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Abstract 

Cancer, a pervasive global health issue, accounts for approximately 9 million deaths 

annually. The survival rate of cancer patients significantly improves with early 

detection and accurate staging. In this context, ribonucleic acid sequencing (RNA-

Seq) has become a powerful technique for measuring gene expression, thereby 

playing a crucial role in human disease research. On the other hand, there is a need 

for more efficient computational resources and tools for analysing RNA-Seq data. 

The RNA-Seq datasets known as the Cancer Genome Atlas (TCGA) were used in 

this research. In contrast, The following five types of cancer are included: Colon 

Adenocarcinoma, Prostate Adenocarcinoma, Renal Clear Cell Carcinoma, Lung 

Adenocarcinoma, and Breast Invasive Carcinoma. This research proposes a 

machine-learning technique based on the AdaBoost classifier for detecting, 

classifying, and predicting breast cancer. The findings of our proposed method 

exhibit remarkable performance, achieving a cross-validation accuracy of 99.77%, 

while the test and prediction accuracy were 100%. Critical parameters such as 

precision, recall, support, F1-score, and accuracy support this performance. 

Keywords: Adaboost, Breast tumours, Cancer detection, Cancer genome atlas,. 

Machine learning, RNA-sequence.  
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1.  Introduction 

Cancer is the second leading cause of death in many nations, following congestive 

heart failure disease [1]. Worldwide, the number of cancer patients has dramatically 

increased. According to the International Agency for Research on Cancer’s latest 

survey, the number of new cancer cases in 2020 reached 22.4 million, with 6.2 

million deaths. In countries with low and moderate incomes, cancer fatalities occur 

around 70%. Lack of exercise, obesity, tobacco use, vegetable intake, and soft fruit 

and alcohol use are five lifestyle variables that contribute to about one-third of 

cancer-related diseases. Cigarette smoking is the leading cause of cancer, 

accounting for around 43% of cancer-related deaths among smokers [2]. Cancer is 

characterised by uncontrolled cell growth and may occur in any body part. Cancer 

cells can grow and spread to other regions of the body. Cancer is the same, yet it 

alters and extends in different ways. It all starts when cells leave equilibrium, 

resulting in aberrant cell multiplication. As cells grow in the body, they obstruct 

normal physical activities. Cancer may affect many organs, including the colon, 

breast, lungs, blood, and large intestine. Some tumours have modest cell division, 

whereas others have rapid cell proliferation. In particular, colon cancer has emerged 

as one of the leading causes of cancer-related fatalities globally. However, in its 

early stages, this disease frequently goes unrecognised, making it difficult for 

patients to recognise their condition [1]. 

The TCGA is a significant milestone in genomics research, covering many topics, 

including protein expression, somatic transitions, copy number variation, gene 

expression, microRNA expression, and DNA methylation. Eleven thousand primary 

cancer patients' molecular profiles have been sequenced and described. The National 

Cancer Institute (NCI) and the National Human Genome Research Institute (NHGRI) 

established TCGA, a joint endeavour known as pilot research, in 2006. It focused 

specifically on three forms of cancer: lung, glioblastoma, and ovarian. Because of the 

substantial accomplishments made during the initial phase, NCI and NHGRI 

reauthorised TCGA for a full-scale development process in 2009. The TCGA 

collected data from over 11,000 cases spanning 33 tumour types over a decade, 

resulting in an extensive and vast dataset that tracks the molecular abnormalities in 

cancers [3, 4]. These massive datasets have created enormous prospects for 

classifying global abnormalities at the RNA, DNA, and protein levels [5]. 

Beyond the encouraging results that have been shown in the application of 

RNA-Seq in cancer diagnosis, still there are several obstacles to overcome, a 

significant challenge remains in the use of RNA-Seq for cancer classification. 

Another most challenging issue is the numerous genes in the data samples produce 

a high dimensionality of gene expression data [6]. Another difficult challenge 

might be in effective data management and analysis. Also, the findings' 

dependability, durability, and explainability raise additional concerns. More 

comprehensive and diverse datasets are urgently needed [6]. Additionally, the 

prolonged duration of the process remains a significant problem, due to the vast 

number of genes required for classifying human cells [7].  

These weaknesses may impair the models' functionality and restrict their 

applicability to an extensive variety of populations. Better computational resources 

and tools are also crucial for analysing RNA-Seq data [8]. As a consequence, there 

is a research gap that requires an investigation for more efficient and effective 

approaches for cancer classification employing RNA-Seq data. due to Machine 
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learning capability for extracting indefinable patterns from large datasets, it is 

considerably aids in the early diagnosis of breast cancer. This is particularly useful 

in genomics, where simultaneously measuring expression levels of thousands of 

genes is necessary [9, 10]. Machine learning algorithms can quickly analyse vast 

amounts of data more efficiently than traditional methods. Correspondingly, 

Machine learning models improve with increasing exposure to data. As the 

availability of genomic data expands, these models are anticipated to achieve 

increasing accuracy in cancer prediction [9, 11, 12]. 

The AdaBoost technique has garnered considerable attention as a machine 

learning classification method, primarily due to its minimal error rate. This 

characteristic renders it particularly suitable for datasets with low noise [13, 14]. 

As a boosting algorithm successor, it combines a group of weak classifiers to form 

a classifier model that achieves more robust prognosis results [13]. The AdaBoost 

algorithm has been successfully utilised in various scientific trials to solve problem 

classes in object recognition, including facial, visual, and signal processing 

systems. As a result, numerous researchers have effectively employed the 

AdaBoost algorithm in addressing challenges related to object identification, such 

as face detection in images and videos. 

In the present study, we employed the AdaBoost algorithm to classify publicly 

available data extracted from the TCGA Pan-Cancer dataset [15], segregating it 

into distinct tumour categories. Specifically, patient samples obtained from this 

comprehensive dataset were utilised. The primary objective of this investigation is 

to offer a broad outlook on the predictive determinants for patients diagnosed with 

early-stage cancer while also conducting a comparative analysis of the model's 

performance against precise calculations. 

2.  Related Work  

The healthcare domain stands out as an exceptionally suitable sector for the 

application of data science, owing to the abundance and relevance of available data 

types. Within hospitals, data flow constitutes a dynamic process primarily 

consisting of numerical values. Healthcare, as an open framework, provides fertile 

ground for the development of data analysis and machine learning research. Dhar 

posits that proficiency in computer science equips researchers with valuable 

insights and the ability to make data-driven predictions [16]. Numerous researchers 

have made available datasets about breast cancer, most of which possess a level of 

accuracy conducive to classification tasks [17, 18]. 

Deshpande et al.[19] discussed the immense popularity of RNA-seq due to the 

continuous efforts of the bioinformatics community to develop accurate and 

scalable computational tools to analyse the enormous amounts of transcriptomic 

data it produces. The study also highlights the potential of RNA-seq analysis in 

detecting novel exons or whole transcripts, assessing the expression of genes and 

alternative transcripts, and studying alternative splicing structures. However, One 

drawback could be that it lacks practical examples and case studies to demonstrate 

the use of these tools [19]. Carangelo et al. [20] described how single-cell RNA 

sequencing (scRNA-seq) has become a prevalent and effective method for 

biomedical research, enabling the profiling of the complete transcriptome of 

numerous individual cells and highlighting the diversity of intricate clinical 

samples. The most impressive aspect of this study is its thorough analysis of the 
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scRNA-seq industry, exploring the latest developments and potential applications 

of these techniques. However, a potential weakness could be that it does not provide 

practical examples or case studies to illustrate the application of these tool.  

Dindhoria et al. [8] discussed the significant innovations in next-generation 

sequencing techniques and bioinformatics tools that have impacted our 

understanding of RNA. It also explains various computational resources, tools, and 

bioinformatics analyses advancement for small and large non-coding RNAs. The 

strength of this study is its comprehensive overview of the computational 

approaches for non-coding RNA identification and annotation. However, a 

potential weakness could be that it does not discuss these tools' practical 

applications or implications in biological research. 

Hsu and Si [21] focused on categorising 33 cancer patients using RNA 

sequencing findings from the Cancer Genome Atlas (TCGA). Linear support vector 

machine (linear SVM), decision tree (DT), Artificial neural network (ANN), k-

nearest neighbours (KNN), and polynomial support vector machine (poly SVM) 

are the five machine learning techniques created. The experimental findings 

revealed that linear SVM achieved the most favourable results, demonstrating a 

classification accuracy of 95.8% within the research context. Lyu and Haque [22] 

proposed a novel approach to identifying potential biomarkers for each cancer type. 

Their model capitalised on a comprehensive understanding of 33 common cancer 

tumour categories, drawing upon the pan-cancer atlas. A visual neural network was 

used to recognise tumour morphologies and show the neural network's outputs, 

finding the genes with the most tremendous significance in tumour categorisation. 

Using high-dimensional RNA-Seq data, two-dimensional representations were 

created, allowing the categorisation of 33 distinct cancer tumour types. Using the 

Guided Grad Cam approach, a noticeable heat map for each gene was developed 

for each class. When using a train/test split, the suggested technique attained a 

staggering classification accuracy of 95.59%. 

O et al.[23] used blood-based gene expression signatures and machine-learning 

techniques to build an approximation strategy for classifying transcripts. RNA data 

from the Omnibus database of Gene Expression was used, together with machine 

learning methods written in R. The study demonstrated relatively robust discrimination 

of autism-specific conditions through cluster analysis. A support vector machine and a 

k-nearest neighbour classifier were employed to validate data outcomes, yielding high 

accuracy rates of 93.8%, 87.5%, and 100% for accuracy, specificity, and sensitivity, 

respectively. Qi et al. [24] shed light on the advantages and limitations of clustering and 

classification methods applied to recent advancements in integrating, reporting, and 

retrieving single-cell RNA sequencing (scRNA-seq) data. The study encompassed 

linear and non-linear approaches, employing dimensionality reduction techniques 

tailored to scRNA-seq data. 

Wenric and Shemirani [25] implemented enormous ensembles of RNA-Seq 

genes to construct a supervised learning approach for gene-collecting samples. 

Then, the random forest classification approach was used to produce arbitrary 

ranking measures and extracted feature rankings from 323 to 1210 cancer RNA 

sequencing datasets (which includes extreme pseudo-samples) using Variational 

Autoencoders with Regressors. The research found latent potential in supervised 

learning algorithms for gene selection in RNA-Seq training, highlighting the 

importance of gene selection strategies in genetic expression analyses. 
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Song et al. [26] focused their research on building a classification strategy for 

assessing cancer gene expression data. They used a hybrid recursive exclusion 

function with the Adaboost method to uncover relevant classification 

characteristics. The research revealed significant advancements. Tarek et al. [27] 

developed gene expression cancer classification data and presented an 

organisational group classification strategy that improved classification 

performance and balance. The results demonstrated that ensemble classifiers rely 

less on individuals from a single group. 

The AdaBoost approach has recently gained attention as a hybrid method for 

machine learning, given its low error rate that aligns well with low-noise data 

collections [13, 14]. It combines a series of weak classifiers to construct a model 

that achieves superior prediction outcomes, representing an advancement over 

boosting algorithms. Consequently, numerous research studies have successfully 

utilised the AdaBoost algorithm in various domains, including visual, video 

sequences, and signal processing systems, to address classification challenges in 

object detection. For example, Zhou and Wei [28] employed the AdaBoost 

algorithm to extract the top 20 core features from the Xm2VT Face Database, 

revealing a 54.23% reduction in calculation time. Furthermore, Sun et al. [29] 

utilised the AdaBoost algorithm to extract high-order features and weights from the 

UCI machine-learning repository. The results demonstrated that the integrated 

classifiers alone outperformed the HPWR classification methods in accuracy. 

However, only some studies have explored the application of AdaBoost and 

random forests for medical database prediction. 

In recent research, Gupta and Gupta [30] employed Artificial Neural Networks 

(ANN) as a prediction technique for mesothelioma, they had accomplished an 

outstanding accuracy rate of 96%. Their research focused on cancer classification 

using gene expression data, and they employed many techniques to enhance the 

classification process. They performed a logarithmic transformation on the gene 

expression data to preprocess it and make the classification procedure less 

complicated. The Bhattacharya distance metric was also used to select the study's 

most important genes. Gradient Descent and the Genetic Optimisation Algorithm 

(GOA) are used by the Deep Belief Neural Networks weight update mechanism to 

determine the average error. Testing on datasets related to leukaemia and colon 

cancer proved the effectiveness of the proposed cancer classification method. Using 

gene expression data, the classification method produced an impressive 0.9534 

accuracy rate and 0.9666 detection rate. These findings demonstrate the 

effectiveness of their method for accurately classifying and identifying cancer 

based on patterns of gene expression. 

3.  Method 

This section reviews the methodology used in this research. We explain the dataset 

that has been used and also pre-process the dataset to ensure its appropriateness for 

further analysis. This comprises techniques such as data normalisation, balance 

dataset classes and feature selection, all striving to improve the dataset's integrity 

and accuracy. Figure 1 enhances its readability and includes a detailed description 

of the text. The figure illustrates the workflow of our study, starting from the RNA-

Seq datasets from TCGA, through preprocessing and balancing of the dataset using 

SMOTE, to the application of the AdaBoost classifier for cancer detection, 



730       A. M. Aleesa et al. 

 
 
Journal of Engineering Science and Technology               April 2024, Vol. 19(2) 

 

classification, and prediction. Each step in the workflow is now clearly labelled and 

discussed in the corresponding sections of the paper. 

 

Fig. 1. System flowchart diagram. 

Afterwards, we present the developed model, which was created exclusively for 

the categorisation of breast tumours. We discuss the underlying algorithm and its 

essential components, emphasising the reason for its selection and its benefits in 

correctly classifying tumours. Detailed insights into the model architecture, 

including its training and testing methods, are offered to ensure the transparency 

and repeatability of the experimental technique. We want to provide a firm basis 

for the following research and assessment of tumour classification performance by 

describing the breast cancer data preparation procedure and providing the created 

classification model. The systematic approach employed in this phase establishes 

the resilience and trustworthiness of our research technique, allowing for proper 

interpretation and assessment of experimental outcomes. 

3.1. Dataset preprocessing  

The preprocessing of RNA-Seq datasets is a crucial step in ensuring the accuracy 

and reliability of downstream analyses. This process involves several key stages: 

3.1.1. RNA-seq cancer dataset 

The gene expression mechanism in the RNA-Seq dataset used in this study 

incorporates valuable information from The Cancer Genome Atlas (TCGA) Pan-

Cancer Analysts [31-33]. The dataset contains 801 samples (rows) from various 

types of cancer. Each instance is described by the expression levels of 20,532 genes 

(columns). The Irvine Machine Learning Repository provided this vast metadata, 

verifying its trustworthiness and accessibility for research purposes. 

The data variable contains the entire set of gene expression values from all 

20,532 genes. It specifically offers detailed information on the expression levels of 

each gene in the 801 samples. Furthermore, each of the 801 samples has associated 
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labels that designate particular cancer kinds. As shown in Table 1, these 

designations are expressed as strings corresponding to the corresponding cancer-

type acronyms. 

A required change is accomplished using a "Label Encoder" approach to 

incorporate these labels into later evaluation methods as shown in Table 1. This 

method guarantees that the cancer-type abbreviations have been converted into an 

appropriate numerical representation that can be effectively used in the dataset's 

evaluation and analysis. 

Table 1. Dataset details with encoded label. 

Abbreviations Encoded Label Dataset Instances 

BRCA 0 300 

COAD 1 78 

KIRC 2 146 

LUAD 3 141 

PRAD 4 136 

We enable detailed research and investigation of the complicated connections 

between gene expression patterns and cancer types by exploiting this large gene 

expression RNA-Seq cancer dataset and applying relevant pre-processing 

techniques. The particular consideration that we contribute to data quality, 

labelling, and encoding enhances the robustness and dependability of our future 

analyses, allowing for correct interpretations and meaningful conclusions on the 

relationship between gene expression patterns and cancer classification [34].  

3.1.2. Feature selection 

The feature selection technique used in this research is the feature importance 

method with the ExtraTree classifier used to calculate the Gini Importance for each 

feature. This ensemble learning technique aggregates the results of multiple de-

correlate   ecision trees collecte  in a “forest” to o t  t its classification res lt It 

is very similar to a Random Forest Classifier and only differs from it in constructing 

the decision trees in the forest [35-38]. 

The Gini Importance, also known as the mean decrease impurity, measures the 

total reduction of the criterion brought by that feature. It is also known as the total 

decrease in node impurity (weighted by the probability of reaching that node (which 

is approximated by the proportion of samples running that node)) averaged over all 

trees of the ensemble [38]. 

After calculating the Gini Importance for each feature, features were ranked 

based on their importance scores. For further analysis, a threshold has been set to 

select features with an importance level above 0.002. The number of 108 features 

has been chosen based on the point of features' importance. This approach reduces 

the dimensionality of the dataset, improving computational efficiency and 

potentially enhancing model performance by eliminating irrelevant or redundant 

features [34, 35]. 

3.1.3. Balancing a dataset 

Balancing a dataset is crucial in machine learning, especially when dealing with 

imbalanced datasets where one class significantly outnumbers the other [39]. This 
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imbalance can lead to a model that performs well on the majority class but poorly 

on the minority class. One popular technique to address this issue is the Synthetic 

Minority Oversampling Technique (SMOTE). SMOTE is an oversampling method 

that balances class distribution by randomly increasing minority class examples by 

replicating them. It works by selecting samples close to the feature space, drawing 

a line between the samples in the feature space and drawing a new sample at a point 

along that line [40]. 

Specifically, for each instance in the minority class, the k-nearest neighbours 

are k-nearest neighbours computed. Then, depending on the amount of 

oversampling required, one or more are selected to create synthetic examples. To 

make all dataset labels equal to the highest label, we used SMOTE to oversample 

the minority classes until they contained the same number of examples as the 

majority class, as shown in Fig. 2. This helps to establish a balanced dataset, which 

may boost the classifier's performance Howe er, it’s  ital to realise that       

might increase the performance of models on unbalanced datasets. Still, it  oesn’t 

guarantee optimum outcomes and should be regarded as one component within a 

broader arsenal of strategies for handling imbalanced data [40]. 

 

Fig. 2. Number of instances per class. 

3.1.4. Normalization 

Normalisation is a key step in data preprocessing, particularly when dealing with 

features that have different scales and units. The MinMax Scaler is a common 

normalisation method; it adjusts features by scaling each feature to a specified 

range, usually between 0 and 1. The formula gives this adjustment: 

Xstd = (X – Xmin(axis=0)) / (Xmax(axis=0) – Xmin(axis=0))              (1) 

Xscaled = Xstd * (max - min) + min                           (2) 

where min, max = feature range. This adjustment is often used instead of zero mean, 

unit variance scaling. Outliers do not influence the MinMax Scaler. Regardless, it 

linearly adjusts them down into a particular range, with the largest occurring data 

point being the maximum value and the smallest indicating the smallest value. It’s 

important to note that you should fit the MinMax Scaler using the training data and 

then apply the scaler to the testing data before the prediction. This ensures that the 

test set during training doesn't influence the model, which can lead to overfitting.  
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3.2. Machine learning technique 

The following sections will delve into the specifics of each machine learning 

technique used in this study, including their theoretical background, 

implementation details, and performance evaluation metrics. We will also discuss 

how these techniques are applied to our dataset and how they contribute to 

achieving our research objectives.  

3.2.1. AdaBoost classifier 

AdaBoost (Adaptive Boosting) is a machine-learning method used as a classifier—

additionally, AdaBoost is a well-established machine-learning algorithm known for 

its simplicity in design. AdaBoost combines multiple weak classifiers to form a 

robust classifier. Each weak classifier is simple to understand and interpret, making 

the overall model easier to comprehend. When used in conjunction with decision 

tree learning, information gathered at each stage of the AdaBoost algorithm about 

the relative 'hardness' of each training sample is fed into the tree growing algorithm, 

causing later trees to focus on mistakes made by previous trees (i.e., it adapts to the 

learner's weaknesses). Within the framework of the AdaBoost method, a collection 

of weak classifiers is carefully selected and merged to create a practical evaluation 

module for cancer data classification. Let  

H = (ℎ̃f )                  (3) 

represent the set of weak classifiers. The training dataset consists of feature-label 

pairs, denoted as [(x1, y1), (xi, yi), (xn, yn)], where xi represents the ith feature yi ∈ 

(+ , −1) indicates the label of the ith feature vector, indicating whether the feature 

vector exhibits normal or abnormal behaviour. The value of n represents the size of 

the dataset. Additionally, let (w1, wi, wn) represent the weights assigned to the 

samples, which signify their significance and serve as a statistical approximation 

of the sample distribution. This summarises the AdaBoost algorithm. 

Step (1) Initialize weights  

wi =  i =  ,…n                                                  (4) 

subject to  

𝛴𝑖
𝑛=1 wi(1) = 1                                 (5) 

Step (2) Iterate for  t =  ,…   .  

(a  Co   te the weighte  errors εj for each weak classifier hj 

εj =𝛴𝑖=1
𝑛 wi (t) I [yi ≠hj(xi)]                                                  (6) 

where I[γ] is an in icator f nction  efine  as:  

I[γ] ={0,      𝛾=𝐹𝑎𝑙𝑠𝑒
1,      𝛾=𝑇𝑟𝑢𝑒 

                                        (7) 

Select a poor h(t) classifier, which minimises weighted classification errors from 

the constructed weak classifier  

h t  = arg  in εj.                                            (8) 

hj ∈ 𝐻 

(b) Select the weak classifier h(t) with the minimum weighted classification error ε t . 
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(c  Co   te the weight α t  assigne  to the selecte  weak classifier 

α t  =
1

2
log(

1−𝜀(𝑡)

𝜀(𝑡)
)                                        (9) 

(d) Update the weights wi for the next iteration. Update the weights by 

wi(t + 1) = 
𝑤𝑖(𝑡) 𝑒𝑥𝑝 (−𝛼(𝑡)𝑦𝑖ℎ(𝑡)(𝑥𝑖))

𝑍(𝑡)
                                      (10) 

where the normalization factor Z(t) is given by:  

Z(t) =∑ 𝑤𝑘(𝑡)𝑛
𝑘=1  𝑒𝑥𝑝 (−𝛼(𝑡)𝑦𝑖ℎ(𝑡)(𝑥𝑘))                             (11) 

Step (3) The strong classifier H(x) is characterized by: 

H(x) = sign (∑ 𝛼(𝑡)ℎ(𝑡)(𝑥)𝑇
𝑡=1 )                                  (12) 

The AdaBoost-based approach identifies cancer by combining categorical and 

continuous variables into a robust classifier, ensuring a natural interaction between 

both feature types without any artificial transitions. This is a critical factor in the 

algorithm's effectiveness. Notably, the weighted error classification rate of the 

effective classifier improves as the number of iterations (T) in the AdaBoost 

method grows. When T approaches infinity, the process significantly reduces the 

weighted error rate while the error rates of the weak classifiers stay below 50% [41, 

42]. This strong convergence ensures the algorithm's dependability. Furthermore, 

we considerably reduce false rates related to standard samples and distinct cancer 

kinds by utilising decision stumps. The careful selection of weak classifiers 

guarantees their error rates are continually kept below 50%, leading to the 

algorithm's overall convergence. Rudin et al. [42] investigated the AdaBoost 

algorithm to grasp its convergence features fully. Furthermore, AdaBoost has fewer 

hyperparameters to tune, making it easier to implement than other complex models. 

This simplicity in implementation reduces the chances of errors and increases the 

efficiency of the model development process. Table 2 illustrates the critical 

parameters of AdaBoost. 

Table 2. Adaboost parameters. 

Parameter Type 

n_estimators 200 

learning_rate 0.1 

estimator None 

algorithm SAMME.R 

3.2.2. Model evaluation 

Our machine learning models' performance is measured using numerous measures, 

including Accuracy, Precision, Recall, and F1 Score. These metrics give a complete 

picture of the model's performance across several dimensions. 

Confusion Matrix: The confusion matrix is used to assess the effectiveness of the 

classification model. The confusion matrix is based on the number of accurate and 

wrong guesses, summarised using count values and split down by class [43, 44]. 

The requirements are as follows: 

False Negative (FN): When the classifier predicts the samples are false, but 

actually, it's true. 
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False Positive (FP): When the classifier predicts the samples are true, but actually, 

it's false. 

True Negative (TN): When the model classified the actual value, it is negative. 

True Positive (TP): When the model classified the actual value as True [45]. 

The formula for accuracy is: 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 (𝑇𝑃) + 𝑇𝑟𝑢𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠 (𝑇𝑁)

𝑡𝑜𝑡𝑎𝑙 𝑝𝑟𝑖𝑑𝑖𝑐𝑡𝑖𝑜𝑛 
                (13) 

• Precision: Precision metrics indicate how many accurately predicted instances 

were positive. These measures decide whether or not the model is dependable 

[36]. The formula for precision is: 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 (𝑇𝑃)

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 (𝑇𝑃)+𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 (𝐹𝑃)
                 (14) 

• Recall (Sensitivity): The number of really positive instances that might be 

reliably predicted using the model is represented by recall metrics [36]. The 

formula for the recall is: 

𝑅𝑒𝑐𝑎𝑙𝑙 =  
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 (𝑇𝑃)

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 (𝑇𝑃)+𝐹𝑎𝑙𝑠𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒 (𝐹𝑁)
            (15) 

• F1 Score:  F1 provides a combined concept of accuracy and recall measures. 

When we attempt to increase the precision value, the recall decreases and vice 

versa [36]. The formula for F1 Score is: 

𝐹1 𝑆𝑐𝑜𝑟𝑒 = 2 
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛∗𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙
                (16) 

Machine learning widely uses these metrics and provides a robust measure to 

evaluate model performance.  

3.2.3. Model validation 

The Repeated Stratified K-Fold function is a powerful tool in machine learning for 

model validation. Repeated stratified k-fold cross-validation was performed on the 

training dataset of the Adaboost model with 15 folds and one hundred repeats to 

reduce the overfitting problem of the Adaboost model, meaning one class has many 

more samples than the other [46]. Here’s a  rief ex lanation of the  ara eters 

yo ’ e  se : 

• n_splits=15: The dataset will be split into 15 folds or subsets. In each iteration, 14 

subsets will be used for training the model, and one subset will be used for testing. 

• n_repeats=100: the model training will be repeated 100 times. This helps 

obtain a less biased model, as each data point will be in the testing set 100 

times and in different folds. 

• random_state=30: This is used for initialising the internal random number 

generator, which will decide the data splitting into folds. Providing a fixed 

number (like 30 in this case) ensures that the function's output remains constant 

across multiple calls. 

This method is a great way to ensure that our model is validated thoroughly and 

can  ro i e relia le  erfor ance  etrics. It’s beneficial when working with 

datasets where certain classes dominate over others. 

https://medium.com/swlh/explaining-accuracy-precision-recall-and-f1-score-f29d370caaa8
https://medium.com/swlh/explaining-accuracy-precision-recall-and-f1-score-f29d370caaa8
https://medium.com/swlh/explaining-accuracy-precision-recall-and-f1-score-f29d370caaa8
https://medium.com/swlh/explaining-accuracy-precision-recall-and-f1-score-f29d370caaa8
https://medium.com/swlh/explaining-accuracy-precision-recall-and-f1-score-f29d370caaa8
https://gradiently.io/understanding%20accuracy,%20precision,%20recall%20and%20f1%20score
https://link.springer.com/article/10.1007/s10994-021-05964-1
https://link.springer.com/article/10.1007/s10994-021-05964-1
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4.  Result and Discussion  

Tumours are traditionally diagnosed based on anatomical and protein expression 

characteristics observed through histology and immunohistochemistry. However, 

these routine histopathological methods face challenges in detecting poorly 

differentiated cancers and do not reveal the underlying genetic aberrations or 

biological pathways involved. Although diagnostic classification methods based on 

gene expression signatures have been identified, a comprehensive classification 

system that leverages gene expression data for cancer diagnosis has been developed 

in this research. The genes contributing to this classification have been identified, 

leading to an insightful understanding of the molecular basis of cancer. 

Remarkably, our developed cancer classification system employs the AdaBoost 

algorithm with gene expression data extracted from RNA-Seq tumour cells. Further 

optimisation steps need to be explored to evaluate the effectiveness and success of 

this proposed design. 

In Fig. 3, the confusion matrix for the model's performance on an 80% training 

and 20% for testing and validation split is presented, a standard tool for evaluating 

the performance of a classification model. A visual representation of the 

relationship between a dataset's predicted and true labels provided by a confusion 

matrix. The diagonal entries in this matrix reflect the number of occurrences when 

the predicted label equals the real label, showing accurate predictions. In contrast, 

the off-diagonal components show erroneous predictions in the cases when the real 

and predicted labels do not match. Additionally, the diagonal values are high, 

indicating higher accuracy predictions. This shows that the classification model has 

 erfor e  well on the  ataset. Howe er, it isn’t easy to  ro i e a  ore  etaile  

interpretation without the actual confusion matrix or additional context. 

 

Fig. 3. Confusion matrix outcome for 80% training and 20% testing. 

Table 3 comprehensively evaluates the  o el’s  erfor ance an  other  etrics 

derived from the confusion matrix, such as precision, recall, F1-score and Support 

for each class in the  o el.  et’s  el e into each col  n.  he Class col  n 

represents the distinct categories the model attempts to predict. In this case, five 

classes are labelled 0, 1, 2, 3, and 4. Consequently, the Precision is the ratio of 

correctly predicted positive observations to the total predicted positives. High 
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precision relates to the low false positive rate. Here, all classes have a precision 

score of 1.00, indicating no false positives in the predictions for any class.  

Recall, also known as Sensitivity, is the ratio of correctly predicted positive 

observations to all observations in the actual class. The recall score of 1.00 for all 

classes suggests no false negatives in the predictions for any class. Although, The 

F1 Score is the weighted average of Precision and Recall. Therefore, this score 

takes both false positives and false negatives into account. An F1 Score of 1.00 for 

all classes indicates perfect precision and recall. Moreover, support is the number 

of actual class occurrences in the specified dataset. For instance, class 0 has a 

support of 64, meaning there are 64 instances of class 0 in the dataset. Accordingly, 

the model appears to have performed exceptionally well on the given dataset, 

achieving perfect precision, recall, and F1-score scores across all classes. We 

evaluate the efficacy of our constructed model with other models from the literature 

regarding classification accuracy. 

Table 3. Prediction results of our proposed model. 

Class Precision Recall F1-Score Support 

0 1.00 1.00 1.00 64 

1 1.00 1.00 1.00 59 

2 1.00 1.00 1.00 62 

3 1.00 1.00 1.00 62 

4 1.00 1.00 1.00 53 

A comparative analysis of eight different machine learning models provided in 

Table 4, the comparison of six proposed models in various related works, 

accompanied by the preprocessing techniques that been used in their research with 

their corresponding accuracies in prediction/classification. The table starting with 

study conducted by Ding and Peng [47] which used the Naïve Bayes model for 

classification and the Minimum Redundancy Maximum Relevance (MRMR) 

method for feature selection to achieve an accuracy of 97.30%. Correspondingly, 

the second study by Mahata and Mahata [48] have achieved an accuracy of 96.77% 

by using a feature ranking technique as feature selection and a complement naive 

Bayes classifier for classification. While the third study by Bhonde et al. [49] 

achieved an accuracy of 97.06% by using the RNN-LSTM model as classifier and 

Principal Component Analysis (PCA) technique for feature selection. Moreover, 

the fourth study by García-Díaz et al. [50] used a Genetic Grouping Algorithm for 

classification and achieved an accuracy of 98.81%, while they ha en’t  se  any 

type of preprocessing techniques on the dataset. Yet again, in the fifth investigation 

[51] achieved a 98% classification accuracy by using a decremental feature 

selection technique as feature selection and Random Forest model for 

classification. Comparably, the sixth study by Salman et al.[52] achieved 96.89% 

accuracy in classification by using the PCA approach for feature selection and a 

mixture of Convolutional Neural Network (CNN) and Bidirectional Long Short-

Term Memory (Bi-LSTM).  

Furthermore, in the seventh entry our proposed AdaBoost model, which 

achieved a 97.81% accuracy rate without the use of feature selection, Synthetic 

Minority Over-sampling Technique (SMOTE), or k-fold cross-validation. lastly, an 

additional enhancement to our proposed model is included in the eighth component 

in the table, the enhancement includes balancing the dataset using SMOTE, 
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selecting features with high feature importance, and then using k-fold cross-

validation with 15-folds, this model attained a 100% test accuracy. In addition, the 

significant increase in test accuracy that was demonstrated after the training stage 

highlights the effectiveness of our approach, with 100% prediction accuracy and 

99.77% cross-validation accuracy which is the highest accuracy been achieved. It 

is crucial to highlight that the proposed model contains recent advances in pre-

processing methods, optimisation techniques, and machine learning framework 

design led to significantly enhanced predictive accuracy. 

Table 4. Evaluation of the developed model. 

Proposed Models 
Feature 

selection 

Balancing 

dataset 

Used ML 

technique 
Acc.% 

1. Ding et al. (2005) [47]  MRMR NA Naïve Bayes 97.30 

2. Mahata and Mahata 

(2007) [48]  
Feature ranking NA 

Complement 

Naive Bayes 

Classifier 

96.77 

3. Bhonde et al. (2022) [49]  PCA NA RNN-LSTM 97.06 

4. García-Díaz et al. 

(2020) [50]  
NA NA 

Genetic 

Grouping 

Algorithm 

98.81 

5. Venkataramana et al. 

(2020) [51] 

Decremental 

feature 

selection 

algorithm 

NA Random forest 98 

6. Salman et al. (2018) 

[52] 
PCA NA 

(CNN)+(Bi-

LSTM) 
96.89 

7. Our proposed model 

without (SMOTE, 

feature selection, and 

k-fold cross-validation) 

NA NA Adaboost 97.81 

8. Our proposed model 

with (SMOTE, feature 

selection, and k-fold 

cross-validation) 

feature 

importance 

method 

SMOTE 
Adaboost+15 

fold-cross 
100 

In this research, we have built a model that indicates excellent accuracy and 

addresses crucial practical aspects for real-world use in clinical frameworks. Initially, 

our developed technique is intended to be cost-effective by leverages generally 

accessible data, avoiding the need for extra, expensive tests or procedures. Our 

methodology might lower the expenses associated with misdiagnosis or delayed 

diagnosis by enhancing diagnostic accuracy. Additionally, the model has been 

designed with ease of implementation in mind and can be integrated into existing 

diagnostic pipelines without requiring any specialised equipment or software. Finally, 

our model is designed to complement current diagnostic methods, not replace them, 

making it an additional tool to enhance accuracy and ease integration into clinical 

repetition. Consequently, one of the limitations of our research is that variations in 

sample size can affect the robustness of our model. A smaller sample size might limit 

the diversity of the data and potentially introduce bias. However, we acknowledge 

that this might still be a limitation, and future work could benefit from even larger 

and more diverse datasets.  
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Moreover, (TCGA) is a valuable resource, but it is known to have certain biases, 

such as the overrepresentation of specific population groups. Consequently, it is 

essential to note that these biases could potentially impact the generalizability of 

our model. So, we have used SMOTE, and the representation for all population 

groups becomes the same. Also, we used a different dataset to validate the 

generalizability of our model. Specifically, we used a diabetes prediction dataset. 

Using a separate dataset is crucial in machine learning models to ensure that the 

model does not just fit a specific dataset's quirks but also learns general patterns 

that can be applied to unseen data. The validation accuracy achieved on the diabetes 

prediction dataset was 96.72%, indicating that our model could accurately predict 

diabetes status for most of the instances in the validation set; this high validation 

accuracy suggests that our model generalises well to new data. Furthermore, the 

test accuracy of our model was 96.85%. The test accuracy measures the model's 

performance on a separate data set not seen during training or validation. Despite 

its simplicity, AdaBoost is robust and performs comparably or even better than 

more complex models. Its ability to combine multiple weak classifiers allows it to 

capture intricate patterns in the data, contributing to its strong performance. These 

aspects make our approach practical and accessible, particularly for practitioners 

without advanced machine-learning knowledge. The developed technique based on 

the AdaBoost algorithm and gene expression data shows encouraging results in 

correctly classifying cancer kinds. The complete investigation of gene expression 

profiles gives vital insights into the molecular basis of cancer, perhaps leading to 

new treatment techniques. 

5.  Conclusion  

Cancer is still a major global health problem which is responsible for approximately 

9 million deaths yearly, which is uncontrolled cell development and the potential 

for metastasis. In cancer research, the performance and accuracy improved with the 

introduction of RNA-Seq which has transformed genome analysis. This research 

proposed an exceptional approach for categorising five forms of cancer. 

The findings show that our proposed approach in categorising these various 

tumour kinds was attained a remarkable overall accuracy of 100%. In addition, our 

solution exceeds previously developed methods compared to similar studies on the 

accuracy of the five tumour classifications dataset. In a larger setting of cancer 

research our developed model can potentially contribute significantly and adjust 

treatment practices. This might lead to fresh insights into cancer's fundamental 

processes, perhaps opening up new research options. In addition, doctors may be 

able to begin therapy at an earlier stage of the illness in order to improve the 

condition of patients if an accurate and fast diagnoses been provided. An additional 

technologies like genetics and proteomics may give us a more comprehensive 

knowledge of cancer if been combined with our model. This might enable the 

development of medications that are adapted to the genetic composition and clinical 

features of each patient, boosting efficacy while reducing side effects. 

On the other hand, Deep neural networks are a promising avenue for future 

cancer classification research and development. These networks can potentially 

increase accuracy and provide more complicated genomic data processing. 

Although our proposed approach is just one piece of the jigsaw in the battle against 

cancer, we feel it has the potential to make a substantial contribution. By pushing 
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the limits of what machine learning can do in cancer research, we want to go one 

step closer to a future when cancer can be successfully controlled, if not cured.  
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