
Journal of Engineering Science and Technology
Vol. 19, No. 5 (2024) 1672 - 1692
© School of Engineering, Taylor’s University

1672

ENHANCING CAMPUS SECURITY AND VEHICLE
MANAGEMENT WITH REAL-TIME MOBILE
LICENSE PLATE READER APP UTILIZING
A LIGHTWEIGHT INTEGRATION MODEL

MUHAMMAD HAZIQ BIN KAMAROZAMAN 1,
A. R. SYAFEEZA1,*, Y.C. WONG1, NORIHAN ABDUL HAMID1,

WIRA HIDAYAT MOHD SAAD1, AIRUZ SAZURA ABDUL SAMAD2

1Faculty of Electronics and Computer Technology and
Engineering (FTKEK), Machine Learning and Signal Processing (MLSP),

Centre for Telecommunication Research & Innovation (CeTRI),
Universiti Teknikal Malaysia Melaka, 76100, Durian Tunggal, Melaka, Malaysia

2Ges Venture Manufacturing Sdn. Bhd, Johor Bahru, Johor
*Corresponding Author: syafeeza@utem.edu.my

Abstract

The increasing number of vehicles owned by campus residents, combined with a
limited number of staff parking lots, poses challenges for security personnel in
distinguishing between staff, student vehicles, and visitors. Additionally, the
presence of untracked external visitors and the potential manipulation of vehicle
registrations by residents pose safety risks. Implementing a License Plate Detection
and Recognition (LPDR) mobile app could ease the burden on security patrols.
However, traditional LPDR systems face real-world limitations, including various
backgrounds, illumination, weather, and distances. Therefore, opting for a deep
learning-based LPDR approach is the way forward. Nevertheless, implementing
deep learning on resource-constrained mobile devices demands significant storage
and computational power. This may lead to user hesitation when it comes to
downloading the app onto their mobile devices. This paper introduces an automated
Android mobile app for real-time license plate reading, integrating a lightweight
YOLOv8n for license plate detection and ML Kit Optical Character Recognition
(OCR) for text recognition. The inference integration model is performed on the
mobile device to streamline security tasks, aiming to assist security personnel in
identifying any wrongdoing by campus residents and visitors. The lightweight
model addresses mobile device resource limitations by implementing an on-device
machine learning model and storing vehicle ownership information on a cloud
server without compromising accuracy. The plate detection accuracy is
approximately 97.5%, the character recognition accuracy is around 91.2% which is
on par with other LPDR existing works. The study results in a precise end-to-end
mobile app for license plate reader, benefiting patrol units with low error rates and
real-time capabilities. The mobility feature enables swift security responses,
ultimately enhancing overall campus safety.

Keywords: Android, Campus safety, End-to-end mobile app, Object detection,
Real-time detection, Real-world scenarios.

Enhancing Campus Security and Vehicle Management with Real-Time 1673

Journal of Engineering Science and Technology October 2024, Vol. 19(5)

1. Introduction
Vehicle parking management on university campuses faces challenges due to
increasing vehicle numbers, impacting both residents and visitors, compounded by
limited staff parking spaces. University staff encounters issues when students or visitors
occupy their designated parking spots, forcing them to seek alternative locations.
Parking lots, particularly those lacking CCTV surveillances, require additional security
measures. At the Technical University of Malaysia Malacca, the current system relies
on manual processes, allowing only authorized vehicles with entrance stickers. The
university also serves as a thoroughfare for external residents traveling between the
main entrance and the exit gate leading to other regions of Malacca.

Despite manual security at the entrances to student hostels, this situation raises
security concerns for residents in other areas of the campus. Untracked external
visitors, staff parking space occupation issues, and potential manipulation of
vehicle registrations by residents pose safety risks. Manual vehicle monitoring and
management are considered the standard security approach for most campuses in
Malaysia. Therefore, a license plate reader can offer a solution to this issue.

The challenges associated with license plates include variations in typefaces,
sizes, colours, and placement on vehicles. Recognition by the License Plate Detection
and Recognition (LPDR) system faces additional hurdles from environmental factors
like poor lighting, dirt, adverse weather conditions, and obstructed plates [1].
Detecting license plates is particularly challenging when they are dirty. Recognition
rates also fluctuate based on surrounding conditions such as lighting and the plate's
background. As LPDR is a complex pattern recognition task, AI-based solutions,
particularly machine learning and deep learning, are preferred approaches.

Despite the availability of various machine learning solutions, deep learning has
demonstrated superior performance when compared to traditional machine learning
methods. This is attributed to the capability of deep learning techniques in handling
challenging real-world scenarios and cases better than traditional techniques as a
unified end-to-end solution [2]. However, implementing deep learning on limited-
resource mobile devices presents an additional challenge.

While these intelligent mobile vision applications showcase impressive
capabilities, they demand significant storage, computational power, and incur high
energy and network bandwidth consumption. This may lead to user hesitation when
it comes to downloading them onto their mobile devices [3]. Deploying deep
learning on mobile devices offers unique advantages in data privacy,
communication overhead, and system cost when compared to traditional deep
learning solutions using cloud servers.

Cloud computing models are extensively utilized in intelligent monitoring
systems for processing diverse types of video and image data. Nevertheless, they
face bottlenecks in actual LPDR, primarily characterized by (1) challenges in
achieving optimal performance for real-time systems in both license plate detection
and recognition; (2) the transmission of video and image data potentially leading to
a significant increase in energy consumption [4].

Wang et al. [3] suggested addressing this issue by reducing the resource
requirements for running deep learning models and optimizing mobile device
hardware for Mobile Deep Learning Applications (MDLAs). Popular solutions
involve compressing deep learning models, which, although potentially impacting

1674 M. H. B. Kamarozaman et al.

Journal of Engineering Science and Technology October 2024, Vol. 19(5)

accuracy, significantly reduces the demand for computation and storage resources.
The reason is due to common methodologies, such as Convolutional Neural
Networks (CNNs) in mobile vision tasks, entail high time and space complexity,
leading to resource bottlenecks. Utilizing MDLA’s for the purpose of license plate
reader adds on complexity to the design.

The primary goal of this research is to develop a License Plate Detection and
Recognition (LPDR) mobile app by integrating a lightweight YOLOv8n detector
and ML Kit Optical Character Recognition (OCR). The app aims to assist security
personnel in their patrol duties. Leveraging the capabilities of mobile devices, such
as smartphones and laptops, ensures the feasibility of this objective. Smartphones
serve as key computing and communication devices equipped with embedded
sensors, powerful CPUs, and high-resolution cameras, meeting the necessary
criteria for an efficient LPDR system.

In cloud-based systems, data transfer for image and video poses a bottleneck.
On-device machine learning processes input data directly on the device, rather than
transmitting it to a server for processing. Examples of the challenging condition of
license plate as shown in Fig. 1.

Fig. 1. Examples of the challenging condition of license plate.

Several studies have proved the feasibility to integrate a license plate
recognition algorithm into the mobile platform [4, 5]. Therefore, major
contributions of this study are to:
• To develop a lightweight deep learning model capable of accurately detecting

license plates in various conditions without compromising accuracy.
• To evaluate the license plate detection model performances in terms of

accuracy and execution time of various lightweight object detection models,
mean Average Precision (mAP), inference time, and total processing time.

• To develop a mobile integration application of LPDR in the form of mobile
app that is based on the best object detection model (YOLOv8n) and ML Kit
OCR for the character recognition purpose and with the aid of cloud database.

The remainder of this article is organized as follows: Section 2 summarizes the
background study and related works. Section 3 discusses the methodology,

Enhancing Campus Security and Vehicle Management with Real-Time 1675

Journal of Engineering Science and Technology October 2024, Vol. 19(5)

providing a formal description of the overall system. Section 4 presents the results
and discussion, and the final section concludes the article.

2. Background and Related Works
License plate detection and recognition have been prominent subjects of research
in computer vision, with numerous approaches proposed by researchers in this
field. Relevant work in the context of campus security is detailed in Dias et al. [6],
where Faster-RCNN was employed for license plate localization, and Tesseract
OCR was utilized for license plate recognition. The reported minimum loss
achieved was 0.011. However, for real-time mobile applications, Faster-RCNN is
considered unsuitable due to its large network size.

The implementation involved YOLO, PaddleOCR, and Tesseract OCR [4].
Unfortunately, the specific type of YOLO model used was not specified. It is
noteworthy that both of these works were designed for web-based applications.
Notably, the only work focusing on License Plate Detection and Recognition (LPDR)
for a mobile-based application is presented [5]. The authors developed CampusSense
to assist the security department in ensuring the safety and satisfaction of students,
faculty, and staff members during parking at the university campus. However, the paper
only presented ideas of developing a mobile app but did not delve into the discussion
of any specific network model employed for LPDR in their implementation.

Table 1 displays a comparison of various deep learning approaches for License
Plate Detection and Recognition (LPDR) in simulation form across different
applications. The results obtained from these studies indicate that YOLO-based
models and Optical Character Recognition (OCR) modules, such as Tesseract OCR
and Easy OCR, are popular approaches.

Table 1. Comparison of the deep learning method in LPDR technique.
Ref. Methods Comments

[7]
Two-stage

YOLOv2
LP detection for clear weather 99% but 74% for night scene.

[8] YOLOv4 and
Tesseract OCR

Limited amount of training dataset (1000 images). Achieved 94.6%
accuracy on the detection rate but recognition rate was not reported.

[9] YOLOv6 The F1-score is 0.95. YOLOv6 is more suitable for industrial applications
where speed is more important than accuracy.

[10] SSD-MobileNetv1
and Easy OCR

SSD-based detector works efficiently with an accuracy of 94.87 %. Easy
OCR operates with an accuracy of 90%.

[11]
SSD-MobileNetv1

and k-Nearest
Neighbour OCR

The accuracy is 0.91 for small motorcycle dataset (1524 images to train and
validate the SSD model)

[12] Tiny-YOLOv2 Performed on Taiwan’s license plate dataset. The result obtained is 99.62%
mAP and 9 ms inference time.

[13] RPNet (Deep CNN) Large China License plate dataset, CCPD (250k unique car images) with
95.5% precision and 61 fps.

[14] Fast-YOLO
They introduced Brazilian license plates (FPR-ALP dataset). The system
surpasses commercial solutions like Sighthound and OpenALPR by 93.53%
accuracy and 47 fps.

[15] Deep CNN The result obtained is 0.993377 accuracy for 302 test images.

[16] Deep CNN
LPDR was applied on country-specific plates, such as American or
European, Chinese, Indian and Korean license plate. They achieved 99%
detection and 93% recognition accuracy.

1676 M. H. B. Kamarozaman et al.

Journal of Engineering Science and Technology October 2024, Vol. 19(5)

Table 2 compiles articles that implemented LPDR using edge
servers/gateways [4] and edge devices [5]. LPDR was implemented on edge
servers to address the high latency and energy consumption associated with cloud
servers [4]. However, edge gateways face limitations in terms of memory and
computation capabilities.

On the other hand, undertook LPDR using mobile edge computing (MEC) chips
instead of large Graphics Processing Unit (GPU) servers [5]. This approach poses
limitations in the chip's small computing capacity. Nevertheless, leveraging a
license plate recognition module on mobile edge computing chips offers
advantages in terms of low latency, power efficiency, mobility, reduced network
dependency, privacy preservation, cost efficiency, scalability for edge devices,
quick deployment, and enhanced security compared to relying on large GPU
servers. Therefore, both approaches opt for a lightweight deep learning model to
overcome their respective limitations.

The approaches employed in Table 2 differ from those in this article, where
LPDR is implemented as a mobile app on mobile devices. Kim et al. [15] made a
comparison between YOLOv5 and YOLOv8 showed that YOLOv8 exhibited
slightly better accuracy and reduced training time. In line with the research
objective of developing a lightweight model suitable for a mobile-based
application, YOLOv8n was selected. Additionally, YOLOv8n has not been
previously applied in any LPDR design.

Table 2. Comparison of the LPDR system using deep
learning method for mobile edge computing application.

Ref. Methods Comments

[4] YOLOv7 OpenVINO was selected as the edge gateway platform for model
inference. The result obtained is 95.6% mAP and 187.6 fps.

[5] Pruned
VGG-16

Proposed an end-to-end Chinese LPDR system on mobile edge
computing chip with 63 fps and 91.5% precision.

3. Methods
To successfully conclude this project, which involves the development of an
Android mobile application for a license plate reader system utilizing deep learning
techniques, it is crucial to address several essential steps. The accompanying
flowchart in Fig. 2 illustrates the research process. Table 3 provides a list of
hardware used, while Table 4 presents the mobile phones utilized in this research.
From Table 4, it is evident that the mobile phone has limited RAM capacity.

Table 3. List of hardware used in the project.
No. Hardware Version

1 Laptop Asus VivoBook with NVIDIA Integrated
Graphic Card

2
Virtual Graphic Card on
Google Colab
(Mainly to train a model)

NVIDIA T4 Tensor Core GPU

3 Android Smartphone • Samsung Galaxy J7 Pro
• Samsung Galaxy Note 5

Enhancing Campus Security and Vehicle Management with Real-Time 1677

Journal of Engineering Science and Technology October 2024, Vol. 19(5)

Table 4. List of mobile phone used in the project.
Smartphone OS Chipset CPU GPU RAM

Samsung Galaxy
J7 Pro

Android
9.0 (Pie)

Exynos
7870 Octa
(14 nm)

Octa-core 1.6
GHz Cortex-A53

Mali-T830
MP1 3GB

Samsung
Galaxy Note 5

Android
7.0

(Nougat)

Exynos
7420 Octa
(14 nm)

Octa-core (4x2.1
GHz Cortex-A57

& 4x1.5 GHz
Cortex-A53)

Mali-
T760MP8 4GB

Fig. 2. Flowchart of the project.

1678 M. H. B. Kamarozaman et al.

Journal of Engineering Science and Technology October 2024, Vol. 19(5)

3.1. Data preparation-PHASE 1
The data collection process involved capturing real-world urban traffic images in
Malaysia to obtain approximately 3,000 Malaysian license plates from cars and
motorcycles around the campus. The images were taken at distances ranging from
1.0 to 1.5 meters, with a resolution of 640×640 pixels, in various locations around
the campus's parking lot. The collection incorporated diverse distances, sizes of
cars and motorcycles, lighting conditions (including night scenes), tilt angles, and
weather conditions (raining and clear weather). The sample distribution among
cars, trucks, and motorcycles was maintained at a ratio of 90:5:5, respectively.

An additional dataset comprising around 2,200 publicly available images was
utilized for training, featuring various images of cars and trucks. The primary
objective of the system is the recognition of characters on Malaysian license plates,
but it can be extended to other countries' license plates if samples are available.

For the initial phase of the work, the tool Roboflow was employed for tasks
such as data augmentation, annotation, labelling, and division. Roboflow was
selected for its capability to empower developers in building computer vision
applications, covering data preparation, model training, deployment, and active
learning. Users can upload custom datasets, draw annotations, adjust image
orientations, resize images, modify image contrast, and perform data augmentation
using Roboflow. The tool's provided features facilitate developers in preparing their
data samples. In standard practice, data annotation involves manually labelling
objects of interest in the collected samples, a crucial step for training machine
learning models in computer vision tasks.

Once annotated, the data was stored alongside the original images. The samples
were then divided into train, validation, and test sets using an 80:10:10 ratio,
equivalent to 4200:519:521 samples, respectively.

3.2. Model training and evaluation-PHASE 2
This phase is crucial for the development of machine learning models as it involves
training and evaluating a model using labelled data to assess its performance and
generalization capabilities. Hyperparameter tuning becomes necessary to optimize
the model's performance, speed, and accuracy.

Batch size and epoch are crucial hyperparameters in the model training process.
The batch size determines the number of samples processed before updating model
parameters. Optimizing batch size involves trying different sizes and assessing
performance on the validation set. The best batch size yields the highest accuracy.
Epochs define how many times the learning algorithm works through the training
dataset. Overfitting can occur with too many epochs, while too few can result in an
underfit model. Early stopping halts training when validation performance plateaus.

The learning rate is crucial in training deep learning models, including object
detection, as it controls learning speed. It determines how quickly the model learns
from data. A higher rate enables faster learning but may overshoot or get stuck.
Conversely, a lower rate provides more precise updates, albeit with longer training.

Optimizers vary in type and characteristics. Options like SGD, Adam,
RMSProp have unique rules and adaptability to models and datasets. Some include
momentum, adaptive learning rates, or weight decay to improve convergence.

Enhancing Campus Security and Vehicle Management with Real-Time 1679

Journal of Engineering Science and Technology October 2024, Vol. 19(5)

Neural networks use gradient-based optimization, adjusting parameters based on
loss function gradients. The choice of optimizer significantly impacts convergence
efficiency. Factors like learning rate, optimizers, loss functions, and dataset
composition affect training. Validation on unseen data assesses performance. Once
satisfactory, the model can be adapted for mobile use. Table 5 summarizes the
hyperparameters used in this research.

In this phase, four lightweights YOLO models such as YOLOv8n, YOLOv7-
tiny, YOLOv6n, and YOLOv5n were trained and evaluated using the same
hyperparameters and training settings.

Table 5. List of tested hyperparameter values.
Hyperparameters Selections
lr0 initial learning rate (0.1, 0.01, 0.001)
lrf final learning rate (lr0 * lrf)
batch number of images per batch (-1 for AutoBatch)
imgsz size of input images as integer or w,h

optimizer optimizer to use, choices=[SGD, Adam, Adamax,
AdamW, NAdam, RAdam, RMSProp, auto]

momentum SGD momentum/Adam beta1
box box loss gain

3.3. Model conversion and app development-PHASE 3
This phase involves selecting the optimal lightweight YOLO model in Google
Collaboratory and subsequently deploying it on a mobile phone. The model is
converted into a PyTorch Lite model, tailored for Android App Development.

PyTorch Lite is selected for its lightweight design, tailored for deployment on
resource-constrained devices like mobile phones, edge devices, and embedded
systems. It emphasizes minimal memory usage and efficient execution, ideal for
devices with limited processing power, memory, and storage. Through
optimization techniques like model quantization, pruning, and compression,
PyTorch Lite achieves efficiency. It enables running deep learning models directly
on the device, eliminating the need for continuous internet access or reliance on
cloud-based inference. This supports real-time and privacy-preserving applications
that retain data on the device. Leveraging PyTorch's ecosystem and optimization
techniques, PyTorch Lite enables real-time AI while respecting the constraints of
devices with limited resources [17].

Android Studio is used to develop an application for stable and swift processing
from inputting captured images to obtaining predicted model results. Extensive
experiments are planned to validate system performance in terms of stability and
consistency. The Android app development process involves leveraging UI widgets
and libraries to craft visually appealing and efficient mobile apps. Features such as
plate detection, text recognition, and database access are integrated into the app.
MongoDB serves as the database for storing and managing vehicle-related data,
connected via a connection string link.

The app development process utilized Flutter SDK, iteratively designing the
user interface (UI) and integrating various features for improved user experience.
Special attention was given to crafting a user-friendly UI with dynamic animations

1680 M. H. B. Kamarozaman et al.

Journal of Engineering Science and Technology October 2024, Vol. 19(5)

using Lottie for captivating visual effects. Figure 3 depicts the LPDR system's
welcome page UI.

Fig. 3. Welcome page Ui designed by using flutter.

3.3.1. The app main menu
Upon opening the app, users encounter an informative interface. A brief
introduction outlines the app's purpose and key features, serving as a guide for
users. The first button triggers the model using gallery images, the second activates
the live camera feed, and the third provides access to the app's database
functionality. Figure 4 displays the main menu UI designed with Flutter.

Fig. 4. Main Manu UI designed using flutter.

3.3.2. Model execution by gallery-picked image and camera
The first button, labelled "Run Plate Detection," focuses on detecting rectangular
plate shapes within gallery images. Upon selection, the app's deep learning model
identifies and outlines regions containing license plates using advanced computer
vision algorithms. The second button enhances functionality by incorporating text
recognition capability. In addition to detecting plate bounding boxes, this button
extracts alphanumeric characters from the identified license plate regions, enabling
users to read and interpret the text. The third button introduces further functionality.
Upon text recognition, it queries the app's MongoDB database, retrieving relevant

Enhancing Campus Security and Vehicle Management with Real-Time 1681

Journal of Engineering Science and Technology October 2024, Vol. 19(5)

information associated with the license plates. Figure 5 displays a screenshot of the
camera feed feature.

Fig. 5. Screen capture of the executed model by camera feed.

3.3.3. Database access
The database menu UI seamlessly integrates with MongoDB, providing efficient
data management. It includes sections for specific actions: display, update, delete,
query, and insert. The display section presents structured database contents for easy
navigation. Users can browse records and gain insights. The update section enables
modification of existing records. The delete section allows removal of specific
records or entire datasets. The query section facilitates advanced searches based on
specific criteria. The insert section enables adding new records directly into the
database. Figure 6 illustrates the database menu.

Fig. 6. Database menu.

3.4. Integration and testing-PHASE 4
This section outlines the steps to integrate a license plate recognition system. It
starts with importing required libraries and integrating the model into the Android
application. The app handles plate detection, image capture, and transmission to
the OCR service (ML Kit OCR) for text recognition.

1682 M. H. B. Kamarozaman et al.

Journal of Engineering Science and Technology October 2024, Vol. 19(5)

Google's OCR service operates independently to extract text from license
plates. ML Kit OCR was chosen for its native support in Android development and
seamless integration into Android Studio. In Flutter, ML Kit OCR enables robust
text recognition from images using OCR techniques as part of ML Kit. Easy OCR,
previously used, did not perform well on the research phone, likely due to limited
device specifications.

The next step is to establish a connection between the client and the MongoDB
database. The OCR service forwards the extracted text to the database. The
database uses the text to retrieve relevant car information and sends it back to the
originating smartphone application.

The stability and performance of the object detection and OCR system are
evaluated on the test set through metrics such as accuracy, recall, precision, mean
Average Precision (mAP), inference time, and total processing time. The
performance of the database matching process is also assessed to ensure the
retrieval of correct records within a specific timeframe. Average Precision (AP)
and mean Average Precision (mAP) are commonly used metrics for evaluating
object detection models, which face challenges such as occlusion, scale variations,
and object class imbalance, necessitating improvements in accuracy. Addressing
speed challenges requires efficient algorithms, hardware utilization, and
optimization techniques to achieve real-time performance.

The overall workflow of the developed application system is illustrated in Fig.
7. It begins with loading the image into the detection model, followed by the
character detection process and verification, and finally, retrieval of ownership and
vehicle details. Once the model and app development are complete, it can integrate
the desired model into the application by importing important package manager
libraries provided in Flutter Pub.dev. Then, it's necessary to import ML Kit OCR
into the Android App Development to recognize the text of the detected bounding
box from the previous phase.

Fig. 7. Overall illustration of developed application system.

Enhancing Campus Security and Vehicle Management with Real-Time 1683

Journal of Engineering Science and Technology October 2024, Vol. 19(5)

4. Results and Discussion

4.1. Comparative analysis of various YOLO models
The YOLOv8n, YOLOv7-tiny, YOLOv6n, and YOLOv5n models underwent
training and subsequent comparison. The evaluation utilized consistent training
and test sets across all models, assessing performance through recall, precision,
and mAP metrics. These YOLO models are lightweight with minimal parameters,
ensuring equitable comparison, particularly for mobile-based deep learning
implementations. Training employed identical hyperparameters and settings,
including a learning rate of 0.01, batch size of 16, epoch of 60, optimizer, and
training schedule. In case of unsatisfactory performance, models underwent
hyperparameter tuning. Notably, these small models were chosen for mobile
compatibility and efficiency. Comparative test results are tabulated below.

According to Table 6, YOLOv8n and YOLOv5n stood out as the top
performers. Employing an equal number of epochs ensures uniform training time
across all models, eliminating bias from varying training durations. This
methodology enables a focused comparison of the models' performance under
consistent training conditions.

The YOLOv7-tiny model underperformed, showing poorer performance due
to longer training times and lower mAP compared to other algorithms.
Despite having a better mAP, the YOLOv6 model exhibits lower recall than
others. Next, the two best models will undergo fine-tuning by adjusting
hyperparameters to evaluate potential improvements over previous results. Key
parameters for sensitivity include learning rate (lr), optimizer (SGD, Adam), and
batch size (16, 32, 64).

Table 6. The performance results of the various YOLO models.

Algorithm Recall
%

Precision
%

mAP_0.5
%

mAP_0.5:0.95
%

Training
time

(hours)
YOLOv8n 0.96404 0.94358 0.967 0.643 2.441
YOLOv7-
tiny 0.7784 0.7769 0.804 0.351 3.288

YOLOv6n 0.688 0.958 0.95835 0.59312 2.063
YOLOv5n 0.95159 0.95298 0.971 0.635 1.8

4.2. Learning rate (lr) and optimizer tuning
The training process applied patience=10 and epoch=100 to prevent overfitting. If
there's no improvement in results after 10 epochs, the training process stops.
Learning rate parameters were adjusted alongside optimizers. Tables 7 and 8 show
the performance of YOLOv8n and YOLOv5n with different optimizers and
learning rates.

The results indicate SGD experiments achieved higher mAP values compared
to Adam in all cases. Generally, higher mAP values indicate better performance.
SGD was more effective for this object detection task. Lower learning rate values
generally led to higher mAP values, indicating a smaller learning rate helped the
model converge to a better solution.

1684 M. H. B. Kamarozaman et al.

Journal of Engineering Science and Technology October 2024, Vol. 19(5)

Table 7. The performance of YOLOv8n with various optimizer and learning rate.
Algorithm Optimizer Learning Rate Epoch mAP_0.5 mAP_0.5:0.95

YOLOv8n

SGD
0.1 47 0.955 0.585
0.01 52 0.967 0.646

0.001 24 0.971 0.63

Adam
0.1 27 0.738 0.366
0.01 29 0.94 0.544

0.001 25 0.969 0.632

Table 8. The performance of YOLOv5n with various optimizer and learning rate.

Algorithm Optimizer Learning
Rate Epoch mAP_0.5 mAP_0.5:0.95

YOLOv5n

SGD
0.1 45 0.962 0.578

0.01 38 0.965 0.619
0.001 81 0.969 0.621

Adam
0.1 61 0.721 0.295

0.01 99 0.957 0.594
0.001 61 0.962 0.623

4.3. Batch size tuning
From the previous result, the best hyperparameter tuning was selected to be tested
on the various batch size values. Tables 9 and 10 show the performance of
YOLOv8n and YOLOv5n, respectively.

YOLOv8n's accuracy improved from 0.971 to 0.975 after tuning the batch size.
YOLOv5n also showed acceptable mAP. The analysis compared processing times
for unseen data, as shown in Table 11. Ideally, the model should have reduced
processing time and operate at a higher speed. Pre-processing involves converting
an image from NumPy to PyTorch and normalizing pixel values from 0-255 to 0.0-
1.0. Inference time refers to the duration spent within the model, while post-
processing involves Non-Maximum Suppression (NMS) in object detection models
like YOLO. Based on the results, YOLOv8n and YOLOv5n outperform others.
YOLOv8n is selected as the primary model for Android mobile implementation
due to its lower inference and total processing time.

Table 9. The performance of YOLOv8n with various batch size values.
Algorithm Batch size Epoch mAP_0.5 mAP_0.5:0.95
YOLOv8n,
Optimizer=SGD,
Lr = 0.001

16 24 0.971 0.63
32 31 0.975 0.624
64 23 0.967 0.623

Table 10. The performance of YOLOv5n with various batch size values.
Algorithm Batch size Epoch mAP_0.5 mAP_0.5:0.95

YOLOv5n
Optimizer=SGD, Lr=0.001

16 81 0.969 0.621
32 65 0.974 0.619
64 58 0.966 0.622

Table 11. Evaluation of test dataset (unseen data).

Algorithm Pre-process time
(ms)

Inference time
(ms)

Post-process
(ms)

Total Time
Processing (ms)

YOLOv8n 1.9 4.4 2.1 8.4
YOLOv5n 0.5 6.9 1.5 8.9

Enhancing Campus Security and Vehicle Management with Real-Time 1685

Journal of Engineering Science and Technology October 2024, Vol. 19(5)

4.4. Model validation
The confusion matrix evaluates a model's classification performance by comparing
predictions to actual labels, providing insights into label distributions. Represented
in a table format, each cell signifies counts or proportions of instances in specific
categories. True Positive, True Negative, False Positive, and False Negative
classifications are defined within this matrix. Evaluation metrics like accuracy,
precision, recall, specificity, and F1-score are derived from this analysis. These
metrics aid in identifying performance issues such as imbalanced classes or high
false positive/negative rates.
• Accuracy: The overall accuracy of the model calculated as (TP + TN) / (TP +

TN + FP + FN).
• Precision: The proportion of true positive predictions out of all positive

predictions, calculated as TP / (TP + FP).
• Mean Average Precision (mAP): the mean value of the AP across different

object classes, offering an overall evaluation of the model's performance. It
considers both detection accuracy and the number of instances per class.
Higher mAP scores signify superior object detection performance overall.

• Recall (Sensitivity or True Positive Rate): The proportion of true positive
predictions out of all actual positive instances, calculated as TP / (TP + FN).

• Specificity: The proportion of true negative predictions out of all actual
negative instances, calculated as TN / (TN + FP).

• F1-score: The harmonic means of precision and recall, providing a balanced
measure between the two metrics. It is calculated as 2 * (Precision * Recall) /
(Precision + Recall).

Figure 8(a) displays the result of YOLOv8n with an accuracy of 0.97 and a
false negative rate of 0.03. The confusion matrix reveals a notable number of
false positive detections, indicating instances where the system identifies non-
existent plates. However, it shows relatively fewer false negatives, implying that
while it may over-detect plates, it maintains a satisfactory accuracy in not missing
genuine plates.

Figure 8(b) indicates an F1-score of 0.96 with a confidence threshold of 0.51,
reflecting a balanced precision and recall for object detection. A precision of 1.00
in Fig. 8(c) signifies accurate predictions for confidence scores above 0.989, with
very few false positives. Figure 8(d) shows precision of 0.971 suggests correct
positive predictions 97.1% of the time, with minimal false positives. Similarly, a
recall value of 0.971 indicates accurate detection of 97.1% of instances. An
mAP@0.5 value of 0.971 denotes high accuracy and recall across classes with an
Intersection over Union (IoU) threshold of 0.5.

Figure 9 presents examples of plate detection results on unseen data, showcasing
improved performance under various challenging conditions like low lighting.
However, some false positives, like car logos resembling plates, are detected,
necessitating analysis of the threshold value to minimize such occurrences.

1686 M. H. B. Kamarozaman et al.

Journal of Engineering Science and Technology October 2024, Vol. 19(5)

(a) (b)

(c) (d)

Fig. 8. (a) Confusion matrix, (b) F1-confidence curve graph, (c) Precision-
confidence curve graph, (d) Precision-confidence curve graph.

Fig. 9. Example of detection plate result on unseen data.

Enhancing Campus Security and Vehicle Management with Real-Time 1687

Journal of Engineering Science and Technology October 2024, Vol. 19(5)

4.5. Plate detection analysis
YOLOv8n demonstrates higher mAP values (0.5:0.95) compared to other models,
as indicated in Table 12. Subsequently, the converted model is tested on the mobile
application using unseen data (test images).

High accuracies, ranging from 85% to 95%, are achieved for each image,
indicating the robustness of the detection system due to the large training dataset.
Samples of LPDR running on a mobile device are depicted in Fig. 10, while Fig.
11 showcases samples under unconstrained conditions.

Table 12. System performance based on the evaluation metrics.

Algorithm Optimizer Learning
Rate

Batch
size Epoch mAP

0.5
mAP

0.5:0.95
YOLOv8n SGD 0.001 32 24 0.975 0.624
YOLOv5n SGD 0.001 32 81 0.974 0.619

Fig. 10. Result of model testing on mobile device with accuracy.

Fig. 11. Result of model testing under unconstrained condition.

4.6. Character recognition analysis
Two techniques, YOLOv8n Second Stage Method and ML Kit OCR, were examined
and compared, with the first stage being the YOLOv8n license plate detector. The
YOLOv8n second stage underwent customized hyperparameter tuning. Upon
analysis, it was observed that the trained YOLOv8n model had more
misclassifications than successful character recognitions. Occasionally, it missed one
or multiple characters during recognition, likely due to the variety of fonts used and
the insufficient training data available for effective learning and generalization.
Additionally, the model exhibited high sensitivity to the angle of the captured image.

1688 M. H. B. Kamarozaman et al.

Journal of Engineering Science and Technology October 2024, Vol. 19(5)

Testing across various angles is crucial to ensure system robustness. If input
images lack centering or are rotated, the model may struggle to classify characters
accurately, resulting in a higher false positive rate. Increasing the threshold may
lead to fewer characters being recognized. For instance, if the actual plate number
is VVA5836, the model may only recognize VA36. The highest misclassification
occurred at low threshold values. False positives decreased with a higher initial
threshold. Figure 12 illustrates the impact of threshold values on the model.

Fig. 12. Threshold values applied on YOLOv8n character recognition.

Initially, we tested YOLOv8n two-stage detection and recognition, and
subsequently, the integration of YOLOv8n with ML Kit OCR. However, the
integration of YOLOv8n and ML Kit OCR outperformed YOLOv8n Two-Stage
LPDR, correctly identifying 7 out of 10 license plates by recognizing the full
characters. The failure to detect the remaining 3 images was primarily due to
extreme angles of the captured license plates. All classes achieved an excellent
mAP, with at least 85% accuracy. Table 13 displays the results of various character
recognition test.

Table 13. Results of character recognition.

Image Actual
Text

YOLOv8n
Predicted

Text

(YOLOv8n)
Text Detected

correctly?

ML Kit
OCR

Predicted
Text

(ML Kit OCR)
Text Detected

correctly?

1 WSD8231 WSD8231 Yes WSD8231 Yes
2 MCW6015 WW6015 No MCW6015 Yes
3 ST5148X 3T5148X No ST5148X Yes
4 JTP9776 TF776 No JTP9776 Yes
5 WA1627Y WA1627Y Yes - No
6 VAC5161 VA561 No VAC5161 Yes
7 BPN3068 BRN066 No BPN3068 Yes
8 TCP6536 CP3 No TCP6536 Yes
9 UTM6155 UTM6155 Yes UTM655 No
10 VCA2983 VA293 No - No

The method was evaluated under various conditions, including low image
quality, uneven lighting, reflections, shadows, tilting, and rotation, with ML Kit
accurately recognizing most scenarios. ML Kit OCR demonstrates exceptional
performance in quick and accurate license plate detection, particularly on mobile
phones. Its suitability for mobile app development stems from its smaller OCR

Enhancing Campus Security and Vehicle Management with Real-Time 1689

Journal of Engineering Science and Technology October 2024, Vol. 19(5)

architecture compared to the Two Stage YOLO detector, especially considering
that Malaysian plate numbers only use alphanumeric characters.

Deploying two YOLOv8n models in a single app resulted in frequent app
unresponsiveness and instability. Character recognition results are shown in Fig.
13, while Fig. 14 demonstrates the integration with the database system for vehicle
ownership lookup. The recognition performance for YOLOv8n and ML Kit OCR
integration is 91.5% accuracy tested towards 521 test samples.

The comparison with existing works is detailed in Table 14, revealing that the
mobile app developed in this research is comparable to other LPDR approaches. A
robust LPDR system enables the security personnel to check vehicle details,
including the owner (student, staff, or visitor), potential wrongdoings, or unpaid
summons using their personal smartphone in various lighting conditions, vehicle
distances, license plate angles, and weather conditions.

This verification process involves comparing the vehicle with a predefined
list of authorized vehicles which is stored in the cloud database. Once the
vehicle's owner is identified, security personnel can take further actions, such as
issuing a warning letter or summons to the campus residents. This mobile
application ensures the confidentiality of vehicle owner information, accessible
solely to security department personnel. While no surveys have been conducted
to gather user feedback or perspectives from campus stakeholders, this is planned
for the future.

Fig. 13. YOLOv8n plate detection and ML Kit OCR for character recognition.

Fig. 14. Integration with database system for vehicle ownership lookup.

1690 M. H. B. Kamarozaman et al.

Journal of Engineering Science and Technology October 2024, Vol. 19(5)

Table 14. Results comparison with other YOLO approaches.
Ref. Methods Results

[7] Two-stage
YOLOv2 LP detection for clear weather 99% but 74% for night scene.

[8] YOLOv4 and Tesseract
OCR

Achieved 94.6% accuracy on the detection rate but
recognition rate was not reported.

[9] YOLOv6 The F1-score is 0.95.
[12] Tiny-YOLOv2 99.62% mAP and 9 ms inference time.
[14] Fast-YOLO 93.53% accuracy and 47 fps.
This
paper

YOLOv8n and ML Kit
OCR

97.5% detection accuracy, 91.2% recognition accuracy for
521 test images.

5. Conclusion
The main objective of this research is to design a lightweight mobile-based license
plate reader (LPDR) for Malaysian license plates to assist security personnel in
enhancing smart campus security and vehicle management. Four lightweight
models were analysed for the license plate detection, with YOLOv8n identified as
the best detection model. For character recognition, two models were evaluated,
and ML Kit OCR was selected.

The evaluation of the YOLOv8n algorithm's accuracy as a license plate detector
involves crucial sections such as hyperparameter tuning and speed evaluation.
Hyperparameter tuning optimized the model, focusing on parameters like batch
size, learning rate, and optimizer. The plate detection accuracy reached 97.5%
using a batch size of 32, a learning rate of 0.001, and the SGD optimizer. YOLOv8n
also achieved a total processing time of 8.4 milliseconds.

ML Kit OCR achieved a character recognition accuracy of 91.2%,
outperforming YOLOv8n second stage. YOLOv8n second stage required extensive
training datasets covering various characters and styles, leading to inaccurate
character detection due to insufficient data. This approach may result in larger
model sizes, requiring more computational resources for efficient inference. In
contrast, ML Kit OCR is designed to be lightweight and optimized for mobile
devices, resulting in smaller model sizes and faster inference on resource-
constrained platforms.

To enhance the LPDR system's performance, a database cloud system was
integrated to match recognized license plate numbers with vehicle ownership
information. This integration significantly improves the system's overall
performance, making it highly suitable for end-to-end license plate reading. The
LPDR mobile app is applicable to any campus with access to the resident's vehicle
database. Further improvements in the app's operation may necessitate using a
better end device with higher hardware specifications. Additionally, gathering user
feedback and perspectives from campus stakeholders through a future survey will
provide valuable insights.

Acknowledgement
The authors would like to acknowledge the support from the Faculty’s Research
Fund (Faculty of Electronics and Computer Technology and Engineering),
Machine Learning and Signal Processing (MLSP), a research group under the
Centre for Telecommunication Research & Innovation (CeTRI), Universiti
Teknikal Malaysia Melaka (UTeM).

Enhancing Campus Security and Vehicle Management with Real-Time 1691

Journal of Engineering Science and Technology October 2024, Vol. 19(5)

References
1. Mustafa, T.; and Karabatak, M. (2023). Challenges in automatic license plate

recognition system review. Proceedings of the 2023 11th International
Symposium on Digital Forensics and Security, Chattanooga, TN, USA, 1-6.

2. Abdullah, M.; Al-Nawah, S.M.; Osman, H.; and Jaffar, J. (2021). License plate
recognition techniques: comparative study. Malaysian Journal of Computer
Science, 1(Advances in Applied Science and Technology Research Special
Issue), 94-105.

3. Wang, Y.; Wang, J.; Zhang, W.; Zhan, Y.; Guo, S.; Zheng, Q.; and Wang, X.
(2022). A survey on deploying mobile deep learning applications: A systemic
and technical perspective. Digital Communications and Networks, 8(1), 1-17.

4. Leng, J. et al. (2023). A light vehicle license-plate-recognition system based
on hybrid edge-cloud computing. Sensors, 23(21), 8913.

5. Ma, Z.; Wu, Z.; and Cao, Y. (2023). End-to-end light license plate detection
and recognition method based on deep learning. Electronics, 12(1), 203.

6. Dias, C.; Jagetiya, A.; and Chaurasia, S. (2019). Anonymous vehicle detection
for secure campuses: A framework for license plate recognition using deep
learning. Proceedings of the 2019 2nd International Conference on Intelligent
Communication and Computational Techniques (ICCT), Jaipur, India, 79-82.

7. Yonetsu, S.; Iwamoto, Y.; and Chen, Y.W. (2019). Two-stage YOLOv2 for
accurate license-plate detection in complex scenes. Proceedings of the 2019
IEEE International Conference on Consumer Electronics (ICCE), Las Vegas,
NV, USA, 1-4.

8. Chang, C.-L.; Chen, P.-J.; and Chen, C.-Y. (2022). Semi-supervised learning
for YOLOv4 object detection in license plate recognition system. Journal of
Imaging Science and Technology, 66(4), 040404-1-040404-9.

9. Li, M.; and Zhang, L. (2023). Deep learning-based license plate recognition in
IoT smart parking systems using YOLOv6 algorithm. International Journal of
Advanced Computer Science and Applications, 14(12), 222-231.

10. Awalgaonkar, N.; Bartakke, P.; and Chaugule, R. (2021). Automatic license
plate recognition system using SSD. Proceedings of the 2021 International
Symposium of Asian Control Association on Intelligent Robotics and Industrial
Automation (IRIA), Goa, India, 394-399.

11. Darji, M.; Dave, J.; Asif, N.; Godawat, C.; Chudasama, V.; and Upla, K.
(2020). Licence plate identification and recognition for non-helmeted
motorcyclists using light-weight convolution neural network. Proceedings of
the 2020 International Conference for Emerging Technology (INCET),
Belgaum, India, 1-6.

12. Lin, C.-H.; and Wu, C.-H. (2019). A lightweight, high-performance multi-
angle license plate recognition model. Proceedings of the 2019 International
Conference on Advanced Mechatronic Systems (ICAMechS), Kusatsu, Japan,
235-240.

13. Xu, Z.; Yang, W.; Meng, A.; Lu, N.; Huang, H.; Ying, C.; and Huang, L.
(2018). Towards end-to-end license plate detection and recognition: A large
dataset and baseline. In Ferrari, V.; Hebert, M.; Sminchisescu, C.; and Weiss,
Y. (Eds.), ComputerVision-ECCV 2018. Springer International Publishing,
11217, 261-277.

1692 M. H. B. Kamarozaman et al.

Journal of Engineering Science and Technology October 2024, Vol. 19(5)

14. Laroca, R.; Severo, E.; Zanlorensi, L.A.; Oliveira, L.S.; Goncalves, G.R.;
Schwartz, W.R., and Menotti, D. (2018). A robust real-time automatic license
plate recognition based on the YOLO detector. Proceedings of the 2018
International Joint Conference on Neural Networks (IJCNN), Rio de Janeiro,
Brazil, 1-10.

15. Kim, H.-H.; Park, J.-K.; Oh, J.-H.; and Kang, D.-J. (2017). Multi-task
convolutional neural network system for license plate recognition.
International Journal of Control, Automation and Systems, 15(6), 2942-2949.

16. Montazzolli, S.; and Jung, C. (2017). Real-time brazilian license plate
detection and recognition using deep convolutional neural networks.
Proceedings of the 2017 30th SIBGRAPI Conference on Graphics, Patterns
and Images (SIBGRAPI), Niteroi, Brazil, 55-62.

17. Foundation, T.L. (2023). PyTorch Mobile. Retrieved December 5, 2023, from
https://pytorch.org/mobile/home/.

https://pytorch.org/mobile/home/

