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Abstract 

Digital Predistortion (DPD) has been broadly implemented in Power Amplifier (PA) 
Linearization, to counter the PA non-linearity effects, which introduce additional 
operational costs to various PA applications such as base stations, mobile phones, and 
laptops. The core performance contributor of a DPD system is on its ability to 
accurately model the PA to acquire an inversed PA model that is used for 
compensating the input signals before feeding them to the PA. However, the 
improvement of PA modelling accuracy in DPD usually comes with a cost of 
increased computational requirements and additional challenges in implementations. 
In this paper, the popular Generalized Memory Polynomial (GMP) DPD algorithm, 
is optimized using the Binomial Reduction method to reduce the model operations 
complexity but maintaining linearization performance. The performance metrics 
include Normalized Mean Square Error (NMSE), where the pre-distorted PA output 
is measured against the ideal PA output to acquire magnitude of error in PA 
linearization. The NMSE measurement is applied on both original and treated 
algorithm, where they will both be compared. Close to 0 values indicates almost no 
differences among respective error magnitudes, concluding both algorithms have 
matching linearization performances. To measure model operations complexity, the 
number of multiplication operations required for each the original and treated 
algorithm is calculated, and then compared, where a lower number indicates fewer 
number of multiplication operations required, indicating lower model operations 
complexity. Model operations complexity is reduced 38%, with the treated GMP 
lagging 0.88 dB in NMSE. The difference in linearization performance is close to zero 
and acceptable, outweighed by the benefits observed in reduction of model operations 
complexity. The observed advantage would be impactful to almost all Memory 
Polynomial (MP) based DPD implementations in PAs, especially when PAs are 
increasing in importance in today’s ever connecting world. 

Keywords: Digital predistortion, Memory polynomial, PA linearization, 
Wireless communications. 
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1.  Introduction 
Power Amplifiers (PA) are prominent in wireless communications systems. Ideally, 
the PA is linear in terms of energy output with accordance to the level of input 
energy. In reality, there exists this saturation point, where the PA stops behaving 
linearly and starts exhibiting non-linearity, slanting away from the linear line. This 
results in near stagnant of output energy despite continuous increment in input 
energy. However, containing the PA to operate in the linear region before the 
saturation point results in low efficiency [1]. Adding to the complexity, today’s 
increasing demand of bandwidth together with higher operating frequency 
introduces high Peak to Average Power Ratio (PAPR) to PAs. This drives the 
operation to happen near the PAs saturation point.  

These conglomerated sources of inefficiencies and non-linearities produces 
signal output distortions, namely in amplitude and phase. Other undesired effects 
include Adjacent Channel Interference (ACI) and scatterings of the output signal 
called Memory Effects [2]. 

To neutralize the effects of PA non-linearity, PA linearization has been sought 
after by the academia and the industry [3]. Among the many PA linearization 
methods, Digital Predistortion (DPD) has emerged as the most celebrated method 
due to its well-balanced advantages against system cost [3-7]. The input signal is 
first pre-processed at the DPD system, where the DPD output is then taken in by 
the PA. The DPD system continues to learn and get updated, through iterations and 
feedbacks from the output or feedforward from the input [4, 8, 9].  

The DPD block behaves as an inversed model of the PA, where it cancels out 
the non-linearity of the PA’s function, resulting in a linearized PA output. 
Therefore, an accurate model of the PA in DPD would lead to in an effective PA 
linearization system, which will be able to nullify the amplitude and phase 
distortions, hence reducing ACI, as illustrated in Fig. 1. 

 

Fig. 1. DPD diagram with the feedback and feedforward path. 

The accuracy of PA modelling in DPD systems usually comes at a cost. A more 
complex system is required to represent the non-linear modelling equation of the PA. 
This results an increase in model dimensions, number of model coefficients required 
and depth of memory in the polynomial. Conventionally, Volterra Series have been 
used to model non-linear PAs [10-12]. A famous improvement of Volterra Series is 
performed in [13, 14], where similar linearization performance is attained with 
reduced complexity, resulting in the Memory Polynomial (MP) algorithm. 

In a research conducted by Morgan et al. [15], the MP is improved in terms of 
linearization accuracy. This is achieved with a cost of additional polynomial 
branches added together with higher model dimensions and increased number of 
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model coefficients. The improved MP is the Generalized Memory Polynomial 
(GMP). Due to its improved performance, the GMP is largely adopted by the 
industry. GMP is popularly worked on by the academia to improve its performance 
[4, 8], becoming one of the most prominent MP-based DPD algorithms. 

In a research conducted by Choo et al. [16], MP is reduced in terms of 
complexity using Binomial Reduction from [6] with savings in multiplication 
operations as shown in [17]. With successful optimization on MP, it is deduced in 
[6] that the same Binomial Reduction optimization method could be applied 
effectively on all DPD algorithms that evolved from MP. The objective is to 
achieve the reduction on model operations complexity without compromising 
linearization performance. 

In this paper, an attempt is made to optimize another DPD algorithm derived 
from MP, the GMP from [15]. The treated GMP is expected to achieve reductions 
in model operations complexity against the original GMP algorithm, without 
compromising PA linearization performance. The attempt is courageous because it 
goes against the common trend, which is improvement in linearization performance 
at a cost of increased model operations complexity and implementation complexity. 
This paper attempts differently by reducing model operations complexity instead, 
while retaining the linearization performance of the DPD algorithm. 

Section II describes the model description of a DPD system, diving deeper 
into the conventional Volterra Series algorithm, MP, GM, and the improved 
method, the GMP with Binomial Reduction (GMP-BR). Section III describes 
the performance metrics deployed for model operations complexity versus 
performance comparison, where error reduction capabilities is expressed with 
Normalized Mean Square Errors (NMSE). To evaluate model operations 
complexity, calculation methods for model coefficients, together with number 
of multiplication operations are derived and presented. Section IV includes 
the Results and Discussion for GMP-BR against GMP, with reference to the 
performance metrics described in Section III. Section V concludes the paper. 

2.  Model Description 
To help readers appreciate the unique attempt made through this paper in reducing 
complexity instead of adding complexity for performance, the DPD is first 
described with the help of a diagram to assist readers visualize the role of the pre-
distorter in pre-distorting the PA. Next the conventional non-linearity modelling 
algorithm, the Volterra Series is briefly presented.  

The next sub-section elaborates on one of the prominent attempts in simplifying 
Volterra Series, the infamous Memory Polynomial (MP). Chronologically, the MP 
is then conveniently improved in terms of linearization performance, by increasing 
model operations complexity, coined as the Generalized MP. Lastly, the GMP is 
treated, where the reduction steps are presented so that readers may replicate the 
optimization process. 

2.1.  Digital predistortion (DPD) 
In essence, the DPD Block behaves as an inversely non-linear model of the PA, 
where the signal input is driven into the DPD block first, and then to the PA. Figure 
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2 shows the respective functions of the DPD block, the PA, and the function 
compositions, resulting in y, a linearized output signal. 

From Fig. 2, it is obvious that the success of DPD depended on the modelling 
of the PA, including its non-linearities. The next subsection explores a 
conventionally used algorithm in DPD to model non-linear systems [3]. 

 
Fig. 2. Simplistic diagram of a DPD block and the PA, where the two 

inversely non-linear functions cancel out the non-linearities [18]. 

2.2. Volterra series 
The Volterra Series is deployed conventionally in modelling of non-linear systems, 
which comes naturally useful in DPD to model the PA. The full series is shown 
below: 

𝑦𝑦(𝑡𝑡) = ∑ ∫⋯∫ℎ2𝑘𝑘+1(𝜏𝜏2𝑘𝑘+1)∏ 𝑧𝑧(𝑡𝑡 − 𝜏𝜏𝑖𝑖)𝑘𝑘+1
𝑖𝑖=1 ∏ 𝑧𝑧∗(𝑡𝑡 − 𝜏𝜏𝑖𝑖)𝑑𝑑𝜏𝜏2𝑘𝑘+12𝑘𝑘+1

𝑖𝑖=𝑘𝑘+2𝑘𝑘            (1) 

where ℎ2𝑘𝑘+1(𝜏𝜏2𝑘𝑘+1) = 1
22𝑘𝑘

�2𝑘𝑘 + 1
𝑘𝑘 �ℎ�2𝑘𝑘+1(𝜏𝜏2𝑘𝑘+1)𝑒𝑒−𝑗𝑗2𝜋𝜋�∑ 𝜏𝜏𝑖𝑖−∑ 𝜏𝜏𝑖𝑖

2𝑘𝑘+1
𝑖𝑖=𝑘𝑘+2

𝑘𝑘+1
𝑖𝑖=1 �  

In discrete-time domain, Eq. (1) becomes the following: 

𝑦𝑦(𝑛𝑛) = ∑ ∑ ⋯∑ ℎ2𝑘𝑘+1(𝑙𝑙1, 𝑙𝑙2,⋯ , 𝑙𝑙2𝑘𝑘+1)∏ 𝑧𝑧(𝑛𝑛 − 𝑙𝑙𝑖𝑖)𝑘𝑘+1
𝑖𝑖=1𝑙𝑙2𝑘𝑘+1𝑙𝑙1 ∏ 𝑧𝑧∗(𝑛𝑛 − 𝑙𝑙𝑖𝑖)2𝑘𝑘+1

𝑖𝑖=𝑘𝑘+2𝑘𝑘          (2) 

In the Volterra Series, the No. of model coefficients, ℎ increase exponentially, 
when the model dimensions: non-linearity order, 𝑘𝑘 increases [13]. This results in a 
complex DPD model and gives incentives to researchers to optimize the Volterra 
Series for complexity reduction.  

The next subsection presents a rather successful optimization performed on 
Volterra Series, where the diagonal kernels are harvested, yielding the Memory 
Polynomial (MP). In MP the No. of model coefficients no longer increases 
exponentially when the model sizes increase, resulting in a complexity reduced 
DPD algorithm comparing to Volterra Series. 

2.3. Memory polynomial (MP) 
The Memory Polynomial (MP) is shown as follows: 

𝑧𝑧(𝑛𝑛) = ∑ ∑ 𝑎𝑎𝑘𝑘𝑘𝑘𝑥𝑥(𝑛𝑛 − 𝑞𝑞)|𝑥𝑥(𝑛𝑛 − 𝑞𝑞)|𝑘𝑘−1𝑄𝑄
𝑘𝑘=0

𝐾𝐾
𝑘𝑘=1
𝑘𝑘 𝑜𝑜𝑜𝑜𝑜𝑜

              (3) 
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where 𝐾𝐾  is the non-linearity order, 𝑄𝑄  is the memory depth , 𝑥𝑥(𝑛𝑛)  is PA input 
signal, and 𝑎𝑎𝑘𝑘𝑘𝑘  as the model coefficients. 

To calculate the model coefficients, the Least Square Method is used by first 
replacing the input signal 𝑥𝑥(𝑛𝑛) with the output signal 𝑦𝑦(𝑛𝑛): 

𝑧𝑧(𝑛𝑛) = ∑ ∑ 𝑎𝑎𝑘𝑘𝑘𝑘𝑦𝑦(𝑛𝑛 − 𝑞𝑞)|𝑦𝑦(𝑛𝑛 − 𝑞𝑞)|𝑘𝑘−1𝑄𝑄
𝑘𝑘=0

𝐾𝐾
𝑘𝑘=1
𝑘𝑘 𝑜𝑜𝑜𝑜𝑜𝑜

              (4) 

Equation (4) in matrix form: 

𝑧𝑧 = 𝑌𝑌 ∙ 𝑎𝑎                  (5) 

where 

𝑧𝑧 = [𝑧𝑧(0), 𝑧𝑧(1), … , 𝑧𝑧(𝑁𝑁 − 1)]𝑇𝑇                (6) 

𝑌𝑌 = �𝑦𝑦10, … ,𝑦𝑦𝐾𝐾0 , … ,𝑦𝑦1𝑄𝑄 , …𝑦𝑦𝐾𝐾𝑄𝑄�                (7) 

𝑦𝑦𝐾𝐾𝑄𝑄 = �𝑦𝑦𝐾𝐾𝑄𝑄(0), 𝑦𝑦𝐾𝐾𝑄𝑄(1), … 𝑦𝑦𝐾𝐾𝑄𝑄(𝑁𝑁 − 1)�𝑇𝑇               (8) 

𝑎𝑎 = �𝑎𝑎10, … , 𝑎𝑎𝐾𝐾0, … , 𝑎𝑎1𝑄𝑄 , …𝑎𝑎𝐾𝐾𝑄𝑄�
𝑇𝑇
                (9) 

To obtain the model coefficients, Eq. (5) could be rewritten as: 

𝑎𝑎 = (𝑌𝑌𝑐𝑐𝑜𝑜𝑐𝑐𝑗𝑗 ∙ 𝑌𝑌)−1𝑌𝑌𝑐𝑐𝑜𝑜𝑐𝑐𝑗𝑗𝑧𝑧               (10) 

The MP is one of the most widely used DPD algorithms in the academia and in 
the industry [3]. The popularity caught the attention of many researchers, and one 
has added more complexity to the MP to increase accuracy, yielding Generalized 
MP (GMP) in the next subsection. 

2.4. Generalized memory polynomial (GMP) 
MP is enhanced with improved model accuracy, through increasing the number of 
summation branches by taking into account the lagging and leading components of 
the respective sampling points [15]. This enhancement is coined as the Generalized 
Memory Polynomial (GMP): 

𝑦𝑦𝐺𝐺𝐺𝐺𝐺𝐺(𝑛𝑛) = ∑ ∑ 𝑎𝑎𝑘𝑘𝑘𝑘𝑥𝑥(𝑛𝑛 − 𝑞𝑞)|𝑥𝑥(𝑛𝑛 − 𝑞𝑞)|𝑘𝑘𝑄𝑄𝑎𝑎−1
𝑘𝑘=0

𝐾𝐾𝑎𝑎−1
𝑘𝑘=0 + ∑ ∑ ∑ 𝑏𝑏𝑘𝑘𝑘𝑘𝑙𝑙𝑥𝑥(𝑛𝑛 −𝐿𝐿𝑏𝑏

𝑙𝑙=1
𝑄𝑄𝑏𝑏−1
𝑘𝑘=0

𝐾𝐾𝑏𝑏
𝑘𝑘=1

𝑞𝑞)|𝑥𝑥(𝑛𝑛 − 𝑞𝑞 − 𝑙𝑙)|𝑘𝑘 + ∑ ∑ ∑ 𝑐𝑐𝑘𝑘𝑘𝑘𝑙𝑙𝑥𝑥(𝑛𝑛 − 𝑞𝑞)|𝑥𝑥(𝑛𝑛 − 𝑞𝑞 + 𝑙𝑙)|𝑘𝑘𝐿𝐿𝑐𝑐
𝑙𝑙=1

𝑄𝑄𝑐𝑐−1
𝑘𝑘=0

𝐾𝐾𝑐𝑐
𝑘𝑘=1           (11) 

where 𝐾𝐾𝑎𝑎 𝑄𝑄𝑎𝑎 are the model dimensions where the signal and envelope are aligned; 
where 𝐾𝐾𝑏𝑏 𝑄𝑄𝑏𝑏  𝐿𝐿𝑏𝑏 are the model dimensions for signal and lagging envelope; 𝐾𝐾𝑐𝑐 𝑄𝑄𝑐𝑐 
𝐿𝐿𝑐𝑐are the model dimensions for signal and leading envelope [15]. 

With improved model accuracy, the GMP comes with a cost of increased model 
complexity when compared with MP. Despite that, the GMP received popular 
adoption by the academia [15]. To visualize the advantage of GMP against MP, 
Fig. 3 shows the comparison of complexity versus performance for GMP against 
MP and Volterra Series with reference to [19], when stress-tested with high non-
linear memory effect. 

The next subsection showcases the contribution of this paper, where GMP is 
being optimized by reducing model operations complexity, without compromising 
its linearization performance. 
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Fig. 3. Comparison between MP, GMP and Volterra Series.  

GMP-BR is higher in complexity compared to MP, but still lower  
compared to Volterra Series. While maintaining linearization  

performance, GMP-BR reduces complexity compared to GMP. 

2.5. GMP with binomial reduction (GMP-BR) 
To reduce the model complexity of GMP, the optimization method Binomial 
Reduction first experimented in [6] is applied. The confidence on the effectiveness 
of Binomial Reduction on GMP is ascertained, through the Binomial Reduction on 
MP that happened in [16], with reduced model complexity reported in [17] in terms 
of Multiplication Operations reduction. 

Following the steps shown in [6, 20], the steps of Binomial Reduction for GMP 
is shown in the following equations. 

First, Eq. (11) is rearranged, to have all 𝑘𝑘 and 𝑞𝑞 to start from 0. 

𝑦𝑦𝐺𝐺𝐺𝐺𝐺𝐺(𝑛𝑛) = ∑ ∑ 𝑎𝑎𝑘𝑘𝑘𝑘𝑥𝑥(𝑛𝑛 − 𝑞𝑞)|𝑥𝑥(𝑛𝑛 − 𝑞𝑞)|𝑘𝑘𝑄𝑄𝑎𝑎−1
𝑘𝑘=0

𝐾𝐾𝑎𝑎−1
𝑘𝑘=0 +

∑ ∑ ∑ 𝑏𝑏𝑘𝑘𝑘𝑘𝑙𝑙𝑥𝑥(𝑛𝑛 − 𝑞𝑞)|𝑥𝑥(𝑛𝑛 − 𝑞𝑞 − 𝑙𝑙)|𝑘𝑘+1𝐿𝐿𝑏𝑏
𝑙𝑙=1

𝑄𝑄𝑏𝑏−1
𝑘𝑘=0

𝐾𝐾𝑏𝑏−1
𝑘𝑘=0 +

∑ ∑ ∑ 𝑏𝑏𝑘𝑘𝑘𝑘𝑙𝑙𝑥𝑥(𝑛𝑛 − 𝑞𝑞)|𝑥𝑥(𝑛𝑛 − 𝑞𝑞 − 𝑙𝑙)|𝑘𝑘+1𝐿𝐿𝑏𝑏
𝑙𝑙=1

𝑄𝑄𝑏𝑏−1
𝑘𝑘=0

𝐾𝐾𝑏𝑏−1
𝑘𝑘=0             (12) 

Expands the absolutes |𝑥𝑥(𝑛𝑛 − 𝑞𝑞)|: 

𝑦𝑦𝐺𝐺𝐺𝐺𝐺𝐺(𝑛𝑛) = ∑ ∑ 𝑎𝑎𝑘𝑘𝑘𝑘𝑥𝑥(𝑛𝑛 − 𝑞𝑞)�𝑥𝑥(𝑛𝑛 − 𝑞𝑞)𝑟𝑟𝑟𝑟𝑎𝑎𝑙𝑙
2 + 𝑥𝑥(𝑛𝑛 − 𝑞𝑞)𝑖𝑖𝑖𝑖𝑎𝑎𝑖𝑖

2
𝑘𝑘

𝑄𝑄𝑎𝑎−1
𝑘𝑘=0

𝐾𝐾𝑎𝑎−1
𝑘𝑘=0 +

∑ ∑ ∑ 𝑏𝑏𝑘𝑘𝑘𝑘𝑙𝑙𝑥𝑥(𝑛𝑛 − 𝑞𝑞)�𝑥𝑥(𝑛𝑛 − 𝑞𝑞 − 𝑙𝑙)𝑟𝑟𝑟𝑟𝑎𝑎𝑙𝑙
2 + 𝑥𝑥(𝑛𝑛 − 𝑞𝑞 − 𝑙𝑙)𝑖𝑖𝑖𝑖𝑎𝑎𝑖𝑖

2
𝑘𝑘+1

𝐿𝐿𝑏𝑏
𝑙𝑙=1

𝑄𝑄𝑏𝑏−1
𝑘𝑘=0

𝐾𝐾𝑏𝑏−1
𝑘𝑘=0 +

∑ ∑ ∑ 𝑐𝑐𝑘𝑘𝑘𝑘𝑙𝑙𝑥𝑥(𝑛𝑛 − 𝑞𝑞)�𝑥𝑥(𝑛𝑛 − 𝑞𝑞 + 𝑙𝑙)𝑟𝑟𝑟𝑟𝑎𝑎𝑙𝑙
2 + 𝑥𝑥(𝑛𝑛 − 𝑞𝑞 + 𝑙𝑙)𝑖𝑖𝑖𝑖𝑎𝑎𝑖𝑖

2
𝑘𝑘+1

𝐿𝐿𝑐𝑐
𝑙𝑙=1

𝑄𝑄𝑐𝑐−1
𝑘𝑘=0

𝐾𝐾𝑐𝑐−1
𝑘𝑘=0  

                 (13) 

Rearranging Eq. (13): 
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𝑦𝑦𝐺𝐺𝐺𝐺𝐺𝐺(𝑛𝑛) = ∑ ∑ 𝑎𝑎𝑘𝑘𝑘𝑘𝑥𝑥(𝑛𝑛 − 𝑞𝑞)�𝑥𝑥(𝑛𝑛 − 𝑞𝑞)𝑟𝑟𝑟𝑟𝑎𝑎𝑙𝑙
2 + 𝑥𝑥(𝑛𝑛 − 𝑞𝑞)𝑖𝑖𝑖𝑖𝑎𝑎𝑖𝑖

2�
𝑘𝑘
2𝑄𝑄𝑎𝑎−1

𝑘𝑘=0
𝐾𝐾𝑎𝑎−1
𝑘𝑘=0 +

∑ ∑ ∑ 𝑏𝑏𝑘𝑘𝑘𝑘𝑙𝑙𝑥𝑥(𝑛𝑛 − 𝑞𝑞)�𝑥𝑥(𝑛𝑛 − 𝑞𝑞 − 𝑙𝑙)𝑟𝑟𝑟𝑟𝑎𝑎𝑙𝑙
2 + 𝑥𝑥(𝑛𝑛 − 𝑞𝑞 − 𝑙𝑙)𝑖𝑖𝑖𝑖𝑎𝑎𝑖𝑖

2�
1
2�𝑥𝑥(𝑛𝑛 −𝐿𝐿𝑏𝑏

𝑙𝑙=1
𝑄𝑄𝑏𝑏−1
𝑘𝑘=0

𝐾𝐾𝑏𝑏−1
𝑘𝑘=0

𝑞𝑞 − 𝑙𝑙)𝑟𝑟𝑟𝑟𝑎𝑎𝑙𝑙
2 + 𝑥𝑥(𝑛𝑛 − 𝑞𝑞 − 𝑙𝑙)𝑖𝑖𝑖𝑖𝑎𝑎𝑖𝑖

2�
𝑘𝑘+1
2 + ∑ ∑ ∑ 𝑐𝑐𝑘𝑘𝑘𝑘𝑙𝑙𝑥𝑥(𝑛𝑛 − 𝑞𝑞)�𝑥𝑥(𝑛𝑛 −𝐿𝐿𝑐𝑐

𝑙𝑙=1
𝑄𝑄𝑐𝑐−1
𝑘𝑘=0

𝐾𝐾𝑐𝑐−1
𝑘𝑘=0

𝑞𝑞 + 𝑙𝑙)𝑟𝑟𝑟𝑟𝑎𝑎𝑙𝑙
2 + 𝑥𝑥(𝑛𝑛 − 𝑞𝑞 + 𝑙𝑙)𝑖𝑖𝑖𝑖𝑎𝑎𝑖𝑖

2�
1
2�𝑥𝑥(𝑛𝑛 − 𝑞𝑞 + 𝑙𝑙)𝑟𝑟𝑟𝑟𝑎𝑎𝑙𝑙

2 + 𝑥𝑥(𝑛𝑛 − 𝑞𝑞 + 𝑙𝑙)𝑖𝑖𝑖𝑖𝑎𝑎𝑖𝑖
2�

𝑘𝑘+1
2  

                                            (14) 

Using the binomial theorem below: 

𝑆𝑆𝑆𝑆𝑛𝑛𝑐𝑐𝑒𝑒 (𝑎𝑎 + 𝑏𝑏)ℎ = � �ℎ𝑖𝑖�𝑎𝑎
𝑖𝑖𝑏𝑏ℎ−𝑖𝑖

ℎ

𝑖𝑖=0
= � �ℎ𝑖𝑖�𝑏𝑏

𝑖𝑖𝑎𝑎ℎ−𝑖𝑖
ℎ

𝑖𝑖=0
           (15) 

Let ℎ =  𝑘𝑘
2
 for the main branch, ℎ =  𝑘𝑘+1

2
 for the leading and lagging branches, and 

𝑎𝑎 = 𝑥𝑥(𝑛𝑛 − 𝑞𝑞)𝑟𝑟𝑟𝑟𝑎𝑎𝑙𝑙
2 and 𝑏𝑏 = 𝑥𝑥(𝑛𝑛 − 𝑞𝑞)𝑖𝑖𝑖𝑖𝑎𝑎𝑖𝑖

2, 

The basic functions of GMP are restructured as: 

�𝑥𝑥(𝑛𝑛 − 𝑞𝑞)𝑟𝑟𝑟𝑟𝑎𝑎𝑙𝑙
2 + 𝑥𝑥(𝑛𝑛 − 𝑞𝑞)𝑖𝑖𝑖𝑖𝑎𝑎𝑖𝑖

2�
ℎ

= � �ℎ𝑖𝑖�
ℎ

𝑖𝑖=0
�𝑥𝑥(𝑛𝑛 − 𝑞𝑞)𝑟𝑟𝑟𝑟𝑎𝑎𝑙𝑙

2�
𝑖𝑖
�𝑥𝑥(𝑛𝑛 −

𝑞𝑞)𝑖𝑖𝑖𝑖𝑎𝑎𝑖𝑖
2�
ℎ−𝑖𝑖

                (16) 

�𝑥𝑥(𝑛𝑛 − 𝑞𝑞)𝑟𝑟𝑟𝑟𝑎𝑎𝑙𝑙
2 + 𝑥𝑥(𝑛𝑛 − 𝑞𝑞)𝑖𝑖𝑖𝑖𝑎𝑎𝑖𝑖

2�
ℎ

= � �ℎ𝑖𝑖�
ℎ

𝑖𝑖=0
�𝑥𝑥(𝑛𝑛 − 𝑞𝑞)𝑖𝑖𝑖𝑖𝑎𝑎𝑖𝑖

2�
𝑖𝑖
�𝑥𝑥(𝑛𝑛 −

𝑞𝑞)𝑟𝑟𝑟𝑟𝑎𝑎𝑙𝑙
2�
ℎ−𝑖𝑖

                (17) 

Reorganizing Eq. (16): 

� �ℎ𝑖𝑖�
ℎ

𝑖𝑖=0
�𝑥𝑥(𝑛𝑛 − 𝑞𝑞)𝑟𝑟𝑟𝑟𝑎𝑎𝑙𝑙

2�
𝑖𝑖
�𝑥𝑥(𝑛𝑛 − 𝑞𝑞)𝑖𝑖𝑖𝑖𝑎𝑎𝑖𝑖

2�
ℎ−𝑖𝑖

= � �ℎ𝑖𝑖�
ℎ

𝑖𝑖=0
�𝑥𝑥(𝑛𝑛 −

𝑞𝑞)𝑟𝑟𝑟𝑟𝑎𝑎𝑙𝑙
2𝑖𝑖� �

𝑥𝑥(𝑐𝑐−𝑘𝑘)𝑖𝑖𝑖𝑖𝑎𝑎𝑖𝑖
2ℎ

𝑥𝑥(𝑐𝑐−𝑘𝑘)𝑖𝑖𝑖𝑖𝑎𝑎𝑖𝑖
2𝑖𝑖 � =  𝑥𝑥(𝑛𝑛 − 𝑞𝑞)𝑖𝑖𝑖𝑖𝑎𝑎𝑖𝑖

2ℎ� �ℎ𝑖𝑖�
ℎ

𝑖𝑖=0
� 𝑥𝑥(𝑐𝑐−𝑘𝑘)𝑟𝑟𝑟𝑟𝑎𝑎𝑟𝑟
𝑥𝑥(𝑐𝑐−𝑘𝑘)𝑖𝑖𝑖𝑖𝑎𝑎𝑖𝑖

�
2𝑖𝑖

          (18) 

Reorganizing Eq. (17): 

� �ℎ𝑖𝑖�
ℎ

𝑖𝑖=0
�𝑥𝑥(𝑛𝑛 − 𝑞𝑞)𝑖𝑖𝑖𝑖𝑎𝑎𝑖𝑖

2�
𝑖𝑖
�𝑥𝑥(𝑛𝑛 − 𝑞𝑞)𝑟𝑟𝑟𝑟𝑎𝑎𝑙𝑙

2�
ℎ−𝑖𝑖

= � �ℎ𝑖𝑖�
ℎ

𝐼𝐼=0
�𝑥𝑥(𝑛𝑛 −

𝑞𝑞)𝑖𝑖𝑖𝑖𝑎𝑎𝑖𝑖
2𝑖𝑖� �𝑥𝑥(𝑐𝑐−𝑘𝑘)𝑟𝑟𝑟𝑟𝑎𝑎𝑟𝑟

2ℎ

𝑥𝑥(𝑐𝑐−𝑘𝑘)𝑟𝑟𝑟𝑟𝑎𝑎𝑟𝑟
2𝑖𝑖 � =  𝑥𝑥(𝑛𝑛 − 𝑞𝑞)𝑟𝑟𝑟𝑟𝑎𝑎𝑙𝑙

2ℎ� �ℎ𝑖𝑖�
ℎ

𝑖𝑖=0
�
𝑥𝑥(𝑐𝑐−𝑘𝑘)𝑖𝑖𝑖𝑖𝑎𝑎𝑖𝑖

𝑥𝑥(𝑐𝑐−𝑘𝑘)𝑟𝑟𝑟𝑟𝑎𝑎𝑟𝑟
�
2𝑖𝑖

          (19) 

Extracting the binomial basis function of Eq. (18) , and represented it as 

� �ℎ𝑖𝑖�
ℎ

𝑖𝑖=0
� 𝑥𝑥(𝑐𝑐−𝑘𝑘)𝑟𝑟𝑟𝑟𝑎𝑎𝑟𝑟
𝑥𝑥(𝑐𝑐−𝑘𝑘)𝑖𝑖𝑖𝑖𝑎𝑎𝑖𝑖

�
2𝑖𝑖

= � �ℎ𝑖𝑖�
ℎ

𝑖𝑖=0
𝑥𝑥2𝑖𝑖             (20) 

Similarly, the binomial basis function of Eq. (19) is extracted and represented as 

� �ℎ𝑖𝑖�
ℎ

𝑖𝑖=0
�
𝑥𝑥(𝑐𝑐−𝑘𝑘)𝑖𝑖𝑖𝑖𝑎𝑎𝑖𝑖

𝑥𝑥(𝑐𝑐−𝑘𝑘)𝑟𝑟𝑟𝑟𝑎𝑎𝑟𝑟
�
2𝑖𝑖

= � �ℎ𝑖𝑖�
ℎ

𝑖𝑖=0
𝑥𝑥2𝑖𝑖             (21) 

Let 
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𝑦𝑦 = � �ℎ𝑖𝑖�
ℎ

𝑖𝑖=0
𝑥𝑥2𝑖𝑖 ≈ 𝑥𝑥𝑗𝑗               (22) 

Equation (22) is then expanded and explored in Figs. 4-6. 

 
Fig. 4. Plot of Eq. (22), by letting h = 3. Notice that x6 is  

almost matching with the binomial basis function in Eq. (22). 

 
Fig. 5. Plot of Eq. (22), by letting h = 4. Notice that x8 is  

almost matching with the binomial basis function in Eq. (22). 
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Fig. 6. Plot of Eq. (22), by letting h = 5. Notice that x10 is  

almost matching with the binomial basis function in Eq. (22). 

Figures 4-6 are summarized in Table 1. 

Table 1. Summary of Figs. 3-5. 
h=3 (Fig. 4) h=4 (Fig. 5) h=5 (Fig. 6) 

𝑦𝑦 = � �3𝑖𝑖�
3

𝑖𝑖=0
𝑥𝑥2𝑖𝑖 ≈ 𝑥𝑥6  𝑦𝑦 = � �4𝑖𝑖�

4

𝑖𝑖=0
𝑥𝑥2𝑖𝑖 ≈ 𝑥𝑥8  𝑦𝑦 = � �5𝑖𝑖�

5

𝑖𝑖=0
𝑥𝑥2𝑖𝑖 ≈ 𝑥𝑥10  

Let 

𝑦𝑦 = � �ℎ𝑖𝑖�
ℎ

𝑖𝑖=0
𝑥𝑥2𝑖𝑖 ≈ 𝑥𝑥2ℎ               (23) 

Substituting Eq. (23) into Eq. (20) and Eq. (21), then to Eq. (18) and Eq. (19), 
and finally in Eq. (14), results in GMP with Binomial Reduction below: 

𝑦𝑦𝐺𝐺𝐺𝐺𝐺𝐺−𝐵𝐵𝐵𝐵(𝑛𝑛) = ∑ ∑ 𝑎𝑎𝑘𝑘𝑘𝑘𝑥𝑥(𝑛𝑛 − 𝑞𝑞)𝑥𝑥(𝑛𝑛 − 𝑞𝑞)𝑟𝑟𝑟𝑟𝑎𝑎𝑙𝑙
𝑘𝑘𝑄𝑄𝑎𝑎−1

𝑘𝑘=0
𝐾𝐾𝑎𝑎−1
𝑘𝑘=0 +

∑ ∑ ∑ 𝑏𝑏𝑘𝑘𝑘𝑘𝑙𝑙𝑥𝑥(𝑛𝑛 − 𝑞𝑞)𝑥𝑥(𝑛𝑛 − 𝑞𝑞 − 𝑙𝑙)𝑟𝑟𝑟𝑟𝑎𝑎𝑙𝑙
𝑘𝑘+1𝐿𝐿𝑏𝑏

𝑙𝑙=1
𝑄𝑄𝑏𝑏−1
𝑘𝑘=0

𝐾𝐾𝑏𝑏−1
𝑘𝑘=0 +

∑ ∑ ∑ 𝑐𝑐𝑘𝑘𝑘𝑘𝑙𝑙𝑥𝑥(𝑛𝑛 − 𝑞𝑞)𝑥𝑥(𝑛𝑛 − 𝑞𝑞 + 𝑙𝑙)𝑟𝑟𝑟𝑟𝑎𝑎𝑙𝑙
𝑘𝑘+1𝐿𝐿𝑐𝑐

𝑙𝑙=1
𝑄𝑄𝑐𝑐−1
𝑘𝑘=0

𝐾𝐾𝑐𝑐−1
𝑘𝑘=0             (24) 

𝒚𝒚𝑮𝑮𝑮𝑮𝑮𝑮−𝑩𝑩𝑩𝑩(𝒏𝒏) = ∑ ∑ 𝒂𝒂𝒌𝒌𝒌𝒌𝒙𝒙(𝒏𝒏 − 𝒌𝒌)𝒙𝒙(𝒏𝒏 − 𝒌𝒌)𝒊𝒊𝒊𝒊𝒂𝒂𝒊𝒊
𝒌𝒌𝑸𝑸𝒂𝒂−𝟏𝟏

𝒌𝒌=𝟎𝟎
𝑲𝑲𝒂𝒂−𝟏𝟏
𝒌𝒌=𝟎𝟎 +

∑ ∑ ∑ 𝒃𝒃𝒌𝒌𝒌𝒌𝒌𝒌𝒙𝒙(𝒏𝒏 − 𝒌𝒌)𝒙𝒙(𝒏𝒏 − 𝒌𝒌 − 𝒌𝒌)𝒊𝒊𝒊𝒊𝒂𝒂𝒊𝒊
𝒌𝒌+𝟏𝟏𝑳𝑳𝒃𝒃

𝒌𝒌=𝟏𝟏
𝑸𝑸𝒃𝒃−𝟏𝟏
𝒌𝒌=𝟎𝟎

𝑲𝑲𝒃𝒃−𝟏𝟏
𝒌𝒌=𝟎𝟎 +

∑ ∑ ∑ 𝒄𝒄𝒌𝒌𝒌𝒌𝒌𝒌𝒙𝒙(𝒏𝒏 − 𝒌𝒌)𝒙𝒙(𝒏𝒏 − 𝒌𝒌 + 𝒌𝒌)𝒊𝒊𝒊𝒊𝒂𝒂𝒊𝒊
𝒌𝒌+𝟏𝟏𝑳𝑳𝒄𝒄

𝒌𝒌=𝟏𝟏
𝑸𝑸𝒄𝒄−𝟏𝟏
𝒌𝒌=𝟎𝟎

𝑲𝑲𝒄𝒄−𝟏𝟏
𝒌𝒌=𝟎𝟎             (25) 

In the next sections, Eq. (25) will be used and addressed as GMP-BR [20] predicts 
relatively better linearization performance in Eq. (25) compared to Eq. (24).  
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The next section describes the performance metrics used to determine the 
improvement magnitude available after the treatment, with reference to the original 
untreated GMP algorithm. 

3.  Performance Metrics  
To measure performance, the common methodologies are presented in this 
section. The derivations of the measurement equations are done with respect to 
the target algorithm in his paper: the original untreated GMP, and then on the 
treated GMP: GMP-BR. The derivation steps are presented clearly, for the 
readers to recreate and evaluate.  

This section is divided into two main subsections: metrics to measure PA 
linearization performance, and metrics to measure model complexity for GMP and 
GMP-BR. 

3.1. Metrics to measure PA linearization performance  
The measurement of PA linearization performance has been done popularly using 
NMSE, where the error magnitude of the pre-distorted PA output signal is 
measured against the ideal output. The pre-distorted PA output signal which has 
a lower error magnitude against the ideal output has a relatively better 
linearization performance. 

The following subsection shows the general NMSE measurement equation, then 
dives deeper into deriving the respective NMSE measurement equations for the 
original GMP and the treated GMP (GMP-BR). 

3.1.1. Normalized mean square error (NMSE) 
NMSE is calculated for the pre-distorted signal output with reference to the ideal 
PA output, as shown in [21]: 

𝑁𝑁𝑁𝑁𝑆𝑆𝑁𝑁(𝑑𝑑𝑑𝑑) = 10 𝑙𝑙𝑙𝑙𝑙𝑙
∑ �𝑦𝑦𝑖𝑖𝑖𝑖𝑟𝑟𝑎𝑎𝑟𝑟(𝑐𝑐)−𝑦𝑦𝑝𝑝𝑖𝑖(𝑐𝑐)�𝑁𝑁
𝑛𝑛=1  2

∑ |𝑦𝑦𝑖𝑖𝑖𝑖𝑟𝑟𝑎𝑎𝑟𝑟(𝑐𝑐)|𝑁𝑁
𝑛𝑛=1  2

             (26) 

where 𝑦𝑦𝑖𝑖𝑜𝑜𝑟𝑟𝑎𝑎𝑙𝑙  is the ideal PA Output, and 𝑦𝑦𝑝𝑝𝑜𝑜 is the pre-distorted PA output. 

The calculated NMSE values is then compared among GMP-BR and GMP, 
where a lower magnitude of error indicates better linearization performance. 

The NMSE calculation for GMP as used in [21] is shown below: 

𝑁𝑁𝑁𝑁𝑆𝑆𝑁𝑁𝐺𝐺𝐺𝐺𝐺𝐺(𝑑𝑑𝑑𝑑) = 10 𝑙𝑙𝑙𝑙𝑙𝑙
∑ �𝑦𝑦𝑖𝑖𝑖𝑖𝑟𝑟𝑎𝑎𝑟𝑟(𝑐𝑐)−𝑦𝑦𝑝𝑝𝑖𝑖(𝐺𝐺𝐺𝐺𝐺𝐺)(𝑐𝑐)�𝑁𝑁
𝑛𝑛=1  2

∑ |𝑦𝑦𝑖𝑖𝑖𝑖𝑟𝑟𝑎𝑎𝑟𝑟(𝑐𝑐)|𝑁𝑁
𝑛𝑛=1  2

            (27) 

Similarly, the NMSE calculation for GMP-BR is shown below: 

𝑁𝑁𝑁𝑁𝑆𝑆𝑁𝑁𝐺𝐺𝐺𝐺𝐺𝐺−𝐵𝐵𝐵𝐵(𝑑𝑑𝑑𝑑) = 10 𝑙𝑙𝑙𝑙𝑙𝑙
∑ �𝑦𝑦𝑖𝑖𝑖𝑖𝑟𝑟𝑎𝑎𝑟𝑟(𝑐𝑐)−𝑦𝑦𝑝𝑝𝑖𝑖(𝐺𝐺𝐺𝐺𝐺𝐺−𝐵𝐵𝐵𝐵)(𝑐𝑐)�𝑁𝑁
𝑛𝑛=1  2

∑ |𝑦𝑦𝑖𝑖𝑖𝑖𝑟𝑟𝑎𝑎𝑟𝑟(𝑐𝑐)|𝑁𝑁
𝑛𝑛=1  2

           (28) 

The NMSE measurements for GMP is presented. The derivation of NMSE 
calculation for GMP-BR is now complete. These equations would be vital in the 
results section later, where they will be used to evaluate the linearization 
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performance of GMP and GMP-BR. The next section presents the metrics to 
measure model complexity for GMP and GMP-BR respectively. 

3.2. Metrics to measure model complexity  
To measure model complexity, the popular strategy used in the other DPD 
literatures is to compare algorithm model sizes through No. of model coefficients, 
which is used in [21]. On top of model sizes comparisons, this paper proposes 
multiplication operations as a benchmark for model operations complexity 
measurement, instead of the FLOP calculations, as different hardware compilers 
synthesize algorithms into different FLOP counts. This results in a non-
standardized benchmarking which is questionable if presented. Using 
multiplication operations as a raw mathematical comparison, adds credibility into 
the model operations complexity comparison. 

The following subsections shows the calculation of No. of model coefficients, 
and calculation of No. of multiplication operations, for both GMP and the treated 
GMP (GMP-BR). 

3.2.1. Calculation of No. of model coefficients in GMP and GMP-BR 
To evaluate model size and model complexity, one of the effective ways is to 
calculate the No. of model coefficients of the DPD algorithm, which is dependent on 
the model dimensions that indicates non-linearity order and memory depth. As 
presented in [21], the calculation of the model coefficients of GMP is shown below: 

𝑁𝑁𝑙𝑙. 𝑙𝑙𝑜𝑜 𝑁𝑁𝑙𝑙𝑑𝑑𝑒𝑒𝑙𝑙 𝐶𝐶𝑙𝑙𝑒𝑒𝑜𝑜𝑜𝑜𝑆𝑆𝑐𝑐𝑆𝑆𝑒𝑒𝑛𝑛𝑡𝑡𝐶𝐶 𝑆𝑆𝑛𝑛 𝐺𝐺𝑁𝑁𝐺𝐺 = 𝐾𝐾𝑎𝑎𝑄𝑄𝑎𝑎 + �(𝐾𝐾𝑏𝑏 − 1)(𝑄𝑄𝑏𝑏)(𝐿𝐿𝑏𝑏)� + �(𝐾𝐾𝑐𝑐 −
1)(𝑄𝑄𝑐𝑐)(𝐿𝐿𝑐𝑐)� = 𝑁𝑁𝑙𝑙. 𝑙𝑙𝑜𝑜 𝑁𝑁𝑙𝑙𝑑𝑑𝑒𝑒𝑙𝑙 𝐶𝐶𝑙𝑙𝑒𝑒𝑜𝑜𝑜𝑜𝑆𝑆𝑐𝑐𝑆𝑆𝑒𝑒𝑛𝑛𝑡𝑡𝐶𝐶 𝑆𝑆𝑛𝑛 𝐺𝐺𝑁𝑁𝐺𝐺 − 𝑑𝑑𝐵𝐵          (29) 

The calculation of model coefficients of GMP-BR would be identical of GMP 
as shown in Eq. (29). 

The model coefficients calculation equation will be used later in the results 
section, to indicate the model size of the DPD algorithms. The next subsection 
presents the calculation of No. of multiplications, to compare model operations 
complexity. 

3.2.2. Calculation of No. of multiplication operations in GMP 
To represent the model complexity of GMP in Eq. (13), the multiplication 
operations calculations are as follows: 
𝑁𝑁𝑙𝑙. 𝑙𝑙𝑜𝑜 𝑁𝑁𝑀𝑀𝑙𝑙𝑡𝑡𝑆𝑆𝑀𝑀𝑙𝑙𝑆𝑆𝑐𝑐𝑎𝑎𝑡𝑡𝑆𝑆𝑙𝑙𝑛𝑛 𝑂𝑂𝑀𝑀𝑒𝑒𝑂𝑂𝑎𝑎𝑡𝑡𝑆𝑆𝑙𝑙𝑛𝑛𝐶𝐶 𝑆𝑆𝑛𝑛 𝐺𝐺𝑁𝑁𝐺𝐺 

= ���1 + 3(𝑘𝑘)�
𝑄𝑄𝑎𝑎

𝑘𝑘=1

𝐾𝐾𝑎𝑎

𝑘𝑘=1

+ ����1 + 3(𝑘𝑘)�
𝐿𝐿𝑏𝑏

𝑙𝑙=1

𝑄𝑄𝑏𝑏

𝑘𝑘=1

𝐾𝐾𝑏𝑏

𝑘𝑘=1

+ ����1 + 3(𝑘𝑘)�
𝐿𝐿𝑐𝑐

𝑙𝑙=1

𝑄𝑄𝑐𝑐

𝑘𝑘=1

𝐾𝐾𝑐𝑐

𝑘𝑘=1

=
1
2
𝐾𝐾𝑎𝑎(3𝐾𝐾𝑎𝑎 + 5)𝑄𝑄𝑎𝑎 +

1
2
𝐾𝐾𝑏𝑏(3𝐾𝐾𝑏𝑏 + 5)𝑄𝑄𝑏𝑏𝐿𝐿𝑏𝑏 +

1
2
𝐾𝐾𝑐𝑐(3𝐾𝐾𝑐𝑐 + 5)𝑄𝑄𝑐𝑐𝐿𝐿𝑐𝑐 

                 (30) 

Since  

���1 + 3(𝑘𝑘)�
𝑄𝑄𝑎𝑎

𝑘𝑘=1

𝐾𝐾𝑎𝑎

𝑘𝑘=1

=
1
2
𝐾𝐾𝑎𝑎(3𝐾𝐾𝑎𝑎 + 5)𝑄𝑄𝑎𝑎 
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and 

����1 + 3(𝑘𝑘)�
𝐿𝐿𝑏𝑏

𝑙𝑙=1

𝑄𝑄𝑏𝑏

𝑘𝑘=1

𝐾𝐾𝑏𝑏

𝑘𝑘=1

=
1
2
𝐾𝐾𝑏𝑏(3𝐾𝐾𝑏𝑏 + 5)𝑄𝑄𝑏𝑏𝐿𝐿𝑏𝑏 

and  

����1 + 3(𝑘𝑘)�
𝐿𝐿𝑐𝑐

𝑙𝑙=1

𝑄𝑄𝑐𝑐

𝑘𝑘=1

𝐾𝐾𝑐𝑐

𝑘𝑘=1

=
1
2
𝐾𝐾𝑐𝑐(3𝐾𝐾𝑐𝑐 + 5)𝑄𝑄𝑐𝑐𝐿𝐿𝑐𝑐 

The equation above will be used to evaluate the model operations complexity 
of GMP. The No. of multiplication operations equation derived for GMP is a direct 
function of the model operations complexity in GMP, which will be compared with 
GMP-BR in the results section. The calculation of No. of multiplication operations 
in GMP-BR is presented in the next subsection. 

3.2.3. Calculation of No. of multiplication operations in GMP-BR 
Similarly, the multiplication operations calculations for GMP-BR in Eq. (25) are 
shown below: 
𝑁𝑁𝑙𝑙. 𝑙𝑙𝑜𝑜 𝑁𝑁𝑀𝑀𝑙𝑙𝑡𝑡𝑆𝑆𝑀𝑀𝑙𝑙𝑆𝑆𝑐𝑐𝑎𝑎𝑡𝑡𝑆𝑆𝑙𝑙𝑛𝑛 𝑂𝑂𝑀𝑀𝑒𝑒𝑂𝑂𝑎𝑎𝑡𝑡𝑆𝑆𝑙𝑙𝑛𝑛𝐶𝐶 𝑆𝑆𝑛𝑛 𝐺𝐺𝑁𝑁𝐺𝐺 − 𝑑𝑑𝐵𝐵 

= ���1 + 1(𝑘𝑘)�
𝑄𝑄𝑎𝑎

𝑘𝑘=1

𝐾𝐾𝑎𝑎

𝑘𝑘=1

+ ����1 + 1(𝑘𝑘 + 1)�
𝐿𝐿𝑏𝑏

𝑙𝑙=1

𝑄𝑄𝑏𝑏

𝑘𝑘=1

𝐾𝐾𝑏𝑏

𝑘𝑘=1

+����1 + 1(𝑘𝑘 + 1)�
𝐿𝐿𝑐𝑐

𝑙𝑙=1

𝑄𝑄𝑐𝑐

𝑘𝑘=1

𝐾𝐾𝑐𝑐

𝑘𝑘=1

=
1
2
𝐾𝐾𝑎𝑎(𝐾𝐾𝑎𝑎 + 3)𝑄𝑄𝑎𝑎 +

1
2
𝐾𝐾𝑏𝑏(𝐾𝐾𝑏𝑏 + 5)𝑄𝑄𝑏𝑏𝐿𝐿𝑏𝑏 +

1
2
𝐾𝐾𝑐𝑐(𝐾𝐾𝑐𝑐 + 5)𝑄𝑄𝑐𝑐𝐿𝐿𝑐𝑐 

                 (31) 

Since  

���1 + 1(𝑘𝑘)�
𝑄𝑄𝑎𝑎

𝑘𝑘=1

𝐾𝐾𝑎𝑎

𝑘𝑘=1

=
1
2
𝐾𝐾𝑎𝑎(𝐾𝐾𝑎𝑎 + 3)𝑄𝑄𝑎𝑎 

and 

����1 + 1(𝑘𝑘 + 1)�
𝐿𝐿𝑏𝑏

𝑙𝑙=1

𝑄𝑄𝑏𝑏

𝑘𝑘=1

𝐾𝐾𝑏𝑏

𝑘𝑘=1

=
1
2
𝐾𝐾𝑏𝑏(𝐾𝐾𝑏𝑏 + 5)𝑄𝑄𝑏𝑏𝐿𝐿𝑏𝑏 

and  

����1 + 1(𝑘𝑘 + 1)�
𝐿𝐿𝑐𝑐

𝑙𝑙=1

𝑄𝑄𝑐𝑐

𝑘𝑘=1

𝐾𝐾𝑐𝑐

𝑘𝑘=1

=
1
2
𝐾𝐾𝑐𝑐(𝐾𝐾𝑐𝑐 + 5)𝑄𝑄𝑐𝑐𝐿𝐿𝑐𝑐 

Now, both equations to calculate No. of multiplications operations are derived 
for GMP and GMP-BR. Both equations will be used later in the results section, 
where the model with the lower No. of multiplication operations will be 
highlighted. The model with a lower No. of multiplication operations will have 
lower model operations complexity. The next section presents the results 
obtained, which will include No. of model coefficients, No. of multiplication 
operations, and NMSE for both GMP and GMP-BR. Discussions and 
comparisons will be conducted between the original GMP, and the binomially 
reduced GMP (GMP-BR). 
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4.  Results and Discussion  
Table 2 shows the model dimensions fed into both GMP and GMP-BR, resulting 
in both models have identical model coefficients of 38. As mentioned in the 
previous section, No. of model coefficients are direct indicators of model sizes, as 
it is a direct function of the model dimensions of the algorithm. When both GMP 
and GMP-BR has the same No. of model coefficients of 38, this indicates that both 
simulation models have identical model size, which gives a common ground to 
conduct the comparison on model operations complexity. 

It is observed that GMP reported to have 368 multiplication operations, while 
GMP-BR requires only 226 multiplication operations. The difference of number of 
required multiplication operations between GMP and GMP-BR is at 142, which is 
a reduction of 38% against the required multiplication operations in the original 
untreated GMP algorithm. A reduction in the number of multiplications operations 
yields a reduction in model operations complexity, which contributes to savings in 
DPD operational cost and improvement in system efficiency.  

Both simulation produces almost similar NMSE values of -20.29 dB for GMP, 
and -19.41 dB for GMP-BR. The NMSE between GMP and GMP-BR is at a 
negligible difference of 0.88 dB, indicating that they both have almost matching 
linearization performance. This also signifies the success of the Binomial 
Reduction in GMP, where linearization performance is retained, with reduction in 
model operations complexity.  

Table 2. NMSE and model operations  
complexity comparison between GMP and GMP-BR. 

Method Model Dimensions 
No. of 
Model 

Coefficients 

No. of 
Multiplication 

Operations 

NMSE 
(dB) 

GMP Eq. 
(13) [15] 

Ka(1) Kb(2) Kc(3) 
Qa(2) Qb(4) Qc(6) 
Lb(3) Lc(5) 

38 368 -20.29 

GMP-BR 
Eq. (25) 

Ka(1) Kb(1) Kc(4) 
Qa(2) Qb(1) Qc(2) 
Lb(2) Lc(6) 

38 226 -19.41 

Figure 7 shows the number of Multiplication Operations for GMP and GMP-
BR, with respect to the number of Model Coefficients. With increasing model sizes, 
GMP-BR is shown to have lower model operations complexity compared to GMP. 

The binomially reduced algorithms could be compared with other optimization 
methods as well, to yield more meaningful comparison in terms of performance 
versus resources trade-off.  

Comparisons could be done on the effectiveness of various optimization 
methodologies, in axis of linearization performance against resources required. The 
common trend was improving performance at a cost of resources increment. The 
ideal methodology would be the ones that increases performance while reducing 
required resources. Figure 8 helps visualizes the comparison proposal. 
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Fig. 7. Number of multiplication operations for GMP and  

GMP-BR, with respect to the number of model coefficients. 

 
Fig. 8. Linearization performance against resources required quadrants for 

DPD algorithm optimization comparison. The ideal optimization methodology 
reduces resources required but improves linearization performance. 

5.  Conclusions 
Binomial Reduction on GMP (GMP-BR) is proven to be effective, where model 
operations complexity is reduced while retaining linearization performance. The 
number of multiplication operations required is reduced 38% from 368 in GMP to 
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226 in GMP-BR. The linearization performance evaluation is as presented in the 
NMSE comparison, where GMP-BR is at -19.41 dB and GMP is at -20.29 dB, at a 
minute difference of 0.88 dB. 

The results indicate that the binomially reduced GMP (GMP-BR) requires 
fewer multiplication operations compared to the original untreated method, the 
GMP. The savings could go as high as 38%, resulting in reduced number of 
multiplication operations, better energy efficiency in DPD systems and better 
resource utilization. All these savings are made possible, without compromising 
linearization performance.  

For future work, the Binomial Reduction could be applied at other MP-based 
algorithms. Some of the prominent MP based algorithms include the Complexity 
Reduced GMP (CR-GMP) and Augmented CR-GMP (ACR-GMP) in [21]. 
Leveraging from the success scenarios in this paper, the complexity reduction has 
a high success rate, resulting in a more efficient DPD system. The challenges of 
implementing Binomial Reduction on other MP-based algorithms, would be on 
having an accurate estimation on the range of reductions in model operations 
complexity. The range of reductions depended upon the algorithm design of the 
target algorithm. Estimation of the model operations complexity reduction could 
probably be another fork in the research roadmap. 

The Binomial Reduction of GMP paves new possibilities in the direction of 
DPD algorithm research. Instead of conveniently increasing model operations 
complexity to reach higher accuracy, this paper showcases that the alternative is 
possible, where linearization performance could be maintained, while attempting 
to reduce complexity in model operations. The findings in this paper on 38% 
complexity reduction with negligible 0.88 dB delta in NMSE, gives more 
confidence for other researchers in DPD algorithms to attempt model complexity 
reductions, instead of pursuing the conventional accuracy improvement through 
DPD algorithms augmentations. 
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