
Journal of Engineering Science and Technology
Vol. 19, No. 2 (2024) 447 - 455
© School of Engineering, Taylor’s University

447

IMPLEMENTATION OF GRAPHQL
IN THE DODO KIDS BROWSER APPLICATION

ADAM MUKHARIL BACHTIAR*,
DIAN DHARMAYANTI,DIMAS MIFTAHUL HUDA

Faculty of Engineering and Computer Science, Universitas Komputer Indonesia, Indonesia

*Corresponding Author: adam@email.unikom.ac.id

Abstract

This study aims to implement GraphQL to address the issues of under-fetching

and over-fetching in the Dodo application. Dodo Kids Browser (Dodo) is a cross-

platform application that serves as a parental control tool. This application assists

parents in managing and monitoring their children's online activities. The initial

testing revealed problems with the backend of the Dodo application, which

utilizes the REST API. Specifically, under-fetching and over-fetching were

identified as issues that negatively impact performance and the application

development process. After a comprehensive review of the existing literature,

implementing GraphQL can serve as a viable solution. This solution is primarily

due to the functions of GraphQL as a query language, enabling clients to precisely

determine the specific data requested from the server. A series of tests were

conducted to assess this implementation's effectiveness. These tests involved

comparing the required data attributes specified by the client with the actual data

attributes transmitted from the server. Additionally, tests were performed to

evaluate the performance of the previous and current systems. Upon analysing

the results of these tests, it was discovered that GraphQL effectively resolves the

issues of under-fetching and over-fetching that commonly arise in the Dodo Kids

Browser application.

Keywords: Indonesian sign language system, Learning media, Learning mode,

Question mode, Sign language.

448 A. M Bachtiar et al.

Journal of Engineering Science and Technology April 2024, Vol. 19(2)

1. Introduction

Dodo Kids Browser (Dodo) is an application that operates across multiple

platforms and serves as a parental control mechanism. This particular application

assists parents in effectively managing and monitoring their children's online

activities. Dodo encompasses three primary functionalities, namely Surfior,

Notifior, and Reportior. Currently, Dodo is compatible with the Windows Phone

platform and Browser Extensions [1]. In addition, Dodo is also being expanded to

include Desktop, Android, and iOS platforms to cater to a broader range of users.

An Application Programming Interface (API) has been developed to address these

requirements using REST technology [2].

REST is widely regarded as the most popular API technology due to its numerous

advantages. These advantages include the availability of multiple response types of

options, the relative ease of implementation, and the clear separation between client

and server [3]. However, it is essential to acknowledge that REST also has significant

drawbacks, namely under-fetching and over-fetching [4]. Under-fetching occurs

when the server receives a request from the client but cannot provide all the required

data, necessitating an additional request as a supplement. This occurrence can

increase latency, causing users to experience longer loading times for successful page

rendering. Additionally, the program's complexity is heightened as the client must

make multiple requests for a single data requirement.

The issue of under-fetching in REST can be resolved by incorporating an endpoint

that caters to the client's specific requirements. However, this course of action gives

rise to additional complications. As the application expands, the complexity of the

code escalates when multiple instances of code with similar functionalities are

written. Furthermore, the progress of the client-side development process is impeded

as it is postponed until the API completes its updating procedure [4].

In 2015, Facebook released an API technology named GraphQL [5]. GraphQL

is a query language that enables the client to specify the data that the server needs

to request. This adaptability is anticipated to address under-fetching and over-

fetching commonly encountered in REST. In this study, a GraphQL

implementation was conducted to mitigate the problems of under-fetching and

over-fetching in the Dodo application after the preliminary testing of the running

application. By incorporating GraphQL, it is expected that the performance of the

Dodo application can be enhanced.

2. Related Works

GraphQL is a query language for implementing web service architectures. The

language was internally developed at Facebook to solve several problems they

faced when using standard architectural styles, such as REST. In 2015, Facebook

open-sourced the definition and implementation of GraphQL. As a result, the

language started gaining momentum and is now supported by significant Web

APIs, including those provided by GitHub, Airbnb, Netflix, and Twitter. In

December 2018, Facebook transferred GraphQL to a non-profit organization called

GraphQL Foundation [6].

GraphQL is an alternative to REST-based applications. To understand

GraphQL's differences from REST, it should be noted that endpoints are the key

Implementation of GraphQL in the Dodo Kids Browser Application 449

Journal of Engineering Science and Technology April 2024, Vol. 19(2)

abstraction provided by REST. In REST, an endpoint is defined by a URL and a

list of parameters. For example, in GitHub’s REST API [6].

GraphQL can diminish the dimensions of JSON documents produced by REST-

based APIs by 94%, as measured by the number of fields contained. Additionally,

the reduction in size amounts to an impressive 99%, as determined by the number

of bytes. These measurements, representative of the median values, were obtained

through a comprehensive study. This study involved executing 24 queries, which

seven open-source clients performed. These clients were employed to interact with

two widely-used REST APIs, namely GitHub and arXiv. Furthermore, an

additional 14 queries were conducted by seven recent empirical research papers

presented at two distinct software engineering conferences [7].

3. Method

3.1. Analysis of case domain

At this stage, an analysis of the application backend is carried out thoroughly by

referring to the functionality of the application and the running web service API.

Then, under-fetching and over-fetching analysis is carried out to see how big the

problem will be solved by implementing GraphQL on the new system.

The application used as the case study is the Dodo Kids Browser (Dodo)

application, an original application developed by the developers from UNIKOM

CodeLabs. This application aims to help parents monitor and control their

children's activities so that they can browse the internet safely. The backend of the

running application is built using REST API technology and the Python

programming language with the Flask framework. The main features of the Dodo

application are as follows:

(i) Surfior: The Surfior feature is used to monitor children's browsing activities.

After a parent registers their child's device on the Dodo application, any

browsing and internet searches the child performs will be intercepted and

identified as to whether each activity is safe.

(ii) Notifior: If a child's browsing activity monitored by the Surfior feature is

indicated to be unsafe, such as accessing adult sites or searching with keywords

that are not suitable for their age, Dodo will send a notification to the parent's

device. The notification contains the URL of the site and a warning message

that the child is suspected of accessing a harmful site. Parents can choose

actions to allow or deny site access and send advice through Notifior's feature.

(iii) Reportior: All browsing and search activities from the registered child’s device

will be recorded in the Dodo application and presented on the dashboard. The

data can be used as evaluation material and one of the reference materials for

taking action for parents and children to enjoy a safer internet.

3.2. Web services API analysis

At this stage, a Web Services API analysis is carried out on the old system to find

all endpoints from the Dodo application backend and identify weaknesses in the

API. The analysis results are then compared with the application's needs

according to the functional endpoint. Adjustments will be made based on the

results of these comparisons.

450 A. M Bachtiar et al.

Journal of Engineering Science and Technology April 2024, Vol. 19(2)

Based on the results of the analysis, three functionalities still need to be

implemented, namely View Dashboard, View Search Reports, and Browse Safely.

These shortcomings certainly make the Dodo application unable to achieve its goals

perfectly. For this reason, a new endpoint design will be carried out to meet the

needs of functions that still need to be implemented and complement existing

endpoints, such as Update and Delete for the Manage function Child User Data.

This design is to be done in conjunction with the GraphQL implementation.

3.3. Under-fetching and over-fetching analysis

Under-fetching analysis assesses whether the server can meet the client's data needs

in one request. The problem of under-fetching is often found in endpoints with GET

methods in the REST API, so clients who consume the API need to make more

than one request to fulfil one data need.

Over-fetching analysis is carried out to assess whether the data sent from the

server is in accordance with the client's needs and nothing more. If there is an excess

of data, it is undoubtedly inefficient because the client downloads data that is not

needed. The large payload size will be a problem, especially on mobile platforms

that expect a responsive system with low latency. Like under-fetching, this over-

fetching problem is often found on endpoints with GET methods in the REST API.

Under-fetching and over-fetching testing compare the data requirements

outlined in the application interface design with the data transmitted from the server

through the endpoint responsible for fulfilling those requirements [8]. Instances of

under-fetching occur when the attributes of the data received from the server are

insufficient to fulfil the overall data attributes required by the client [9]. Conversely,

over-fetching occurs when the attributes of the data received from the server exceed

the necessary data attributes on the client [9]. This testing was performed on all

API endpoints of the GET type, with the data requirements visible in the application

interface design. A total of 12 endpoints were included in this test. An illustrative

example of a comparison performed is provided in Table 1.

The examinations determined that five endpoints, or approximately 42% of the

12, were identified by implementing the GET method. Conversely, over-fetching

scenarios were observed in all 12 endpoints, constituting 100% of the total

endpoints utilizing the GET method.

Table 1. Under-fetching and over-fetching analysis.

View

Name

Endpoint

Name

Required

data
Data sent

Under

fetching

 Over

fetching

Log

Activity -

Accessed

Web

Reportion –

Get by Id

Child

URL, date,

type

child, date, id,

status, web

description, web

title, web_url

Not Yes

Activity

Log –

Search

Reportion –

Get by Id

Child

keyword,

date, type

child, date, id,

status, web

description, web

title, web URL

Yes Yes

List of

Child

User Child

– Get All
name

id, name, parent

parent id,

parent_parent_na

me

Not Yes

Implementation of GraphQL in the Dodo Kids Browser Application 451

Journal of Engineering Science and Technology April 2024, Vol. 19(2)

3.4. GraphQL deployment analysis

The analysis of GraphQL applications involves the examination of current

application backends in order to ascertain the requirements of the application and

identify areas that require modifications for enhancing application performance.

Activities conducted during this process entail data analysis and the utilization of

web service APIs from the previous system, which will subsequently serve as a

point of reference for implementing GraphQL.

3.4.1. Data analysis

At this stage, the performance data analysis is conducted to ascertain the data

composition of the backend of the operational Dodo application and detect any

deficiencies in the data composition. The analysis process employs two forms of

data modelling. The Logical model investigates the interconnections between

tables, and the Physical model discerns the intricacies of each table, including the

type employed [10].

3.4.2. Designing a new web service API

A novel Application Programming Interface (API) Web Service is formulated at

this phase, incorporating GraphQL. The execution entails the creation of a

Schema, Query, and Mutation by referencing recent data derived from analysis

in the preceding phase [11, 12]. Schema is a data structure yielded via queries

and mutations [13]. Below is an illustration of an ongoing schema design process

in Table 2.

Table 2. Designing the parent device scheme.

No. Field Type Nullable Description

1 id Int Not Id for parent user's device data

2 name String Not
The name of the parent user's

device

A query corresponds to the GET method in the REST API, which retrieves data

from the server. The ensuing example delineates the process of formulating a query

and executing it.

Table 3. Query designing.

Name Param
Param

Type

Response

Type
Description

GetParents id Int [Parent]
Query to get parent

user data

GetParentDevices id, parentId Int, Int
[Parent

Device]

Query to get

parental device data

Get Childs id, parentId Int, Int [Child]
Query to get child

user data

Mutation is a technique utilized for executing data manipulation on the

server, with its equivalent operations in the REST API being POST, PUT,

PATCH, and DELETE [14]. Presented below is an illustration of a mutation

design that is implemented.

452 A. M Bachtiar et al.

Journal of Engineering Science and Technology April 2024, Vol. 19(2)

Table 4. Mutation design.

Name Param
Param

Type

Response

Type
Description

Register

Parent

name, email,

password

String!

String!

String!

AUTH

Payload

Mutatation to add

parent user data

Login Parent
email,

password

String!

String!

AUTH

Payload

Mutation to enter the

system as a parent

Update

Parent

email,

oldPassword,

newPassword

String!

String!

String!

String
Mutatation to change

parent user settings

4. Results

This section examines the execution of the system based on the analysis that has

been conducted. The execution procedure is categorized into three components,

namely database execution, GraphQL execution, and documentation.

4.1. Database implementation

The Database implementation uses PostgreSQL RBMS and Prisma as the (Object

Relational Model) ORM, using a Prisma that uses a Code-First approach. The

database can be modelled using the Code-First approach in the form of code and

becomes easily accessible in system programs [15]. In addition, implementing

Prisma also supports database migration, accelerating changes or creations that

occur in the database [16]. Here is the Prisma ORM implementation code for each

table from the previous analysis. The Prism ORM implementation for the Parent

table is shown in Fig. 1.

Fig. 1. Parent table ORM implementation.

4.2. GraphQL implementation

At this phase, an explanation is provided regarding the execution and specifics of each

schema, query, and mutation present in the novel framework [17]. The novel framework

is executed employing the TypeScript programming language and the Apollo Server

Framework, which aids in implementing a web server based on GraphQL.

The subsequent passage presents an illustration of a query implementation,

specifically the getParentDevices Query, derived from the preexisting design

outcomes (see Figs. 2 and 3).

Fig. 2. Query invocation getparentdevices.

Implementation of GraphQL in the Dodo Kids Browser Application 453

Journal of Engineering Science and Technology April 2024, Vol. 19(2)

Fig. 3. GetParentDevices query response.

The subsequent is an illustration of a query implementation, specifically the

getParentDevices Query predicated on the outcomes of the design that has been

previously conducted (see Figs. 4 and 5).

Fig. 4. RegisterParent mutation invocation.

Fig. 5. RegisterParent mutation response.

4.3. System documentation

Systems were constructed, deployed, and recorded using the GraphQL Playground

tool. Using the GraphQL Playground tools, all schemas, queries, and mutations that

have been constructed will be automatically recorded and made visible to the general

public. Additionally, developers can query the Query Page and observe the results

directly on the Response Page [18].

In order to prevent unauthorized access to data, the majority of queries and

mutations necessitate user authentication prior to making requests. It is possible to

request all queries and mutations at the same endpoint, namely GraphQL.

5. Discussion

Upon the culmination of the implementation process of the novel system, additional

examination is conducted to assess the triumph of this investigation. The

examinations conducted encompass under-fetching and over-fetching tests aimed at

scrutinizing the persistence of the predicament within the Dodo Kids Browser

application. The evaluation of the novel system is performed in a manner identical

to the analysis of under-fetching and over-fetching conducted on the previous

system. This process involves examining the display applications' data

requirements and the server's data transmitted to fulfil those requirements. Some

outcomes derived from these experiments can be found in Table 5.

454 A. M Bachtiar et al.

Journal of Engineering Science and Technology April 2024, Vol. 19(2)

Table 5. Under-fetching and over-fetching testing.

The test results show that the new system did not encounter any issues related

to under-fetching and over-fetching. This result demonstrates the successful

resolution of the problem through the implementation of GraphQL. GraphQL plays

a crucial role in website development by providing a flexible interface for data

retrieval, enabling developers to design requests tailored to the specific needs of

web pages. With GraphQL, optimizing data retrieval at the server level can enhance

the performance and responsiveness of the website, delivering a more efficient and

user-centric experience tailored to the requirements of each request [19].

6. Conclusion

From the outcomes of conducted tests on the novel system, the incorporation of

GraphQL can potentially address the dilemmas of under-fetching and over-fetching

in the Dodo Kids Browser application. In order to advance this study, the efficiency

of both REST-based and GraphQL-based systems can be assessed, thereby

allowing us to gauge the extent to which the resolution of under-fetching and over-

fetching complications in the Dodo application impacts its overall performance.

References

1. Bachtiar, A.M.; and Sukirman, I.I. (2015). Pembangunan perangkat lunak

extension browser pada aplikasi pengawasan penggunaan internet anak “Dodo

kids’ browser.”. Jurnal Ilmiah Komputer dan Informatika (KOMPUTA), 6(1),

45-50.

2. Roziqin, M.C.; Noor, M.S.; Iskandar, A.; and Yuliantika, A. (2023).

Implementation of REST API in web service system for medical resume

provision. International Journal of Healthcare and Information Technology,

1(1), 34-48.

3. Ogboada, J.G.; Anireh, V.I.E.; and Matthias, D. (2021). A model for

optimizing the runtime of GraphQL queries. International Journal of

Innovative Information System, 9(3), 11-39.

4. Chaves-Fraga, D.; Priyatna, F.; Alobaid, A.; and Corcho, O. (2020). Exploiting

declarative mapping rules for generating GraphQL servers with morph-

GraphQL. International Journal of Software Engineering and Knowledge

Engineering, 30(06), 785-803.

View

Name
Query Name

Required

data

Data

sent

Issues

found

Less/unnecess

ary data

Log

Activity -

Accessed

Web

getLogActivities
URL,

date, type

webUrl,

date,

category

None None

Activity

Log –

Search

getLogActivities
keyword,

date, type

keyword,

date,

category

None None

Notification getLogActivities
web_url,

status

webUrl,

category
None None

Implementation of GraphQL in the Dodo Kids Browser Application 455

Journal of Engineering Science and Technology April 2024, Vol. 19(2)

5. Mikuła, M.; and Dzieńkowski, M. (2020). Comparison of REST and GraphQL

web technology performance. Journal of Computer Sciences Institute, 16(1),

309-316.

6. Margański, P.; and Pańczyk, B. (2021). REST and GraphQL comparative

analysis. Journal of Computer Sciences Institute, 19(1), 89-94.

7. Quiña-Mera, A.; Fernandez, P.; García, J.M.; and Ruiz-Cortés, A. (2023).

GraphQL: A systematic mapping study. ACM Computing Surveys, 55(10), 1-35.

8. McGuinness, D.L.; and Da Silva, P.P. (2004). Explaining answers from the

semantic web: The inference web approach. Journal of Web Semantics, 1(4),

397-413.

9. Guha, S. (2020). A comparative study between graph-ql & restful services in

api management of stateless architectures. International Journal on Web

Service Computing (IJWSC), 11(2), 1-15.

10. Tinambunan, D.H.; Baehaqi, A.; Avrianto, R.P.; and Indrajit, R.E. (2023).

Microgen implementation for building online learning management system

with microservices and GraphQL generator approach. Jurnal Teknik

Informatika (JUTIF), 4(4), 967-976.

11. Qi, L.; Song, H.; Zhang, X.; Srivastava, G.; Xu, X.; and Yu, S. (2021).

Compatibility-aware web API recommendation for mashup creation via

textual description mining. ACM Transactions on Multimidia Computing

Communications and Applications, 17(1s), 1-19.

12. Chaves-Fraga, D.; Priyatna, F.; Alobaid, A.; and Corcho, O. (2020). Exploiting

declarative mapping rules for generating GraphQL servers with morph-

GraphQL. International Journal of Software Engineering and Knowledge

Engineering, 30(6), 785-803.

13. Silva, D.C.; Abreu, P.H.; Reis, L.P.; and Oliveira, E. (2017). Development of

flexible languages for scenario and team description in multirobot missions. AI

EDAM, 31(1), 69-86.

14. Tedyyana, A.; Ghazali, O.; and Purbo, O.W. (2023). A real-time hypertext

transfer protocol intrusion detection system on web server. TELKOMNIKA

(Telecommunication Computing Electronics and Control), 21(3), 566-573.

15. Panico, F.; Fleury, L.; Trojano, L.; and Rossetti, Y. (2021). Prism adaptation

in M1. Journal of Cognitive Neuroscience, 33(4), 563-573.

16. Xu, J.; Pan, L.; Zeng, Q.; Sun, W.; and Wan, W. (2023). Based on

TPUGRAPHS predicting model runtimes using graph neural networks.

Frontiers in Computing and Intelligent Systems, 6(1), 66-69.

17. Gaebel, J.; Keller, J.; Schneider, D.; Lindenmeyer, A.; Neumuth, T.; and Franke,

S. (2021). The digital twin: Modular model-based approach to personalized

medicine. Current Directions in Biomedical Engineering, 7(2), 223-226.

18. Purwanto, D.D.; Honggara, E.S.; Tjandra, S.; Ardhi, S.; and Tjoa, N. (2023).

Pengembangan aplikasi human resource management pada pt. HJMB

menggunakan JS, react native, dan graphQL. Journal of Information System,

Graphics, Hospitality and Technology, 5(2), 95-101.

19. Veach, A.M.; and Abualkibash, M. (2022). Phishing website detection using

several machine learning algorithms: A review paper. International Journal of

Informatics, Information System and Computer Engineering (INJIISCOM),

3(2), 219-230.

