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Abstract 

The problem of user association (UA) for a network slicing-enabled 

heterogeneous network deployed under an Open Radio Access Network (O-

RAN) architecture is investigated in this paper. Efficient UA is crucial for 

achieving load balance among network slices (NSs) and preventing overloading 

or underutilisation. UA is challenging in such networks because user equipment 

(UE) establishes wireless connectivity through NSs virtualised at the open radio 

units, creating a three-level association relationship. The UA problem is first 

formulated to maximise a generalised fairness utility function subject to 

constraints on NS resources and UE quality of service. To solve this 

computationally hard integer-programming problem, the constraints are 

converted into penalty functions that transform the constrained problem into an 

unconstrained one. A genetic algorithm (GA) is then designed to solve the 

unconstrained problem. Simulation results demonstrate that the proposed scheme 

outperforms baseline schemes in terms of load balance and quality of service 

fulfilment. Our work highlights the critical importance of efficient UA in 

heterogeneous networks with network slicing deployed under the O-RAN 

architecture and provides a promising framework for future research in this area. 

Keywords: Genetic algorithm, Heterogeneous networks, Network slicing, O-RAN, 

User association.  
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1.  Introduction 

The proliferation of mobile devices and the diverse range of use cases have led to 

the development of 5G networks. However, the deployment of 5G networks 

requires significant investment in infrastructure and equipment, which can lead to 

vendor lock-in, high costs, and a lack of interoperability between different vendors' 

equipment [1]. The Open Radio Access Network (O-RAN) architecture addresses 

these challenges, allowing for vendor flexibility and competition. O-RANs also 

enable the functional split into open radio units (O-RUs), open distributed units (O-

DUs), and open centralised units (O-CUs), enabling virtual network functions to be 

distributed across them for enhanced performance [2]. 

A key technique to support diverse use cases is network slicing, which enables 

multiple virtual networks to be created on a single physical network infrastructure, 

with each network slice (NS) designed to meet specific quality of service (QoS) 

requirements [3, 4]. However, deploying heterogeneous networks that include cells 

of different sizes and transmission power presents significant challenges in 

ensuring efficient user association, which is essential for maintaining QoS and load 

balance. To address this issue, user association (UA) schemes are designed to 

associate user equipment (UE) with the best base stations (BSs) in such a way that 

the loads among BSs are balanced and the QoS-requirements of UEs are satisfied. 

Kim et al. [5] proposed a theoretical framework addressing the UA problem in 

wireless networks. Their framework specifically targeted distributed load balancing 

in the context of spatially inhomogeneous traffic distributions. Ye et al. [6] 

proposed a UA scheme that achieves load balance in heterogeneous networks by 

solving a network-wide utility maximisation problem. Bayat et al. [7] proposed a 

distributed algorithm to identify optimal UE association and femto access point 

allocations. Zhang et al. [8] proposed a UA algorithm that balances energy 

consumption and traffic loads among heterogeneous BSs relying on renewable 

energy supply. Hirata et al. [9] proposed a greedy heuristic method to balance the 

load between macro cells and small cells. Liu et al. [10] and Ramazanali et al. [11] 

have presented an extensive review of state-of-the-art UA algorithms for 

heterogeneous networks, massive multiple-input multiple-output (MIMO), 

millimetre wave, and energy harvesting networks. Lai et al. [12] proposed a 

heuristic algorithm for joint cell selection and resource allocation scheme for LTE-

Advanced heterogeneous networks, while Zhao et al. [13] and Zhang et al. [14] 

proposed a deep learning-based UA scheme for heterogeneous networks. 

Recently, some authors have also investigated UA schemes for network-slicing 

enabled heterogeneous networks. Amine et al. [15] proposed a new network slicing 

architecture to facilitate UA in 5G ultra-dense heterogeneous networks. Ye et al. 

[16] proposed a joint UA and resource allocation scheme for load balancing in 

homogeneous networks with slicing capability. Jayanthi et al. [17] proposed an 

evolutionary approach for UA in a multi-tenant sliced heterogeneous network. 

However, they assumed that each NS is served only by one BS, which is not 

realistic, and co-channel interference has not been taken into account. Joda  et al. 

[18] proposed a deep reinforcement learning-based joint UA and centralised unit 

(CU)-distributed unit (DU) placement in O-RAN architecture by obtaining optimal 

placement of CU and DU network functions while jointly associating the users with 

radio units. However, they did not consider network slicing-enabled heterogeneous 

networks. Nizam et al. [19] proposed a UA scheme for network slicing enabled-



Evolutionary Network Slice Association Algorithm for Load Balancing in . . . . 337 

 
 
Journal of Engineering Science and Technology        February 2024, Vol. 19(1) 

 

hybrid wireless-wireline access networks (HWWANs). However, they did not 

consider the O-RAN architecture in their system model. 

To date, there is a lack of research on UA schemes for network slicing-enabled 

heterogeneous networks deployed under an O-RAN architecture. The UA problem 

in such networks is further exacerbated because UE establishes wireless 

connectivity through NSs that have been virtualised at the O-RUs, creating a three-

level association relationship. Efficient UA is crucial for achieving NS load balance 

and preventing overloading or underutilisation. More importantly, none of the 

above-mentioned UA schemes can be applied to such networks due to their inability 

to perform three-level associations between users, NSs, and O-RUs. 

In the current paper, we aim to propose a UA scheme for such networks with 

the aim of achieving fair load balance among NSs while satisfying the QoS 

requirements of the UEs. In particular, inspired by the ability of the genetic 

algorithm (GA) to handle complex and nonlinear optimisation problems, we 

develop a QoS-aware UA scheme based on the GA, which takes into account the 

limited user capacity of each NS and the spectral efficiency requirements of the 

UEs. The contributions of this paper are: 1) The problem of load balancing in a 

heterogeneous O-RAN enabled with network slicing is formulated as an 

optimisation problem that involves three-level associations. The objective is to 

maximise fairness among the NSs while satisfying constraints such as limited user 

capacity of each NS and the minimum spectral efficiency requirements of each UE. 

2) A GA-based UA algorithm is developed for solving the load balancing 

optimisation problem. In addition, the algorithm’s complexity is analysed. 

The rest of this paper is organised as follows. In the next section, we present a 

detailed explanation of our system model, which includes the problem formulation 

and the proposed UA scheme. Next, we delve into numerical simulations and 

performance analysis to provide a comprehensive evaluation of our proposed 

approach. In the last section, we present our conclusion, which summarises the key 

findings of our research and offers insights into potential areas for future exploration. 

2.  Methods 

This section presents the system model, problem formulation and proposed genetic 

algorithm for user association. 

2.1.  System model and problem formulation 

The network considered in this study is a sliced heterogeneous network comprising 

a macro O-RU and multiple small-cell O-RUs, as depicted in Fig. 1. Each NS is 

managed by a mobile virtual network operator (MVNO) and served by multiple 

BSs sharing their radio resource blocks (RBs). We assume the spectrum is split 

between the macro BS (MBS) and the small BSs (SBSs), resulting in a frequency 

reuse of half. Due to the deployment strategy of the respective MVNO, not all NSs 

provisioned through every O-RU. For example, NS 1 is accessible via the macro 

O-RU 1 but not the small-cell O-RU 2, while NS 2 is accessible via both O-RU 1 

and O-RU 2. The sets of O-RUs, UE, and NSs are denoted by K = {1, 2, ..., k, ..., 

|K|}, U = {1, 2, ..., u, ..., |U|}, and M = {1, 2, ..., m, ..., |M|}, respectively, and the 

association between each NS and each O-RU is described by  

𝑥𝑘𝑚 = {
1
0

if  NS m is accessible via BS k 
otherwise

                                                          (1) 
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Fig. 1. System model of a network slicing-enabled  

heterogeneous open radio access network. 

It is assumed that the association between O-RUs and NSs has been pre-

negotiated between the MVNOs and the infrastructural network provider, that is, 

the values of {xkm} are known a priori. Each NS m is identified by its processing 

capacity that can be provided to each of its associated UE in bits/second [20], 

denoted as Rm, and the number of UEs that can be supported by NS m is denoted as 

Vm. Next, we define the UA variable as  

 𝑎𝑘𝑚𝑢 = {
1
0

if user u associates with NS m via BS k 
otherwise

  (2) 

By taking into account the interference between O-RUs and assuming equal 

distribution of transmit power across all bandwidth in the associated NS, the 

achievable data rate of user u ∈ U over the system bandwidth if it associates with 

O-RU k ∈ K can be modelled as  

𝑅𝑘𝑢 = 𝐵log
2

(1 +
𝑃max,𝑘 𝐺𝑘𝑢

∑ 𝑃max,𝑖𝐺𝑖𝑢𝑖∈𝐾{𝑘} +𝑁0
)bits/s (3) 

where B is the system bandwidth; Pmax,k is the maximum transmit power of BS k; 

Gku is the channel gain between O-RU k and UE u, which is averaged over the UE 

association interval; N0 is the additive white Gaussian noise power; and 
∑ 𝑃max,𝑖𝐺𝑖𝑢𝑖∈𝐾{𝑘}  is the worst-case interference experienced by UE u if it associates 

with O-RU k. 

Next, we define the load of each NS as the ratio of the number of UEs associated 

with the NS to its maximum user capacity, that is 

𝜂𝑚 =
∑ ∑ 𝑥𝑚𝑘𝑎𝑘𝑚𝑢𝑢∈𝑈𝑘∈𝐾

𝑉𝑚
 (4) 

where ∑ ∑ 𝑥𝑚𝑘𝑎𝑘𝑚𝑢𝑢∈𝑈𝑘∈𝐾  is the number of UEs associated with NS m. In the 

current study, we aim to balance the loads among all the NSs in order to achieve a 

fair load distribution among NSs and efficient resource utilisation. To this end, we 

formulate the load balancing problem as a mathematical problem that maximises a 

generalised fairness utility function, namely α-fairness utility function with respect to 

the number of UE associated with the NSs in the sliced heterogeneous network. The 

maximisation can result in α-fair UA among the NSs and is expressed as follows: 
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max{𝑎𝑘𝑚𝑢} ∑ 𝑓𝛼(𝜂𝑚)𝑚∈𝑀 , (5) 

subject to 

∑ ∑ 𝑥𝑘𝑚𝑎𝑘𝑚𝑢𝑅𝑚𝑘∈𝐾𝑚∈𝑀 ≥ 𝑅min,𝑢  ∀𝑢 ∈ 𝑈 (5a) 

∑ ∑ 𝑥𝑘𝑚𝑎𝑘𝑚𝑢𝑅𝑘𝑢𝑘∈𝐾𝑚∈𝑀 ≥ 𝑅min,𝑢  ∀𝑢 ∈ 𝑈 (5b) 

∑ ∑ 𝑥𝑚𝑘𝑎𝑘𝑚𝑢𝑢∈𝑈𝑘∈𝐾 ≤ 𝑉𝑚  ∀𝑚 ∈ 𝑀 (5c) 

∑ ∑ 𝑥𝑘𝑚𝑎𝑘𝑚𝑢𝑘∈𝐾𝑚∈𝑀 ≤ 1  ∀𝑢 ∈  𝑈 (5d) 

𝑎𝑘𝑚𝑢 ∈ {0,1}   ∀𝑢 ∈  𝑈 , 𝑘 ∈ 𝐾, 𝑚 ∈ 𝑀 (5e) 

where 

𝑓𝛼(𝜂𝑚) = {
𝜂𝑚

1−𝛼

1−𝛼
𝛼 ≠ 1

log(𝜂𝑚) 𝛼 = 1
 (6) 

The fairness notion considered is indicated by α. For instance, proportional 

fairness corresponds to α = 1, delay-fairness to α = 2, and max-min fairness to α → 

∞ [21]. Constraint Eqs. (5a) and (5b) ensure that each UE u is associated with a NS 

m via O-RU k that can satisfy its minimum spectral efficiency requirement Rmin,u. 

Constraint Eq. (5c) ensures that the number of UE associated with NS m does not 

exceed its maximum user capacity Vm. Constraint Eq. (5d) ensures that each UE 

only associates with one NS through one O-RU at one time. Constraint Eq. (5e) 

specifies that akmu is a binary variable that can only take the values of zero or one. 

2.2.  Proposed genetic algorithm for user association 

It is observed that the optimisation problem in Eq. (5) is a 0-1 integer programming 

problem, which is computationally NP-hard [22]. To solve this problem, we 

leverage the GA, which draws inspiration from biological evolution and natural 

selection, and it has been shown to be effective in solving unconstrained large-scale 

0-1 integer programming problems. However, Eq. (5) presents a complex 

optimisation problem with multiple constraints, making it unsuitable for direct 

optimisation using a GA. To address this issue, we employ a transformation 

technique to convert the constrained optimisation problem in Eq. (5) into an 

unconstrained one. To this end, we leverage the penalty function approach to 

convert constraints Eqs. (5a) - (5d) into penalty functions. Firstly, we convert Eqs. 

(5a) and (5b) as follows: 

∑ ∑ 𝑥𝑘𝑚𝑎𝑘𝑚𝑢
𝑅𝑚

𝐵𝑘∈𝐾𝑚∈𝑀 ≥
𝑅min,𝑢 

𝐵
 ∀𝑢 ∈ 𝑈 (7a) 

∑ ∑ 𝑥𝑘𝑚𝑎𝑘𝑚𝑢𝑆𝑘𝑢𝑘∈𝐾𝑚∈𝑀 ≥
𝑅min,𝑢

𝐵
  ∀𝑢 ∈ 𝑈 (7b) 

where 𝑆𝑘𝑢 = log
2

(1 +
𝑃max,𝑘 𝐺𝑘𝑢

∑ 𝑃max,𝑖𝐺𝑖𝑢𝑖∈𝐾{𝑘} +𝑁0
). Then, we convert Eqs. (5c), (5d), (7a) 

and (7b) into a single penalty function: 

𝑝(𝑎𝑘𝑚𝑢) = 〈𝑝1(𝑎𝑘𝑚𝑢 )〉 + 〈𝑝2(𝑎𝑘𝑚𝑢 )〉 + 〈𝑝3(𝑎𝑘𝑚𝑢  )〉 + 〈𝑝4(𝑎𝑘𝑚𝑢  )〉 (8) 

where 

𝑝1(𝑎𝑘𝑚𝑢) = 𝑤1 (∑ (∑ ∑ 𝑥𝑘𝑚𝑎𝑘𝑚𝑢
𝑅𝑚

𝐵𝑘∈𝐾𝑚∈𝑀 ) − 𝑢∈𝑈
𝑅min,𝑢

𝐵
), (8a) 

𝑝2(𝑎𝑘𝑚𝑢) = 𝑤2 (∑ (∑ ∑ 𝑎𝑘𝑚𝑢𝑥𝑘𝑚𝑆𝑘𝑢𝑘∈𝐾𝑚∈𝑀 ) − 𝑢∈𝑈
𝑅min,𝑢

𝐵
), (8b) 

𝑝3(𝑎𝑘𝑚𝑢) = 𝑤3(∑ (𝑉𝑚 − ∑ ∑ 𝑥𝑘𝑚𝑎𝑘𝑚𝑢𝑢∈𝑈𝑘∈𝐾 ) 𝑚∈𝑀 ), (8c) 
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𝑝4(𝑎𝑘𝑚𝑢) = 𝑤4(∑ (1 − ∑ ∑ 𝑥𝑘𝑚𝑎𝑘𝑚𝑢𝑢∈𝑈𝑘∈𝐾 ) 𝑢∈𝑈 ), (8d) 

with 

〈𝑝𝑖(𝑎𝑘𝑚𝑢)〉 = {
𝑝𝑖(𝑎𝑘𝑚𝑢) 𝑝𝑖(𝑎𝑘𝑚𝑢) < 0

0 𝑝𝑖(𝑎𝑘𝑚𝑢) ≥ 0
, 𝑖 = 1, 2, 3, 4 (9) 

where w1, w2, w3 and w4 are the penalty constants. Equations (8a), (8b), (8c) and 

(8d) correspond to the constraints in Eqs. (5a), (5b), (5c) and (5d) respectively with 

an additional piecewise constraint expressed in Eq. (9). Then, we transform the 

problem in Eq. (5) by incorporating the penalty functions in Eq. (8) into the 

objective function of Eq. (5) [23], forming the following unconstrained problem: 

max{𝑎𝑘𝑚𝑢}𝜙(𝑎𝑘𝑚𝑢) = 𝑓(𝑎𝑘𝑚𝑢) + 𝑝(𝑎𝑘𝑚𝑢) (10) 

where 

𝑓(𝑎𝑘𝑚𝑢) = ∑ 𝑓𝛼 (
∑ ∑ 𝑥𝑚𝑘𝑎𝑘𝑚𝑢𝑢∈𝑈𝑘∈𝐾

𝑉𝑚
)𝑚∈𝑀  (11) 

It is worth noting that when any of the constraints in Eqs. (5a) - (5d) are violated, 

the value of p(akmu) will be a very large negative value, which will act as a ‘penalise’ 

term, limiting the maximisation of the problem.  

Next, with the unconstrained problem in Eq. (10), we can apply the GA to solve the 

optimisation problem. The GA optimisation process starts with generating an initial 

population of candidate solutions. This population is composed of the UA matrix, akmu, 

which is defined in Eq. (2). This matrix can be perceived as a 3-dimensional array with 

dimensions [k × m × u]. In order to utilise the GA, it is necessary to convert this 3-

dimensional array UA matrix akmu into a 1-dimensional array 𝑣𝑎𝑘𝑚𝑢
, also known as 

'chromosomes', through as a vectorisation process outlined in Eq. (12). The overall 

objective function can then be incorporated into Eq. (13).  

𝑣𝑎𝑘𝑚𝑢
= 𝑣𝑒𝑐𝑡𝑜𝑟𝑖𝑧𝑎𝑡𝑖𝑜𝑛 (𝑎𝑘𝑚𝑢) (12) 

𝜙(𝑣𝑎𝑘𝑚𝑢
) = 𝑓(𝑣𝑎𝑘𝑚𝑢

) + 𝑝(𝑣𝑎𝑘𝑚𝑢
) (13) 

Once the fitness of each individual has been evaluated using the objective 

function, a selection process is employed to choose parents for reproduction. This 

process utilises the roulette wheel selection method, which considers the fitness of 

each individual in the population as a probability for selection. The selection 

pressure, β, is used to balance the exploration and exploitation in the search process. 

In the GA, new individuals are created by applying genetic operators such as 

crossover and mutation, and their fitness is evaluated using the objective function.  

We consider a hybrid approach of crossover which combines single-point, 

double-point, and uniform crossover. The probability of selected parents exchanging 

genetic information is controlled by a crossover probability (pC), while the probability 

of a gene in a chromosome being randomly altered is determined by a mutation 

probability (µ). Additionally, to further enhance the diversity of the population, new 

individuals are created using different random generators from random number 

generators [24], with the number of such individuals denoted by nP. However, all new 

individuals must comply with the constraints for optimal results. 

Additionally, a replacement strategy is used to substitute the old population with 

newly generated individuals obtained through genetic operators. The newly created 

individuals are then assessed for their fitness. This iterative process continues until 

a stopping criterion is satisfied, such as reaching the maximum number of iterations 
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denoted by TMax. In summary, the implementation of a GA comprises the following 

steps: defining the optimisation problem, initialising the population, evaluating 

fitness, selecting parents, reproducing new individuals via reproduction and 

mutation, introducing random individuals, evaluating their fitness, replacing the old 

population, and iterating the process until the stopping criterion is satisfied. Table 

1 describes the flow of the proposed GA-based UA scheme.  

Table 1. Proposed GA-based UA scheme. 

Step 1: Set the GA parameters such as the number of individuals in a population (nPop), maximum 
number of iterations (TMax), probability of crossover (pC), probability of mutation (µ), pressure of 

selection (β), number of new individuals (nP) and penalty constants (w1, w2, w3 and w4). 

Step 2: Randomly generate a population of UA matrix with a dimension of [k × m × u]. Vectorise 
each UA matrix to form a chromosome as in Eq. (11). 

Step 3: Compute the fitness score using Eq. (12), and then rank the chromosomes based on their 

fitness scores.  
Step 4: Generate new individuals with the same dimension as in Step 2 and use the Roulette 

Selection Wheel method to choose an even number of chromosomes with high fitness values. 

Step 5: Perform GA operations of crossover and mutation.  

Step 6: Evaluate the fitness score of each candidate solution. Then sort the population and trim it by 

removing the least fit individuals. 
Step 7: If the iteration number is equal to the predefined maximum number of iterations TMax, 

terminate the algorithm; otherwise go to Step 4 with the new candidate solutions. 

The proposed GA-based UA scheme can be implemented in a centralised 

manner at the O-CU as shown in Fig. 2, which is responsible for managing and 

controlling the radio access network (RAN) functions. In particular, the O-CU 

provides a centralised control plane that manages and coordinates all the network 

functions and resources, including radio resource management, mobility 

management, and security management [25]. As a result, it plays a critical role in 

optimising network performance by providing the central intelligence and decision-

making capability necessary to ensure efficient network operation. The 

computational complexity of the proposed GA-based UA scheme is 

O(TMaxnPop|K||M||U|), which is reasonable and can be handled efficiently by 

modern computing resources.  

The overall flowchart of the proposed GA-based UA scheme is shown in Fig. 

2. Initially, the O-CU analyses the network environment, including the number of 

BSs, NSs, and UEs, as given in Table 2. The O-CU then communicates with the O-

DUs and O-RUs to collect the channel gain information for individual UE. Next, 

the proposed UA scheme is implemented using the network state to optimise UA 

based on the predefined criteria. To begin, a population of UA matrices is 

generated, each of which is vectorised to create a one-dimensional chromosome, 

and its fitness is computed. The algorithm then uses a Roulette Wheel Selection 

method to select high-fitness matrices as parents for the hybrid crossover function, 

which includes single and double-point crossover and uniform crossover. 

Occasionally, mutation is applied to increase the genetic variability of the 

population. The fitness of the new individuals is evaluated, and the population is 

trimmed for a constant number of individuals in each generation. This iterative 

process is repeated until the maximum number of generations is achieved, and the 

O-CU produces an optimised UA matrix that can adapt to the changing network 

conditions. With the GA-based UA scheme, the O-CU ensures efficient utilisation 

of network resources and provides high-quality service to users. 
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Fig. 2. Flowchart of the proposed GA-based UA scheme. 

3.  Results and Discussion 

The performance of the proposed GA-based UA scheme is evaluated for a 

heterogeneous O-RAN that utilises a bandwidth of B = 20 MHz which is split 

into two spectra of 10 MHz each, with one for the macro O-RU and the other for 

the 19 small-cell O-RUs. All the small-cell O-RUs are deployed within the 

coverage area of the macro-cell O-RU, which has a radius of 500 m. We assume 

the deployment of three NSs or MVNOs, with R1 = 15 Mbits/s, R2 = 20 Mbits/s, 

and R3 = 25 Mbits/s, respectively. The assumed bit rates are aligned with 

enhanced mobile broadband (eMBB) data rate requirements, specifically 

addressing live video streaming bit rate needs. We refer to Table 3 in reference 

[26] for the ranges of the bit rate requirements. The maximum user capacity of 

each NS, Vm, is set to 50. We randomly assign a unique combination of NSs to 

each O-DU, such that some O-DUs may have NSs 1 and 2, while others may have 

NSs 1 and 3, and so on. 

We assume that the macro-cell O-RU and small-cell O-RUs transmit signals 

at power levels of 43 dBm and 30 dBm, respectively, by following reference [20]. 

We use distinct path loss models for macro and small cells. Adopting 3GPP-

standardized path loss models from [27], the path loss for the macro cell is 140.7 

+ 36.7 log(d) dB, while for small cells, it is 128.1 + 37.6 log(d) dB, where d 

denotes the distance in kilometers between the O-RU and the UEs. The total 

number of UEs is systematically varied at values of 50, 100, 150, and 200. It is 

assumed that the UEs are randomly distributed within the coverage area of the 

macro-cell O-RU. Additionally, we consider a communication channel with zero-

mean unit-variance Rayleigh fading, and zero-mean log-normal shadowing with 

a 10 dB standard deviation. The noise power spectral density is set to -174 

dBm/Hz, while the antenna gain, and noise figure are set to 5 dB and 9 dB, 
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respectively. The minimum user spectral efficiency requirement Rmin is set 

randomly between 1 bit/s/Hz to 2.5 bits/s/Hz. The alpha value α for the fairness 

utility function is set to 1 for proportional fairness. The simulation parameters 

used are summarised in Table 2.  

Table 2. Simulation parameters used to assess the  

performance of the proposed GA-based UA scheme. 

Parameters Value 

Macro cell radius 500 m 

System bandwidth 
20 MHz (10 MHz - Macro,  

10 MHz - Small) 

Antenna gain 5 dB 
MBS transmit power 43 dBm 

SBS transmit power 25 dBm 

Noise power density -174 dBm/Hz 
Noise figure 9 dB 

MBS pathloss model 140.7 + 36.7 log(d) dB 

SBS pathloss model 128.1 + 37.6 log(d) dB 

Shadowing standard deviation 10 dB 

Number of BSs 20 (1 - Macro, 19 - Small) 

Number of MVNOs 3 
Number of NSs 3 

Number of UEs 50 - 200 

Guaranteed data rate by NSs, Rm 15 Mbits/s, 20 Mbits/s, 25 Mbits/s 
Maximum user capacity of each NS, Vm 50 

Minimum user spectral efficiency requirement, Rmin 1 bit/s/Hz - 2.5 bits/s/Hz 
Alpha value, α 1 

Macro cell radius 500 m 

For the proposed GA scheme, the settings for the GA are user-defined and are 

determined experimentally through extensive testing of various configurations. We 

set the maximum number of iterations TMax to 500, and the population size nPop to 

20 chromosomes. Each chromosome represents a randomised UA matrix that has 

been converted. To ensure that each matrix satisfies the association constraint 

linking the NS with the O-RU, we randomise the UA matrices while ensuring 

compliance with this constraint. The GA operates with a crossover probability pC 

of 1, a mutation probability µ of 0.02, and a selection pressure β of 1. In order to 

promote greater genetic diversity within the population, we propose the addition of 

two new individuals to the GA. By introducing these new individuals, denoted by 

nP = 2, we aim to increase the genetic variability of the population and facilitate 

more thorough exploration of the solution space. This can help to prevent premature 

convergence and improve the algorithm's ability to identify high-quality solutions. 

Additionally, we prioritise the cost function over other penalty functions during the 

calculation by setting the penalty constants w1, w2, w3 and w4 to 0.001. The 

parameters of the GA are listed in Table 3.  

The performance of the proposed GA is first evaluated by analysing its 

convergence behaviour for different total numbers of UEs, as shown in Fig. 3. The 

results demonstrate the effectiveness of the proposed GA in solving the UA 

optimisation problem, as evidenced by the improvement of the cost function with 

each iteration. Additionally, the best cost value increases with the number of UEs, 

underscoring the significance of fairness and connectivity. The cost function is more 

significant when a higher the number of UEs can connect and meet the maximum 

allowable connections of the NS. Nevertheless, as the number of UEs increases, the 

improvement in the best cost values becomes less significant. This suggests that the 
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network capacity constraints for larger UEs numbers are more stringent, with the 

network resources being adequate for only approximately 200 UEs. 

Table 3. GA parameters. 

Parameters Value 

Maximum number of iterations, TMax 500  

Population size, nPop 20 
Crossover probability, pC 1 

Mutation probability, µ 0.02 

Selection pressure, β 1 
Number of new individuals, nP 2 

Penalty constants, w 0.001 

 

Fig. 3. Convergence curves of the proposed GA-based UA scheme. 

To benchmark the performance of our proposed scheme, we compare it with 

two baseline schemes. The first baseline scheme, denoted as BSNS, associates the 

UE with the O-RUs based on the maximum signal-to-interference-plus-noise ratio 

(SINR) and then assigns the UE to a NS available in the associated O-RU. The 

second baseline scheme, denoted as NSBS, assigns the UEs to a NS that can fulfil 

the target data rates, and then associates it with an O-RU where the associated NS 

is accessible based on the maximum SINR. To ensure the reliability of our results, 

we conducted 100 simulations and computed the average of the obtained results.  

Figure 4 shows the percentage of QoS-satisfied UEs, namely UEs whose 

minimum spectral efficiency requirements are met. It can be calculated as 𝛾 =
∑ ∑ ∑ 𝑥𝑚𝑘𝑎𝑘𝑚𝑢𝑢∈𝑈𝑘∈𝐾𝑚∈𝑀

𝑈
× 100%, subject to the constraints in Eqs. (5a) to (5e). 

Figure 4 demonstrates that the proposed scheme outperforms both the BSNS and 

NSBS schemes by almost 15% to 30%. 

This can be attributed to the algorithm's capability to explore a larger search space, 

resulting in better solutions compared to the baseline counterparts. Notably, the 

proposed scheme exhibits exceptional performance due to its consideration of various 

factors during the UA process, including the spectral efficiency requirements of UEs 

and the user capacity of NSs. The proposed scheme results in an increased number of 

UEs meeting their QoS requirements and leads to improved load balancing, making 

it a highly effective solution in comparison to the baseline schemes.  
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Fig. 4. Performance comparison in terms of QoS-satisfied UEs. 

To assess the load balance of the network, Fig. 5 compares the performance of 

the three schemes using Jain’s fairness index (FI) [28], which is defined as 

FI =  
(∑ 𝜂𝑚𝑚𝜖𝑀 )2

|𝑀| ∑ (𝜂𝑚)2
𝑚𝜖𝑀

                                                                                                     (14) 

The results indicate that the proposed scheme outperforms both baseline 

schemes in terms of the FI. This demonstrates the effectiveness of the proposed 

scheme in achieving load balancing by maximising the fairness utility function in 

Eq. (5), leading to a more equitable distribution of services among the NSs and 

contributing to a better-balanced network.  

 

Fig. 5. Performance comparison in terms of Jain’s fairness index. 

Finally, we investigate the performance of the three schemes in terms of average 

spectral efficiency and sum spectral efficiency, which can be calculated 

respectively, as follows:  

avg = 
 ∑ ∑ ∑ 𝑥𝑘𝑚𝑎𝑘𝑚𝑢𝑢∈𝑈 𝑅𝑘∈𝐾𝑚∈𝑀

𝑈
                                       (15) 
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sum = ∑ ∑ ∑ 𝑥𝑘𝑚𝑎𝑘𝑚𝑢𝑢∈𝑈 𝑅𝑘∈𝐾𝑚∈𝑀  (16) 

where 

𝑅 = {

𝑅𝑚

𝐵
,

𝑅𝑚

𝐵
< 𝑆𝑘𝑢

𝑆𝑘𝑢 ,
𝑅𝑚

𝐵
> 𝑆𝑘𝑢

 (17) 

Figure 6 shows performance of the three schemes in terms of average spectral 

efficiency. The results show that the proposed algorithm, which prioritises 

proportional fairness and minimises the number of dropped UE, maintains a high 

average spectral efficiency for the UEs while successfully achieving its objective. 

The proposed algorithm outperforms the baseline schemes by achieving a slightly 

higher average spectral efficiency.  

Figure 7 compares the sum spectral efficiency performance among the three 

schemes, representing the aggregate spectral efficiency of all UEs. The comparison 

reveals that the proposed algorithm outperforms the baseline schemes. In particular, the 

baseline schemes have been found to underperform and are inefficient compared to the 

proposed UA algorithm. This is because the baseline schemes focus on maximising 

signal strength and do not prioritise load balancing, leading to an uneven distribution of 

traffic and the possibility of congestion in specific areas of the network. 

 

Fig. 6. Performance comparison in terms of average spectral efficiency. 

 

Fig. 7. Performance comparison in terms of sum spectral efficiency. 
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Additionally, the baseline schemes do not take into account the varying needs 

different user types, resulting in an inability to provide adequate QoS for all users. 

In contrast, the proposed UA algorithm takes into account both load balancing and 

QoS requirements, leading to a more even distribution of traffic and overall 

improvement in network performance. By using the proposed algorithm, network 

operators can achieve better resource allocation and management, leading to a more 

efficient and effective network that meets the needs of all users. This algorithm 

prioritises the optimisation of network performance and the enhancement of user 

experience by considering both QoS requirements and the load balancing of BSs. 

By leveraging network slicing capabilities, the proposed algorithm facilitates a 

more efficient utilisation of resources and a better allocation of traffic, resulting in 

a significant increase in network capacity and user satisfaction overall. 

4.  Conclusion 

In this paper, we addressed the critical issue of UA for a network slicing-enabled 

heterogeneous network deployed under the O-RAN architecture. The three-level 

association relationship between the UEs, NSs, and O-RUs in network slicing-

enabled heterogeneous networks makes UA challenging. To solve this complex 

problem, we formulated the UA problem to achieve proportional-fair load 

balancing among NSs and solved it using a GA. Simulation result demonstrated 

that our proposed scheme outperforms two baseline approaches in terms of fairness 

and QoS-fulfilment as well as maintains high average spectral efficiency provided 

to the UEs. Future work could consider further optimisation of the proposed UA 

approach for improved energy-efficiency as well as its extension to more complex 

network scenarios. 
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Nomenclatures 
akmu UA variable 

B System bandwidth, Hz 

FI Fairness index 

Gku Channel gain between O-RU k and UE u, dB 

k Index number of the BS 

m Index number of the NS 

N0 Additive white Gaussian noise power 

nP Number of new individuals 

nPop Population size used by the GA 

O() Big O notation 

pC Crossover probability used by the GA 

Pmax,k Maximum transmit power of BS k, dBm 

Rku Achievable data rate of UE u when it associates with O-RU k, b/s 

Rm Data rate guaranteed by NS m, Mb/s 

Rmin Minimum user spectral efficiency requirement, b/s/Hz 

Sku Achievable spectral efficiency of UE u if it associates with O-RU 

k, b/s/Hz 

TMax Maximum number of iterations of the GA in each generation 
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u Index number of the UE 

Vm Maximum user capacity of each NS 

xkm Association variable between NS m and O-RU k 
 

Greek Symbols 

 Alpha value (type of fairness) 

 Selection pressure 

µ Mutation probability 

𝛾 Percentage of QoS-satisfied UEs 

avg Average spectral efficiency, b/s/Hz 

ηm Load of NS m as the ratio of the number of UEs associated with 

NS m to its maximum user capacity 

sum Sum spectral efficiency, b/s/Hz 
 

Abbreviations 

BS Base station 

GA Genetic algorithm 

MBS Macro base station 

MVNO Mobile virtual network operator 

NS Network slice 

O-CU Open centralised unit 

O-DU Open distributed unit 

O-RAN Open radio access network 

O-RU Open radio unit 

SBS Small base station 

UA User association 

UE User equipment 
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