝑇
 represents the angular acceleration vector of active 

joint, and 𝑋̈𝑃 = [𝑥̈𝑃 𝑦̈𝑃]𝑇  refers to the acceleration vector of the end effector. 

Similarly, in order to acquire the relation between the angular velocity of driven 

joint and the end operating platform, premultiply Eq.(7) by 𝑙𝑖1
𝑇
 to obtain 

𝑙1𝛼̇𝑖𝑙𝑖1
𝑇𝐸̃𝑙𝑖1 = 𝑙𝑖1

𝑇𝑋̇𝑃 − 𝑙2𝛽̇𝑖𝑙𝑖1
𝑇𝐸̃𝑙𝑖2              (12) 

Process Eq.(12) to acquire 

𝛽̇𝑖 = 𝐽𝛽𝑖𝑋̇𝑃                (13) 

where, 𝐽𝛽𝑖 = (𝑙2𝑙𝑖1
𝑇𝐸̃𝑙𝑖2)

−1
𝑙𝑖1

𝑇
 is defined as the inverse angular velocity Jacobian 

matrix of driven joint.  

The 3 branch chains can be uniformly expressed as the following matrix 

relation: 

𝛽̇ = 𝐽𝛽𝑋̇𝑃                (14) 

𝛽̇ = [𝛽̇1 𝛽̇2 𝛽̇3]𝑇represents the angular velocity vector of driven joint, 

𝐽𝛽 = [𝐽𝛽1
𝑇 𝐽𝛽2

𝑇 𝐽𝛽3
𝑇]

𝑇
is defined as the inverse angular velocity Jacobian 

matrix of driven joint. 

Solve the reciprocal of time based on Eq. (14) to obtain 

𝛽̈ = 𝐽𝛽̇𝑋̇𝑃 + 𝐽𝛽𝑋̈𝑃                (15) 

where, 𝛽̈ = [𝛽̈1 𝛽̈2 𝛽̈3]𝑇  represents the angular acceleration vector of driven 

joint, and 𝑋̈𝑃 = [𝑥̈𝑃 𝑦̈𝑃]𝑇  refers to the acceleration vector of the end effector. 

The angular accelerations of the active and passive links are determined by the 

planned angular speed and acceleration of the terminal executor P, and they are 

quantitatively related through the Jacobian matrix. 
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3.2. Analysis of center-of-mass velocity: 

For branch chain i, 

𝑟𝐶𝑎𝑖 = 𝑟𝐴𝑖 +
1

2
𝑙1𝑙𝑖1               (16) 

𝑟𝐶𝑏𝑖 = 𝑟𝐴𝑖 + 𝑙1𝑙𝑖1 +
1

2
𝑙2𝑙𝑖2               (17) 

where, 𝑟𝐴𝑖  represents the position vector of active joint support. 𝑟𝐶𝑎𝑖  and 𝑟𝐶𝑏𝑖  

respectively represent the center of mass position vector of driving link and driven 

link of the ith branch chain. 

Derive Eqs. (16) and (17) for time t respectively to obtain 

𝑣𝐶𝑎𝑖 =
1

2
𝑙1𝛼̇𝑖𝐸̃𝑙𝑖1                (18) 

𝑣𝐶𝑏𝑖 = 𝑙1𝛼̇𝑖𝐸̃𝑙𝑖1 +
1

2
𝑙2𝛽̇𝑖𝐸̃𝑙𝑖2              (19) 

where, 𝑣𝐶𝑎𝑖 and 𝑣𝐶𝑏𝑖  respectively represent the centre of mass velocity vector of 

driving link and driven link on the ith branch chain. 

Solve the first order derivative of time based on formulas (18) and (19) to 

acquire the centre-of-mass acceleration expressions of driving link and driven link 

respectively, as shown below 

𝑣̇𝐶𝑎𝑖 =
1

2
𝑙1𝛼̈𝑖𝐸̃𝑙𝑖1 +

1

2
𝑙1𝛼̇𝑖𝐸̃𝑙𝑖̇1              (20) 

𝑣̇𝐶𝑏𝑖 = 𝑙1𝛼̈𝑖𝐸̃𝑙𝑖1 + 𝑙1𝛼̇𝑖𝐸̃𝑙𝑖̇1 +
1

2
𝑙2𝛽̈𝑖𝐸̃𝑙𝑖2 +

1

2
𝑙2𝛽̇𝑖𝐸̃𝑙𝑖̇2             (21) 

where, 𝑣̇𝐶𝑎𝑖 and 𝑣̇𝐶𝑏𝑖 respectively represent the centre of mass acceleration vector 

of driving link and driven link on the ith branch chain. 

Solve the first order derivative of time based on Eq.(1) and process it to obtain: 

[
𝑥̇𝑃

𝑦̇𝑃
] = [

𝑙1 𝑠𝑖𝑛( 𝛼𝑖) 𝑙2 𝑠𝑖𝑛( 𝛽𝑖)
−𝑙1 𝑐𝑜𝑠( 𝛼𝑖) −𝑙2 𝑐𝑜𝑠( 𝛽𝑖)

] [
𝛼̇𝑖

𝛽̇𝑖
]             (22) 

Process Eq.(22) to obtain 

[
𝛼̇𝑖

𝛽̇𝑖
] = [

−𝑟𝑎𝑖 𝑐𝑜𝑠 𝛽 −𝑟𝑎𝑖 𝑠𝑖𝑛 𝛽
𝑟𝑏𝑖 𝑐𝑜𝑠 𝛼 𝑟𝑏𝑖 𝑠𝑖𝑛 𝛼

] [
𝑥̇𝑃

𝑦̇𝑃
]             (23) 

where, 𝑟𝑎𝑖 =
1

𝑙1 𝑠𝑖𝑛(𝛽−𝛼)
 and 𝑟𝑏𝑖 =

1

𝑙2 𝑠𝑖𝑛(𝛽−𝛼)
  

3.3. Singularity analysis 

Robot singularity refers to a specific point in the robot's workspace where the robot 

loses one or more degrees of freedom. In practice, when the tool centre of the robot 

enters or approaches a singular point, the robot may stop moving or move in an 

unexpected manner. Singularity occurs when the rank of the Jacobian matrix is less 

than the maximum rank that it can achieve in some configurations. When the 

determinant of the Jacobian matrix is zero, there exists a specific robot 

configuration that is singular. 
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As the singularity of parallel robot has a great influence on its working 

performance, the singularity under non-redundant drive and redundant drive modes 

is analysed respectively by matrix analysis below. 

Premultiply Eq.(7) by li2
T
 to obtain 

𝑙1𝛼̇𝑖𝑙𝑖2
𝑇𝐸̃𝑙𝑖1 = 𝑙𝑖2

𝑇𝑋̇𝑃       (𝑖 = 1,2,3)             (24) 

Equation (24) can be utilized to obtain the mapping relationship between input 

and output: 

𝐽𝑖𝑛𝑞̇𝑎𝑐𝑡𝑖𝑣𝑒 = 𝐽𝑜𝑢𝑡𝑋̇𝑃                (25) 

where, 𝑞̇𝑎𝑐𝑡𝑖𝑣𝑒 represents the angular velocity array of active joint; 𝐽𝑖𝑛 and 𝐽𝑜𝑢𝑡 are 

defined as the direct Jacobian matrix and indirect Jacobian matrix respectively. 

There are two drive modes in this paper, i.e., non-redundant drive and redundant 

drive, and the singularity under the two modes will be analysed respectively below. 

3.3.1. Non-redundant drive 

Due to the rotational symmetry of 3-RRR parallel robot, when 𝐴1,𝐴2 are selected 

as driving joints, in Eq.(25), 

𝑞̇𝑎𝑐𝑡𝑖𝑣𝑒 = [𝛼̇1 𝛼̇2]𝑇 

𝐽𝑖𝑛 = 𝑑𝑖𝑎𝑔(𝑙1𝑙12
𝑇𝐸̃𝑙11, 𝑙1𝑙22

𝑇𝐸̃𝑙21) 

𝐽𝑜𝑢𝑡 = [𝑙12
𝑇 𝑙22

𝑇]𝑇 

In this case, both the direct Jacobian matrix 𝐽𝑖𝑛 and the indirect Jacobian matrix 

𝐽𝑜𝑢𝑡  are 2×2 square matrices. When the condition outlined below is met: 

𝑑𝑒𝑡( 𝐽𝑖𝑛) = 0, Where 𝑑𝑒𝑡( ⋅) represents the determinant of the matrix. 

That is, when the condition 𝛽𝑖 − 𝛼𝑖 = 𝑘𝜋      (𝑖 = 1, 2; 𝑘 = −1, 0, 1) is 

satisfied, the first kind of singularity will occur, and the end operating platform will 

reach the boundary of the theoretically reachable workspace.  

When the condition outlined below is met:  𝑑𝑒𝑡( 𝐽𝑜𝑢𝑡) = 0, that is, when the 

condition 𝛽1 − 𝛽2 = 𝑘𝜋      (𝑘 = −1,0,1)  is satisfied, the second kind of 

singularity will occur, and these singularities will exist inside the workspace. 

3.3.2 Redundant drive 

When 𝐴1,𝐴2,𝐴3 are selected as driving joints to form the redundant drive mode, in 

Eq. (25), 

𝑞̇𝑎𝑐𝑡𝑖𝑣𝑒 = [𝛼̇1 𝛼̇2 𝛼̇3]𝑇 

𝐽𝑖𝑛 = 𝑑𝑖𝑎𝑔(𝑙1𝑙12
𝑇𝐸̃𝑙11, 𝑙1𝑙22

𝑇𝐸̃𝑙21, 𝑙1𝑙32
𝑇𝐸̃𝑙31) 

𝐽𝑜𝑢𝑡 = [𝑙12
𝑇 𝑙22

𝑇 𝑙32
𝑇]𝑇 

In this case, the direct Jacobian matrix 𝐽𝑖𝑛  is a 3×3 square matrix, and the 

indirect Jacobian matrix 𝐽𝑜𝑢𝑡  is a 3×2 non-square matrix. Similar to the 

aforementioned method, if the first kind of singularity occurs, it is required to 

satisfy the condition 𝑑𝑒𝑡( 𝐽𝑖𝑛) = 0, which is the same as the result of non-redundant 

drive, i.e., the end operating platform reaches the boundary of the theoretically 

reachable workspace. If the second kind of singularity occurs, it is required to 
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satisfy the condition 𝑟𝑎𝑛𝑘(𝐽𝑜𝑢𝑡) < 2, that is, the rank of indirect Jacobian matrix  

𝐽𝑜𝑢𝑡  is reduced. But due to geometric constraints, 𝐽𝑜𝑢𝑡  is always full-rank. 

Therefore, the second kind of singularity will not occur in redundant drive mode, 

and its workspace is as shown in the shaded area of Fig. 1, where there is no 

singularity. 

4. Dynamic Modelling and Driving Torque Optimization  

At present, there are a great number of dynamic modelling methods, including 

Lagrange equation method, Kane method, Newton-Euler method, etc. Most of them 

have ignored the intermediate process in order to facilitate the solution, thus simplifying 

the solution process of the kinetic equation of parallel robots to some extent. Therefore, 

many researchers choose energy method for solution, and only a few researchers adopt 

Newton-Euler formula. But Newton-Euler formula has some unique advantages, such 

as clear physical process, the availability of intermediate process quantity, etc. which 

are of great significance for the research on parallel robots. 

Therefore, in this paper, Newton-Euler method was employed for dynamic 

analysis of 3-RRR parallel robot. As a total of 3 branch chains of the model 

converged to the central end effector, to facilitate the recursive analysis of internal 

force of the whole mechanism by Newton-Euler method, the whole parallel robot 

was firstly cut open along the passive joint and end effector, and applied with 

constraining force, as shown in Fig. 2. Then, recursive analysis was carried out on 

branch chains, and the recurrence formula of a branch chain was established. 

Finally, a complete dynamic model of the 3-RRR parallel robot was established on 

the basis of the closed chain constraint relationship. 

Meanwhile, in order to simplify the model, it is assumed that all links and the 

end effector are made of the materials with uniform texture, and all joints are 

lightweight ideal bearings, i.e., with no mass, no friction, no clearance, etc. 

 

Fig. 2. Equivalent open chain system of 3-RRR parallel robot. 
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4.1. Newton-Euler recurrence formula on branch chain i 

Newton-Euler method is a method used to build dynamic models, which is based 

on Newton's laws of motion and Euler's dynamics of rotation. 

Set out Newton formula on the driven link: 

𝐹𝐵𝑖 = 𝐹𝑖 + 𝑚2𝑣̇𝐶𝑏𝑖        𝑖 = 1,2,3              (26) 

where,𝐹𝐵𝑖 is the acting force of driving link 𝐴𝑖 on the driven link 𝐵𝑖 , and 𝐹𝑖 is the 

acting force of driven link 𝐵𝑖  on the end effector.  

List the Euler formula on the driven link: 

𝐶𝑏𝑖𝐵𝑖 × 𝐹𝐵𝑖 + 𝐶𝑏𝑖𝑃 × (−𝐹𝑖) = 𝐼𝑏𝛽̇𝑖 + 𝛽𝑖 × (𝐼𝑏𝛽𝑖)       𝑖 = 1,2,3          (27) 

Substitute Newton recurrence Eq. (26) into Eq. (27) and eliminate 𝐹𝐵𝑖 to acquire 

𝐺𝑖𝐹𝑖 = 𝐿𝑖             𝑖 = 1,2,3               (28) 

where,  

𝐿𝑖 = −𝐶𝑏𝑖𝐵𝑖 × 𝑚2𝑣̇𝐶𝑏𝑖 + 𝐼𝑏𝛽̇𝑖 + 𝛽𝑖 × (𝐼𝑏𝛽𝑖)        𝑖 = 1,2,3           (29) 

𝐺𝑖 = (𝐶𝑏𝑖𝐵𝑖 ×) − (𝐶𝑏𝑖𝑃 ×)         𝑖 = 1,2,3             (30) 

Carry out recurrence further to the active joint to obtain the Euler formula on 

driving link: 

𝐴𝑖𝐵𝑖 × (−𝐹𝐵𝑖) + 𝑀𝑖 = 𝐼𝑎𝛼̇𝑖 + 𝛼𝑖 × (𝐼𝑎𝛼𝑖)         𝑖 = 1,2,3           (31) 

Similarly, substitute Newton Eq.(26) into Eq. (31) and carry out processing to 

obtain: 

𝑀𝑖 = 𝐴𝑖𝐵𝑖 × 𝐹𝑖 + 𝑈𝑖           𝑖 = 1,2,3              (32) 

where, 

𝑈𝑖 = 𝐴𝑖𝐵𝑖 × 𝑚2𝑣̇𝐶𝑏𝑖 + 𝐼𝑎𝛼̇𝑖 + 𝛼𝑖 × (𝐼𝑎𝛼𝑖)           𝑖 = 1,2,3           (33) 

𝑀𝑖 = [0 0 𝜏𝑖]
𝑇is the torque acting on the active joint 𝐴𝑖. 

4.2. Kinetic equation of closed chain system 

Set out the specific forms of Eq.(28) in three branch chains 

𝐺1𝐹1 = 𝐿1,𝐺2𝐹2 = 𝐿2,𝐺3𝐹3 = 𝐿3              (34) 

Draw out the third line of the three formulas in (34) respectively and carry out 

processing to get 

𝐵𝐹 = 𝐶                 (35) 

where, 𝐵 = 𝑑𝑖𝑎𝑔(𝐵1 𝐵2 𝐵3); 𝐹 = [𝐹1 𝐹2 𝐹3]𝑇 is the resultant acting force 

of driven link on the end effector; 𝐶 = [𝐶1 𝐶2 𝐶3]𝑇 . 

Set out the specific forms of Eq.(32) in three branch chains: 
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{

𝑀1 = (𝐴1𝐵1 ×)𝐹1 + 𝑈1

𝑀2 = (𝐴2𝐵2 ×)𝐹2 + 𝑈2

𝑀3 = (𝐴3𝐵3 ×)𝐹3 + 𝑈3

               (36) 

As the parallel manipulator undergoes motion within the x-y plane, the third 

line of Eq.(36) is drawn out and the three branch chains are processed to get 

𝜏 = 𝐷𝐹 + 𝐺                (37) 

where, 𝜏 = [𝜏1 𝜏2 𝜏3]𝑇 is the driving torque; 𝐷 = 𝑑𝑖𝑎𝑔(𝐷1 𝐷2 𝐷3). 

Combine formulas (35) and (37) and write them as follows: 

[
𝐵
𝐷

] 𝐹 = [
03×1

𝜏
] + [

𝐶
−𝐺

]               (38) 

Since [
𝐵
𝐷

] is a 6×6 square matrix, Eq.(38) can be written as follows: 

𝐹 = [
𝐵
𝐷

]
−1

([
03×1

𝜏
] + [

𝐶
−𝐺

])              (39) 

Supplement the intermediate constraint relationship 

𝐹1 + 𝐹2 + 𝐹3 = 𝑚3𝑋̈𝑃               (40) 

For the convenience of processing, Eq.(39) is written as follows 

𝑍𝐹 = 𝑚3𝑋̈𝑃                (41) 

where, 𝑍 = [𝐸2 𝐸2 𝐸2], and 𝐸2 is a 2×2 identity matrix. 

Substitute Eq.(39) into Eq. (41) to obtain 

𝑍 [
𝐵
𝐷

]
−1

([
03×1

𝜏
] + [

𝐶
−𝐺

]) = 𝑚3𝑋̈𝑃              (42) 

where, 𝐻 = 𝑍 [
𝐵
𝐷

]
−1

. 

𝐻 [
03×1

𝜏
] = 𝑚3𝑋̈𝑃 − 𝐻 [

𝐶
−𝐺

]              (43) 

Process the above formula to obtain 

𝑁𝜏 = 𝑚3𝑋̈𝑃 − 𝐻 [
𝐶

−𝐺
]               (44) 

where, 𝑁 = [
𝐻14 𝐻15 𝐻16

𝐻24 𝐻25 𝐻26
]. 

When the system is under non-redundant drive mode, that is, the third line in 

equation (44) is zero, the equation is still applicable. 

In order to facilitate the follow-up optimization and the solution of internal forces, 

the expressions of internal forces of the end effector and driven joint are set out as 

follows: 

𝐹𝐵𝑖 = [
𝐵
𝐷

]
−1

([
03×1

𝜏
] + [

𝐶
−𝐺

]) + 𝑚2𝑣̇𝐶𝑏𝑖              (45) 

4.3. Optimal distribution of driving torque 

There are a number of ways to optimize the driving force. Considering the energy 

consumption of the robot, the minimum energy criterion is selected as the optimal 

criterion for distributing driving torques; considering the lifespan of various 

components, the minimum joint force criterion is chosen as the optimal criterion 
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for distributing driving torques. In this paper, the minimum joint internal force and 

active joint power consumption were selected for optimization analysis of the 

driving force [23]. 

Minimum Joint Internal Force: The driving torque is distributed based on the 

minimum Euclidean norm of joint internal forces 𝐹𝐵1, 𝐹𝐵2 and 𝐹𝐵3 on three driven 

joints 𝐵1 𝐵2 and 𝐵3, i.e.,  

𝜏1 = 𝑚𝑖𝑛 √∑ ‖𝐹𝐵𝑖‖
23

𝑖=1 . 

Minimum Power Consumption: Considering the power utilization rate of the 

system, the working condition with the minimum energy consumption of the 

driving force of active joint is taken as the optimal criterion for driving torque 

distribution, that is,  

𝜏2 = 𝑚𝑖𝑛 √∑(𝜏𝑖𝛼𝑖)
2

3

𝑖=1

 

5.  Dynamic Analysis and Numerical Simulation  

Dynamics simulation analysis of 3-RRR parallel robot was carried out based on the 

dynamic model established in this paper. First of all, the moving trajectory of the 

end effector P was given. Subsequently, the kinematic and dynamic performance 

in non-redundant drive and redundant drive modes were analysed under this 

trajectory. Finally, the following three driving torque distribution modes of the end 

effector under this trajectory were solved, compared and analysed: (a) non-

redundant driving torque; (b) driving torque under the minimum norm of internal 

force of the passive joint 𝐵𝑖  in the redundant drive mode; (c) driving torque under 

the minimum power of active joint in the redundant drive mode. 

In this simulation, for the planned path, the point P of the end operating platform 

should move from point (0,0) to point (−14.42 mm, 36.15 mm) in a spiral path 

within 0-0.5s. The graphical representations of Figs. 3 and 4 depict the 

corresponding trajectory, velocity, and acceleration profiles of point P. 

 

Fig. 3. Motion trajectory of Point P. 
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(a)                                                              (b) 

Fig. 4. (a) Velocity of the end effector P,  

(b) Acceleration of the end effector P. 

The parameters of a group of 3-RRR parallel robots are given as shown in 

Table 1. It is assumed that all links and the end operating platform are made of 

aluminium materials with uniform texture, and all joints are lightweight ideal 

bearings, i.e., with no mass, no friction, no clearance, etc. 

Table 1. Parameters of 3-RRR parallel robot (Unit: mm). 

l1 l2 Cross section A (mm2) Link thickness h 𝝆 (g/mm3) 

244 244 40 5 0.0027 

As the 3-RRR robot is of rotational symmetry, 𝐴1 and 𝐴2 were selected as 

driving joints to form the non-redundant drive mode, and 𝐴1, 𝐴2 and 𝐴3 were 

selected as driving joints to form the redundant drive mode.  

According to the kinematic equation, numerical simulation was carried out 

to acquire the angular velocity and angular acceleration relationship of the 

active angle and driven angle under the redundant drive mode, as shown in Figs. 

5 and 6. 

 
(a)                                                              (b) 

Fig. 5. Under the redundant drive mode: (a) Angular  

velocity of active angle; (b) Angular velocity of driven angle. 
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(a)                                                          (b) 

Fig. 6. Under the redundant drive mode: (a) Angular  

acceleration of active angle; (b) Angular acceleration of driven angle. 

According to different drive modes and optimization contents, the following 

three torque distribution modes were calculated respectively: (1) torque distribution 

in the non-redundant drive mode; (2) driving torque distribution under the 

minimum norm of internal force 𝑭𝑩𝒊 of the passive joint 𝐵𝑖  in the redundant drive 

mode; (3) driving torque distribution under the minimum norm of power 

consumption of the active joint in the redundant drive mode. The corresponding 

torque distribution conditions are as shown in Fig. 7: 

 
(a)                                                              (b) 

 
(c) 

Fig. 7. (a) Non-redundant driving torque; (b) Driving torque distribution 

under the minimum norm of internal force of the passive joint 𝑩𝒊 in the 

redundant drive mode; (c) Driving torque distribution under the  

minimum power of active joint in the redundant drive mode. 
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It can be seen from the comparison of Fig. 7 that the peak value of driving 

torque in distribution mode 1 is the greatest, about 6 × 108𝜇𝑁 ⋅ 𝑚𝑚, while the 

driving torque in distribution mode 2 is the smallest, with its peak value of 

about 3 × 108𝜇𝑁 ⋅ 𝑚𝑚, which is only half of that in the non-redundant drive 

mode. The driving torque in distribution mode 3 is between the values in above 

two modes. Compared with the first two modes, its operation fluctuates to a 

certain extent and is not smooth enough. But the power of the active joint is the 

lowest in this distribution mode. 

The internal force of passive joint 𝐵𝑖  in driving torque distribution mode 2 

is as shown in Fig. 8. The force on the passive joint is relatively balanced in 

this distribution mode, the interaction at the passive joint is small, and the peak 

values at the three joints are all about 1 × 106𝜇𝑁 The internal force of passive 

joint 𝐵𝑖  in driving torque distribution mode 3 is as shown in Fig. 9, and the peak 

values at three joints are all about 2 × 106𝜇𝑁, which is about twice the internal 

force of passive joint 𝐵𝑖  in driving torque distribution mode 2. 

 
(a)                                                          (b) 

 
(c) 

Fig. 8. Driving torque distribution mode under the minimum norm 

 of internal force 𝑭𝑩𝒊 of the passive joint in the redundant drive mode:  

(a) Internal force 𝑭𝑩𝟏 at the passive joint 𝑩𝟏; (b) Internal force 𝑭𝑩𝟐 at the 

passive joint 𝑩𝟐 (c) Internal force 𝑭𝑩𝟑 at the passive joint 𝑩𝟑. 
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(a)                                                                  (b) 

 
(c) 

Fig. 9. Driving torque distribution under the minimum  

power consumption in the redundant drive mode: (a) Internal  

force 𝑭𝑩𝟏 at the passive joint 𝑩𝟏; (b) Internal force 𝑭𝑩𝟐 at the  

passive joint 𝑩𝟐; (c) Internal force 𝑭𝑩𝟑 at the passive joint 𝑩𝟑. 

6.  Forward Rigid Body Dynamics Simulation Based on Adams Software  

Adams holds the top position as the most extensively utilized software for 

simulating mechanical systems globally [24]. By utilizing Adams, users have the 

ability to construct and evaluate a computer-based virtual prototype, thus realizing 

real-time online simulation and learning about the motion performance of complex 

mechanical system design. Firstly, a three-dimensional model of 3-RRR parallel 

robot was established in SolidWorks software, saved in the format of Parasolid and 

imported into Adams software. The gravitational force was set to zero, and various 

units were set as the established units to obtain the Adams software simulation 

model of virtual prototype.  

Subsequently, the torque of 3 active joints under redundant drive obtained by 

numerical calculation was entered into Adams software in the form of test data as 

the feed-forward input of virtual prototype. Finally, the time was set as 0-0.5s, the 

number of steps as 1,000, and the analysis type as dynamic analysis. The simulation 

was started, and the simulation results were processed and sorted out. 

In Adams software simulation, the motion trajectory of centre point P of the end 

operating platform is almost consistent with the trajectory planned in numerical 

simulation. Figure 10(a) shows the trajectory comparison results of point P in 

Adams simulation and numerical simulation. Compared with the planned trajectory 
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of point P, the displacement error in x direction is as shown in Fig. 10(b), with the 

maximum error of 0.4mm. The displacement error in y direction is as shown in Fig. 

10(c), with the maximum error of 0.9mm. In Adams, the joints of virtual prototype 

model cannot be completely connected to the edge between links and the edge 

between the platform and links. Therefore, there is an error to some extent, and it 

is within the acceptable range. As such, it is verified that the rigid body dynamic 

model of 3-RRR parallel robot is of high accuracy and can provide theoretical 

support for rigid body dynamic modelling of parallel robots. 

 
(a) 

 
(b) 

 
(c) 

Fig. 10. Under the redundant drive mode:  

(a) Expected trajectory of the end effector P and the  

trajectory in Adams simulation; (b) Error between the expected  

trajectory of the end effector P and the trajectory in Adams simulation  

in x direction; (c) Error between the expected trajectory of the end  

effector P and the trajectory in Adams simulation in y direction. 
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7.  Conclusion  

In this paper, configurations of 3-RRR parallel robot are determined at first, and 

one set of the six possible initial configurations is selected as the initial 

configuration. Then, a complete dynamic model is established by kinematic and 

dynamic analysis of the model. On this basis, numerical analysis and driving force 

optimization are carried out. Finally, the model is verified in Adams. The specific 

work and conclusion are presented as follows: 

• The model was subjected to a kinematic analysis, and a dynamic model of the 

system was established using the Newton-Euler method, which also yielded 

the internal forces at each joint for easy optimization of the force distribution. 

• It is assumed that the constraints at the end effector and passive joint are 

removed, then the Newton-Euler recurrence formula of the ith branch chain is 

established. The internal forces of each joint, along with the angular speeds 

and angular accelerations of the links, are obtained through derivation, and 

these parameters are significant for the control and improvement of the 

dynamic performance of parallel robots. Subsequently, a complete closed 

kinetic equation is established in combination with the constraint equation. 

Modular structure is adopted in the whole modelling process, which is not only 

conducive to programming calculation, but also helpful for its popularization 

to other models. 

• For solving the inverse kinetic equation, three driving torque distribution 

modes are employed, that is, (1) driving torque distribution mode in the non-

redundant drive mode; (2) driving torque distribution mode under the 

minimum norm of internal force 𝐹𝐵𝑖 of the passive joint 𝐵𝑖  in the redundant 

drive mode; (3) driving torque distribution mode under the minimum norm of 

driving power of the active joint in the redundant drive mode. By comparing 

the numerical simulation results, it is found that the peak value of driving 

torque in mode 2 is half of that in mode 1. In addition, the ratio of three driving 

torques is more uniform, and the torque also changes with time more smoothly 

than that in mode 3. As such, the parallel robot moves more smoothly and has 

better dynamic characteristics. Moreover, this mode is subject to redundant 

drive design, which can help the parallel robot to successfully overcome the 

singularities. Furthermore, it is found through comparison that the peak value 

of internal force of driven joint in mode 2 is only about half of that in mode 3, 

and changes more stably. Therefore, through comprehensive consideration, 

mode 2 has a better dynamic performance, and in this mode, the internal force 

of driven joint changes more stably and is also smaller. However, in mode 3, 

under the minimum driving power of active joint, although the joint internal 

force increases, it does not increase significantly. Thus, this mode is of special 

advantages in controlling the input power and improving the power utilization 

rate. In addition to this, based on the internal forces already calculated for each 

link, the mode of force distribution can be optimized according to various 

needs, which is an advantage of modelling with the Newton-Euler method. 

• Finally, by forward rigid body dynamics simulation through Adams software, 

the correctness and high accuracy of rigid body dynamic modelling of the 

parallel robot are verified, thereby providing theoretical support for rigid body 

dynamic modelling of parallel robots. 
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• The potential application fields of the parallel robot including fast packaging, 

fast sorting, high-speed motion simulation, etc. Future research plans will 

replace all rigid links with flexible ones to more realistically account for the 

flexibility of the robot's links and optimize accordingly. 
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