
Journal of Engineering Science and Technology
Vol. 18, No. 1 (2023) 187 - 209
© School of Engineering, Taylor’s University

187

EMPIRICAL ANALYSIS OF THRESHOLD
VALUES FOR RANK-BASED FILTER FEATURE SELECTION

METHODS IN SOFTWARE DEFECT PREDICTION

MALEK ALMOMANI1, ABDULLATEEF o. BALOGUN2,3,*,
SHUIB BASRI2, ABDULLAHI A. IMAM4, AMMAR K. ALAZZAWI5,

VICTOR E. ADEYEMO6, GANESH KUMAR2

1Department of Software Engineering and Information Systems,

The World Islamic Sciences and Education University, Amman, Jordan
2Department of Computer and Information Sciences, Universiti Teknologi PETRONAS,

Bandar Seri Iskandar, 32610, Perak, Malaysia
3Department of Computer Science, University of Ilorin, 240003, Ilorin, Nigeria

 4School of Digital Science, Jalan Tungku Link, Gadong, Universiti Brunei Darussalam,

Brunei Darussalam, BE1410
5Computer Techniques Engineering, Al-Mustaqbal University College, Babylon, Iraq

6School of Built Environment, Engineering and Computing, Leeds Beckett University,

Headingley Campus, Leeds LS6 3QS, United Kingdom

*Corresponding Author: abdullateef_16005851@utp.edu.my

Abstract

Many studies have been conducted to explore the influence of feature selection

(FS) techniques on software defect prediction (SDP) models, with conflicting

empirical results and research outcomes. These reported contradictions may be

due to relative research limitations, such as types of FS techniques or the size of

defect datasets. In the instance of FS methods, it was discovered that selecting a

suitable threshold value for picking top-ranked features in FS methods might be

a cause of discrepancies in reported findings on SDP. Investigating and assessing

the impacts of threshold values for the rank-based filter (RBF) FS techniques, as

done in this work, becomes critical. 4 RBF (Chi-square, Correlation, Information

Gain, and Relief) methods with 5 thresholds (No FS, log2N, Top20%, Top 30%,

and Top 50%) values were investigated with 2 prediction models (Naïve Bayes

(NB) and Decision Tree (DT)) on 25 software defects datasets. The experimented

RBF techniques were selected based on distinct computational features to assure

heterogeneity, as well as their performance in the current SDP research.

Developed SDP models were evaluated using accuracy and area under the curve

(AUC) values while the Scott-KnottESD rank statistical test technique was

employed to rank experimented RBF methods with applied threshold values.

According to the experimental results, selecting the Top20% of top-ranked

features in RBF methods had a greater (positive) impact on the prediction

performances of SDP models than other applied threshold values. Furthermore,

the outcomes of this study corroborate previous research on the capacity of FS

techniques to improve the prediction efficacies of SDP models. Consequently,

we urge that FS methods be utilized in SDP tasks. In the case of RBF methods,

the Top20% threshold value should be used since it outperforms de-factor log2N

and other threshold values. Moreover, findings from this study can be a guide to

subsequent SDP studies and further strengthen the tenacity of experimental

findings and conclusions in SDP studies.

Keywords: Feature selection, Rank-based filter, Software defect prediction.

mailto:abdullateef_16005851@utp.edu.my

188 M. Almomani et al.

Journal of Engineering Science and Technology February 2023, Vol. 18(1)

1. Introduction

Software defect prediction (SDP) is the usage of machine learning (ML) techniques

for the identification of defective modules or components in a software system

before software release. SDP takes place before the software release and is based

on the elemental characteristics of software systems. These fundamental properties

of a software system are measurable features of software systems that can be

investigated and evaluated to determine the degree of software systems’ reliability

and quality [1-3]. In other words, these features such as software coupling,

cohesion, and complexity are processed by ML techniques for knowledge

derivation. The derived knowledge can be used for software process improvements.

The goal of software engineers is to build high-quality and reliable software using

available resources [4-7]. Hence, SDP is pivotal in the software development life

cycle (SDLC).

Nowadays, developed software systems are inherently voluminous and

convoluted with multiple modules or components that are interrelated. Moreover,

these software systems regularly undergo scheduled updates and upgrades for

additional features as specified in software requirements or end-users’ requests.

Hence, ascertaining the fundamental properties of such software systems often

engage numerous software metrics with distinct assessments [8-10]. Consequently,

this result in a high-dimensionality problem as the amount of generated software

features is customarily enormous and somewhat redundant [7, 11, 12]. Some

studies in SDP have investigated and reported that the unsatisfactory prediction

performances of SDP models can be attributed to the presence of redundant and

irrelevant software metrics. Besides, high-dimensional data often incur high

computational complexity and memory wastage. Hence, the selection of the

relevant set of software metrics is of utmost importance [13-16].

Feature selection (FS) is a data pre-processing task usually deployed to resolve the

high dimensionality problem in ML tasks. FS targets and selects a subset of features

from a dataset that most depict the full features from the dataset without compromising

the essence of the dataset [17-19]. FS augments the efficacy of SDP models by

improving the quality of the software metric datasets. Based on these reasons, several

research studies have proposed and assessed the efficacy and impact of various FS

methods on the prediction performances of SDP models [11, 13-15, 20-25].

Therefore, it is imperative to regularly study and analyse the effectiveness of

these FS methods. Some current literature has examined the effect of FS techniques

on the prediction performances of SDP models with differing findings. For

instance, some studies stated that some specific FS methods such as rank-based

filter FS methods are better than other FS methods like wrapper FS methods while

some studies remain resolute that there is no significant difference in the efficiency

of FS methods in SDP [13-15, 21, 24-27]. We observed that one of such factors

that may lead to these contradictions can be the threshold value for rank-based filter

FS methods. As gathered in existing SDP studies, log2 N (N = number of features)

has been used as the de-factor threshold values for rank-based filter FS methods

[13-15, 25, 28]. However, in FS-based studies from other research domains such as

bioinformatics, log2 N isn’t the only threshold value used in selecting features in

rank-based filter FS methods. Notably, some of the existing studies have recorded

better efficacy of rank-based filter FS methods with other threshold values such as

Full features, Top20%, Top30% and Top50% [29, 30]. Therefore, it is imperative

Empirical Analysis of Threshold Values for Rank-Based Filter Feature 189

Journal of Engineering Science and Technology February 2023, Vol. 18(1)

to investigate the effect of varying threshold values in rank-based filter FS methods.

Findings from this study will guide researchers on the selection of threshold values

for rank-based filter FS methods in SDP. Also, the outcome of this study will

further support the scientific grit of experimental findings and observations in

existing FS-based empirical studies.

Consequently, an empirical study of 4 rank-based filter FS methods with 4 distinct

threshold values was conducted with 2 classifiers to examine the effect of diverse

threshold values on rank-based filter FS methods on the prediction performances of

SDP models. The deployed rank-based filter FS techniques are chosen based on

consistency in efficacy and popularity as used in current SDP literature.

Summarily, the following are the major contributions of this study:

• An empirical analysis of the impact and effectiveness of various threshold

values on 2 classifiers over 25 datasets in SDP on selected rank-based filter FS

methods. The strength of this research is an objective study of this magnitude.

• This study empirically validates the suitability and efficiency of 4 distinct

threshold values for rank-based filter FS methods.

This research paper is structured and divided into six sections. Section 2 reviews

related current SDP literature. Section 3 discusses applied FS methods, selected

classifiers, defect datasets, and performance evaluation metrics. The developed

experimental framework and procedures used in conducting experiments are

presented in Section 4 while results from experiments are presented and discussed

in Section 5. Conclusions and future research works are given in Section 6.

2. Literature Review

From existing studies on SDP, it has been reported that high dimensionality, a data

quality problem, dampens the efficacy and efficiency of SDP models' predictive

performance. Feature selection techniques are implemented to pick only the

necessary and irredundant software features for the SDP phase as a practical solution

to the dimensionality drawback in SDP. Several refereed scientific research studies

have identified the effectiveness of FS techniques on SDP models. Contrasting views

and research findings have been gathered from these studies. This may be due to the

choice and scope of FS methods investigated by these studies. Notably, some studies

have investigated the problem of inconsistencies in the effectiveness of FS methods

in SDP.

For instance, Xu et al. [15] performed study on performance impact analysis of

32 FS techniques in SDP. Their study aimed at addressing the limitations in existing

studies SDP studies but was limited to the noise level and type of defect dataset

used in existing studies. 14 rank-based filter FS methods were investigated.

However, the threshold value of log2 𝑁 was used for their RBF methods.

In another study, Balogun et al. [13] investigated and analysed the effectiveness

of 18 FS methods on 5 defect datasets to overcome certain inconsistencies in

current literature. Similarly, the relatively limited scope of their study focused only

on search methods absent in current literature. log2 𝑁 was utilized as the threshold

value in selecting optimal features for respective RBF methods. From the results of

both studies, it was observed that there is no concrete difference (statistically) in

190 M. Almomani et al.

Journal of Engineering Science and Technology February 2023, Vol. 18(1)

the effectiveness of the studied FS methods. Besides, Balogun et al. [13] claimed

that FFR methods produced more stable performance accuracy values.

Shivaji et al. [31] conducted an empirical study on 6 FS methods on 11 SDP

datasets with support vector machine (SVM) and NB as base classifiers. 4 rank-

based filter methods were used in their study. Afzal and Torkar [11] also compared

8 FS methods on 5 defect datasets. 2 rank-based filter methods were investigated

in their study. From their experimental results, both studies concluded that FS

techniques are integral and useful for SDP as it enhances the prediction efficacies

of examined classifiers. However, we noted different threshold values for RBF

methods that were used. Afzal and Torkar [11] used 1/3(N), 1/5(N) and 1/2 while

Shivaji et al. [31] utilized log2 𝑁 as their threshold values.

Also, Rathore and Gupta [25] investigated the effectiveness of 15 FS methods

with different underlining computational properties. Based on their experimental

findings, they observed that both principal component analysis (PCA) and

information gain (IG) outperform other examined FS techniques. Similarly, Ghotra

et al. [14] performed an extensive empirical analysis which consists of 11 RBF

methods and log2 𝑁 was their threshold value. They concluded that the RBF method

outperforms other applied methods. However, this finding may be different if another

threshold value for RBF methods were used as suggested by Afzal and Torkar [11].

Based on the aforementioned reviews, it is observed and evident that prediction

performances of SDP models can be improved by applying FS techniques. As such,

many FS method has been proposed and deployed to improve the prediction

performances of SDP models since the effect of mispredictions of software defects

can be detrimental [4, 32]. Nonetheless, in some of these studies, as presented in

Table 1, conflicting experimental findings and test results have been found. It was

found that these inconsistencies typically come from the study scope of these

studies, which are relative in most instances.

It was observed that the threshold values used for RBF methods vary amongst

existing studies. This variation could be the main reason for the inconsistencies in

existing studies as the effect of RBF methods depends on the threshold value used

for selecting optimal features for the SDP process.

Another observation is the variation in size and granularity of software defect

datasets used in existing studies. For instance, Ghotra et al. [14] and Xu et al. [15]

conducted their experiments on different granularity and number of software defects

datasets (18 and 16 respectively). Less amount of software defect datasets was

experimented with [13, 33, 34]. These defect datasets are from diverse repositories

and have disparate properties. Studies like Gao et al.[35] experimented on private

datasets. Moreover, research outcomes from experimental procedures with a limited

number of datasets may not be generalizable since defect datasets have disparate

characteristics and granularity [15]. This can also be seen as one of the sources of the

discrepancies and contradictions described in current studies.

Therefore, to empirically validate the understanding of FS techniques in SDP,

it is imperative to discuss the constraints of current studies generally. This research

carries out an empirical research study on the effects of FS techniques on SDP.

Specifically, this study investigates the effect of threshold values on rank-based

filter FS techniques on software defect datasets with disparate characteristics and

granularity. Findings from this study will further substantiate the impact of the FS

Empirical Analysis of Threshold Values for Rank-Based Filter Feature 191

Journal of Engineering Science and Technology February 2023, Vol. 18(1)

method on SDP models and validate the applicable threshold values for rank-based

filter FS techniques. To the best of our knowledge, no study had considered

addressing these limitations in SDP studies.

Table 1. Analysis of current literature on the

effect of rank-based filter methods on SDP models.

Current

Literature

Feature Selection

Methods
Filter

Threshold

Value

Datasets
Rank-Based

Filter Methods

Ghotra et al. [14] 11 filter Rank

Methods

log2N 18 datasets

(NASA and

PROMISE)

Xu et al. [15] 14 filter Rank

Methods

log2N 16 Datasets

(NASA and

AEEEM)

Shivaji et al. [31] 4 filter Rank

Methods

1/2(N) 11 software

projects

Muthukumaran

et al. [24]

7 filter Rank

Methods

1/3(N),

1/2(N),1/5(N)

16 Datasets

(NASA and

AEEEM)

Gao et al. [35] 7 filter Rank

Methods

log2N Private Dataset

Wang et al. [27] 6 filter Rank

Methods

log2N 3 datasets

Khoshgoftaar et

al. [36]

7 filter Rank

Methods

log2N 16 datasets

Rathore and

Gupta [25]

7 filter Rank

Methods

log2N 14 datasets

(PROMISE)

Afzal and

Torkar [11]

2 Filter Rank

Method

1/3(N),

1/2(N),1/5(N)

5 datasets

Balogun et al.

[13]

4 filter Rank

Methods

log2N 5 datasets

(NASA)

3. Methodology

This sub-section highlights FS methods, classification techniques, software defect

datasets, and the evaluation metrics deployed in this research. FS methods were

chosen from current and similar research for a broad empirical analysis [13-15, 25].

3.1. Rank-based filter (RBF) FS method

Rank-based filter (RBF) FS Methods consider and use characteristics derived from

datasets to assess and rank features of datasets. Rank and weight scores are

produced based on the underlining computational functionalities of RBF methods.

The performance of RBF methods is independent of the influence of classifier(s) to

be used for categorizing a dataset. Features are chosen based on their rank and

weight scores [13, 15]. In this study, 4 RBF methods (See Table 2) with distinct

computational characteristics and the Ranker search method for subset selection are

used. Specifically, Chi-Square Filter (CSF), Correlation Filter (COF), Information

Gain Filter (IGF) and Relief Filter (REF) were selected in this study. The preference

192 M. Almomani et al.

Journal of Engineering Science and Technology February 2023, Vol. 18(1)

for the selected RBF methods is due to their reported recurrent usage and

performance in existing FS-related SDP studies [13-15, 25, 35, 37].

3.1.1. Chi-square filter (CSF)

The Chi-square Filter (CSF) technique is feature selection proposed based on a

statistical basis technique and it is used to indicate the level of independence score

by checking feature independence in the class label. Feature with a high obtained

score, have a higher dependency relationship between the feature and the class

label. Scientifically is represented as:

X2(ci) = ∑
(𝑂𝑖−𝐸𝑖)2

𝐸𝑖
 (1)

where: C = degree of freedom, O = observed value(s), E = Expected value(s)

3.1.2. Correlation filter (COF)

The correlation filter (COF) method is another statistics-based FS method that

selected features based on similarity measures between features. That is, COF uses

the association between the continuous features and the class feature for its FS

process. Specifically, if any given two features are linearly independent, then the

correlation co-efficient score (r) is ±1 or 0 otherwise. The value of r is generated as:

𝑟 =
∑(𝑋𝑖−𝑋̅𝑖)(𝑌𝑖−𝑌̅𝑖)

√∑(𝑋𝑖−𝑋̅𝑖)2√∑(𝑌𝑖−𝑌̅𝑖)2
 (2)

3.1.3. Information gain filter (IGF)

The information Gain filter (IGF) technique considers one of the most popular filter

techniques used to select the appropriate features in the case of unknown features,

by lowering the uncertainties attributed to detecting the class label with reference

to the mechanism of information theory. The information theory support and assist

to select top features before initiating the educating process [38, 39]. The concept

of IG is based on entropy while aiming at decreasing the level of entropy, starting

from the root node to the leaf nodes. The entropy of an instance X can be

determined as:

𝐻(𝑋) = ∑ ̵𝑃𝑥𝑖
𝑙𝑜𝑔2(𝑃𝑥𝑖

)𝑖 (3)

where 𝑃𝑥𝑖
represents the prior probabilities of X.

The entropy of X indicated a new instance Y is represented as:

𝐻(𝑋|𝑌) = − ∑ 𝑃𝑦𝑗
∑ 𝑃

(𝑥𝑖|𝑦𝑗)𝑖𝑖 𝑙𝑜𝑔2 𝑃
(𝑥𝑖 |𝑦𝑗)

 (4)

The entropy is indicated as the level by which the entropy of X decreases to

present further information regarding X as given by Y, and is described as:

𝐼𝐺(𝑋|𝑌) = 𝐻(𝑋) − 𝐻(𝑋|𝑌) (5)

where H = Entropy, Y = dependent variable, and X = independent variable

3.1.4. Relief filter (REF)

ReliefF filter (REF) technique deploys sampling procedure on a particular dataset

and then detects the closest neighbors from the same and alternative classes. The

Empirical Analysis of Threshold Values for Rank-Based Filter Feature 193

Journal of Engineering Science and Technology February 2023, Vol. 18(1)

features of the sampled instances are compared with those of their vicinity, and then

a score of relevance is assigned to each feature. REF is an instance-based FS

technique could be utilized to noisy and unfinish datasets. It shows dependencies

between features with minimal bias[38, 39].

Table 2. Rank-based filter FS methods.

Rank-based Filter FS

Methods

Computational

Characteristics
References

Chi-Square Filter (CSF)
Statistic-based

Filter method
[13-15, 25, 35]

Correlation Filter (COF)
Statistic-based

Filter method
[13-15, 25, 35]

Information Gain Filter

(IGF)

Probability-based

Filter method
[13-15, 25, 35]

Relief Filter (REF)
Instance-based

Filter method
[14, 15, 24]

3.2. Classification techniques

In this study, the duo of Naïve Bayes (NB) and Decision Tree (DT) classifiers are

deployed to evaluate the effectiveness and influence of the studied FS techniques. NB

and DT classifiers are independent of the FS techniques and have been extensively

used in SDP experiments and studies. Also, NB and DT have been reported to have

good prediction performance, adequately handle the class imbalance problem, and

produce stable classification models [40-43]. Table 3 presents NB and DT classifiers

with respective parameter settings as used in this study.

Table 3. Classification techniques.

Classification

Techniques

Computational

Characteristics
Parameter Setting

NB
A probability-based

classifier.

NumDecimalPlaces = 2;

UseKernelEstimator = True

DT
An information

entropy-based classifier.

Confidence factor = 0.25;

 MinNumObj = 2

3.3. Software defect datasets

The datasets utilized in this research were collected from publicly accessible

software repositories such as NASA, PROMISE, ReLink and AEEEM. The choice

and selection of defect datasets from these repositories are to ensure the usage of

defect datasets with diverse defect granularity. In this research, Shepperd et al. [44]

version of the NASA repository defect datasets is used. The NASA datasets are

from static code metrics culled at the function level [14, 15]. PROMISE repository

defect datasets are generated from object-oriented metrics at the class level.

Specifically, PROMISE defect datasets are derived from java-based Apache

software [14, 23, 25]. Developed by Wu et al. [45], ReLink dataset uses details

from a program such as version control and it is commonly used in SDP

experiments [46-48]. The AEEEM datasets are quite different as it comprises

software features gotten from source code metrics [14, 15, 23, 24]. A detailed

overview of studied defect datasets is provided in Table 4.

194 M. Almomani et al.

Journal of Engineering Science and Technology February 2023, Vol. 18(1)

Table 4. Software defect datasets.

Datasets Repository Granularity References

EQ

AEEEM

JDT Class Level [14, 15, 23, 24, 49]

ML

PDE

CM1

NASA

KC1

KC2

KC3

MW1 Function [13-15, 34, 44]

PC1 Level

PC3

PC4

PC5

ANT

PROMISE

CAMEL

JEDIT Class

REDKITOR Level [14, 34, 44]

TOMCAT

VELOCITY

XALAN

SAFE

ReLink File Level

ZXING

APACHE [45-48]

ECLIPSE

SWT

3.4. Performance evaluation metrics

Accuracy and the Area Under the Curve (AUC) were adopted to measure the

prediction efficiency of SDP models concerning the impact of the proposed RBF

methods as performance assessment metrics. These metrics are commonly used and

chosen from current SDP literature [13, 14, 25].

i. Accuracy is the rate of instances correctly predicted by the total number of instances.

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝐹𝑃+𝐹𝑁+𝑇𝑁
 (6)

ii. The Area under Curve (AUC) illustrates the trade-off between TP and FP. Its

value varies between 0 and 1 and it provides an aggregate output metric across

all possible thresholds for classification. High AUC values show superior

predictive performance.

where TP = Correct Prediction, FP = Incorrect Prediction, TN = Correct Misprediction,

and FN = Incorrect Misprediction.

The Scott-Knott Effect Size Difference (Scott-KnottESD) (α=0.05) and the

Double Scott-KnottESD rank statistical test are also utilized to further determine

the importance of the effect of the RBF FS threshold methods on the baseline

classifiers (NB and DT). The Scott-KnottESD statistical rank test is a method of

mean comparison that uses a hierarchical method of clustering to divide mean

values into statistically meaningful partitions of non-negligible differences. [48,

50]. That is, Scott-KnottESD ranks, and partitions mean values such that mean

values in the same partition have no significant differences (based on Cohen’s d

Empirical Analysis of Threshold Values for Rank-Based Filter Feature 195

Journal of Engineering Science and Technology February 2023, Vol. 18(1)

effect size) while mean values in different partitions have significant differences.

As such, the results from Scott-KnottESD are statistically significant partitions

without any overlap. The Double Scott-KnottESD rank statistical test is the double

application of the Scott-KnottESD on mean values. Double Scott-KnottESD re-

ranks the Scott-KnottESD results on a general scale [14, 15]. The essence of Double

Scott-KnottESD is to ensure that the statistical rankings are not dependent on the

evaluation metric values (accuracy and AUC).

4. Experimental Framework

As shown in Fig. 1, this section explains the experimental context of this research.

To investigate the impact of varying threshold values on RBF methods SDP, 4 RBF

methods (See Table 2) with varying threshold values (log2N, Top 20%, Top 30%,

and Top 50%) are experimented with 2 classification techniques (NB and DT) on

25 software defect datasets (See Table 4). The Cross-validation (CV) technique

was utilized as the experimental assessment tool to mitigate data variability and the

possible overfitting problem [51]. The choice of the CV technique is to minimize

the bias and variance of experimented models [52]. Specifically, in the k-fold CV

technique (in this study, k=10), each dataset is randomly split into k folds of

approximately equal proportions. Each fold is utilized iteratively on the remaining

k-1 folds [51-54]. The Waikato Environment for Knowledge Analysis (WEKA)

machine learning library [55] and R programming language [56] are utilized for the

experimentation on an Intel(R) Core™ machine equipped with i7-6700, running at

a speed of 3.4 GHz CPU with 16 GB RAM.

The experimental framework is sub-divided into 2 distinct levels:

i. Rank-Based Filter FS Method Level:

Each of the RBF techniques, as presented in Table 2, is deployed on the training

dataset for software defect datasets as it can be seen in Table 6. That is, CSF, COF,

IGF and RFE with Ranker Search Method are used to assess and rank features of

each dataset. Relevant and top-ranked features generated by each of the RBF

methods will be selected based on varying threshold values (log2N, Top 20%, Top

30%, and Top 50%) (where N is the number of features in each dataset). The

essence of this is to investigate and determine which threshold value selects the

most important features (features with best predictive performance values)

irrespective of the characteristics of the defect datasets and RBF methods in SDP.

In the end, datasets with reduced features will be generated. The original software

defect datasets are pre-processed at the end of this stage.

ii. SDP Model and Performance Evaluation Level:

At this level, SDP models based on NB and DT classification techniques are built

based on the 10-folds CV technique. The main objective of this level is to

measure the efficacy and importance of lowered software metrics in SDP.

Besides, the 10-fold CV will help address biases and overfitting of the ensuing

prediction patterns. Most especially class inequality problem is a lurking data

quality problems [40, 41, 57]. The predictive performances of the resulting SDP

approaches are assessed according to accuracy and AUC values. To guard against

chance divisions of the data, the 10-fold CV was repeated 10 times (10X10

execution for each model development) and the average values of the

196 M. Almomani et al.

Journal of Engineering Science and Technology February 2023, Vol. 18(1)

performance metrics were obtained [58-60]. Table 5 shows labels for each RBF

method with varying threshold values.

Fig. 1. Experimental framework.

Empirical Analysis of Threshold Values for Rank-Based Filter Feature 197

Journal of Engineering Science and Technology February 2023, Vol. 18(1)

Table 5. Labelled RBF methods with different threshold values.

Rank-based Filter

Methods
Threshold Values Labels

Chi-Square Filter (CSF) Full Features RBF1

Log2N RBF2

Top20% RBF3

Top30% RBF4

Top50% RBF5

Correlation Filter (COF) Full Features RBF6

Log2N RBF7

Top20% RBF8

Top30% RBF9

Top50% RBF10

Information Gain Filter

(IGF)

Full Features RBF11

Log2N RBF12

Top20% RBF13

Top30% RBF14

Top50% RBF15

Relief Filter (REF) Full Features RBF16

Log2N RBF17

Top20% RBF18

Top30% RBF19

Top50% RBF20

5. Results and Discussion

The experimental findings based on the experimental context are discussed in this

section (See Fig. 1). Accuracy and AUC are used to evaluate the efficacy of the

ensuing prediction models from the impact of threshold values for RBF methods.

WEKA machine learning tool was used to build all prediction models, R-language

was used for statistical analysis and OriginLab was deployed for the graph analysis.

The experimental results were analysed based on each of the studies of RBF

methods. The essence of this is to investigate and validate the effect of change in

threshold values for selecting top-ranked features in studied RBF FS methods.

Figure 2 shows the box-plot interpretations of the prediction performance of

CSF on NB and DT classifiers with varying threshold values. Based on the average

accuracy of the NB classifier, RBF3 (See Table 5) had the highest average accuracy

value of 81.72%, followed by RBF2 with 80.47% and then RBF4 (80.1%) and

RBF5 (77.61%). Except for RBF5, other labels (RBF2, RBF3, and RBF4) were

superior to RBF1 (when all full features are used). Based on NB average AUC

values, RBF3 (0.779) was superior to other methods (RBF1 (0.745), RBF2 (0.766),

RBF4 (0.767), RBF5 (0.759)). In the case of the DT classifier, according to

accuracy, the results were similar to that of NB. RBF3 recorded the highest average

accuracy of 84.29 followed by RBF4 (83.34%), RBF2 (83.33%), and RBF5

(82.94%). Concerning average AUC values, RBF3 had an average AUC value of

0.706 which was superior to the average AUC values of RBF1 (0.671), RBF2

(0.69), RBF3 (0.686), and RBF5 (0.686). From these, in the case of CSF, RBF3

(CSF with Top20%) is superior to other methods (RBF1, RBF2, RBF4, and RBF5)

on accuracy and AUC values with NB and DT classifiers.

198 M. Almomani et al.

Journal of Engineering Science and Technology February 2023, Vol. 18(1)

Fig. 2. Box-Plot representations of the predictive performances

of NB and DT models based on CSF with varied thresholds.

Just as in the case of CSF, Fig. 3 demonstrates the box-plot interpretations of the

predictive performance of COF on NB and DT classifiers with varying threshold

values. Based on the average accuracy of the NB classifier, RBF8 (See Table 5)

recorded the best average accuracy value of 80.87%, followed by RBF7 with 80.36%

and then RBF9 (79.46%) and RBF10 (78.75%). It was also observed that RBF7,

RBF8, RBF9 and RBF10 were superior to RBF6 (when all full features are used).

With respect to average AUC values, RBF8 (0.775) was superior to other methods

(RBF6 (0.745), RBF7 (0.77), RBF9 (0.764), RBF10 (0.765)). For the DT classifier,

based on accuracy, RBF8 had the highest average accuracy of 84.1% followed by

RBF7 (83.67%), RBF9 (83.05%), and RBF10 (83.04%). As for average AUC values,

RBF8 outperforms other methods (RBF6 (0.675), RBF7 (0.69), RBF9 (0.685), and

RBF10 (0.686)) with an average AUC value of 0.71. Similar to CSF, RBF8 (COF

with Top20%) is superior to other methods (RBF6, RBF7, RBF9, and RBF10) in

accuracy and AUC values with NB and DT classifiers.

Figure 4 shows the box-plot interpretations of the predictive performance of

IGF on NB and DT classifiers with different threshold values. Based on average

accuracy of NB classifier, RBF13 (80.38%) was superior to RBF11 (77.56%),

RBF12 (79.77%), RBF14 (78.76%), and RBF15 (77.58%). With average AUC

values, RBF13 (0.768) and RBF14 (0.768) recorded same performance but were

superior to other methods (RBF11 (0.745), RBF12 (0.764), and RBF15 (0.762)).

Regarding the DT classifier, based on accuracy, RBF13 had the highest average

accuracy of 83.57% followed by RBF12 (83.49%), RBF14 (83.47%), and RBF15

Empirical Analysis of Threshold Values for Rank-Based Filter Feature 199

Journal of Engineering Science and Technology February 2023, Vol. 18(1)

(83.16%). Although, there exist no significant differences in the average accuracy

values of these methods. Concerning average AUC values, RBF13 had an average

AUC value of 0.706 which was superior to the average AUC values of RBF11

(0.68), RBF12 (0.692), RBF14 (0.694), and RBF5 (0.689. Conclusively, RBF13

(IGF with Top20%) is superior to RBF11, RBF12, RBF14, and RBF5) on accuracy

and AUC values with NB and DT classifiers.

Figure 5 shows the box-plot interpretations of the prediction performance of

REF on NB and DT classifiers with varying threshold values. Based on the

average accuracy of the NB classifier, RBF18 had the highest average accuracy

value of 82.06%, followed by RBF17 with 81.42% and then RBF19 (80.9%) and

RBF20 (79.73%). Based on NB average AUC values, RBF19 (0.772) was

superior to other methods (RBF16 (0.737), RBF17 (0.748), RBF18 (0.763),

RBF20 (0.769)). In the case of the DT classifier, with reference to accuracy,

RBF18 recorded the highest average accuracy of 83.69% followed by RBF19

(82.8%), RBF16 (82.68%), RBF17 (82.58%) and RBF20 (82.48%). Concerning

average AUC values, RBF18 had an average AUC value of 0.694 which was

superior to the average AUC values of RBF16 (0.667), RBF17 (0.648), RBF19

(0.687), and RBF20 (0.685). Nonetheless, in the case of REF, RBF18 (REF with

Top20%) is superior to RBF16, RBF17, RBF19, and RBF20 on accuracy and

AUC values with DT and NB classifiers except in the case of AUC values for NB

where RBF19 had the highest value.

Fig. 3. Box-Plot representations of the predictive performances

of NB and DT models based on COF with varied thresholds.

200 M. Almomani et al.

Journal of Engineering Science and Technology February 2023, Vol. 18(1)

Fig.4. Box-Plot representations of the predictive performances

of NB and DT models based on IGF with varied thresholds.

Fig. 5. Box-Plot representations of the predictive performances

of NB and DT models based on REF with varied thresholds.

Empirical Analysis of Threshold Values for Rank-Based Filter Feature 201

Journal of Engineering Science and Technology February 2023, Vol. 18(1)

Summarily, Figs. 2-5 present the box-plot interpretations of the predictive

performance of CSF, COF, IGF and RFF on NB and DT classifiers respectively with

different threshold values (Full features, Log2N, Top20%, Top30%, Top50%) on the

studied datasets. From the representations, it was observed that prediction models

(NB and DT) based on RBF methods were superior to those when no FS method (Full

features) was used. That is, RBF methods improve the predictive performances of

NB and DT classifiers. This result coincides with current research studies on the

impact of FS techniques on SDP models [11, 13-15, 24, 25, 35]. Also, models with

RBF with Top20% ranked features were superior to other SDP models based on other

investigated threshold values (Full feature, Log2N, Top30%, and Top50%).

To further strengthen the experimental results, a double Scott-Knott statistical

test was performed on the experimental results to determine if there are statistically

significant differences in the impact of the threshold values on RBF methods with

NB and DT classifiers over the studied datasets. Figure 6 presents the Double Scott-

Knott Statistical Test Results according to Accuracy and AUC values of NB and

DT Classifiers with varying threshold values. Table 6 summarizes the statistical

rank test results as shown in Fig. 6.

Fig. 6. Double Scott-Knott statistical rank test results based on accuracy and

AUC values of RBF-based NB and DT models with varying threshold values.

From Table 6, based on the average accuracy value, it can be observed that

the Top20% threshold value ranked first with a significant difference from other

threshold values for SDP models with reference to NB and DT classifiers. Log2N

threshold value ranked second in the case of NB classifier; however, there is no

significant difference in its (log2N) impact on the RBF than Top30 and Top 50%

threshold values for DT-based models. Based on the average AUC value, the

202 M. Almomani et al.

Journal of Engineering Science and Technology February 2023, Vol. 18(1)

Top20% threshold value ranked first, while other threshold values (log2N,

Top20%, and Top50%) ranked second while using full feature ranked third for

RBF-based DT models. There is no statistically significant difference among the

threshold values for RBF-based NB models. That is, Log2N, Top205, Top30%

and Top50% threshold values all ranked jointly first while full features ranked

last. Scott-Knott rank test of each RBF method can be seen in Appendix A (see

Figs. A-1 to A-4).

Table 6. Summary of double Scott-Knott rank test of

RBF-based NB and DT models with different threshold values.

Statistical Ranking based

on Average Accuracy

Statistical Ranking based

on Average AUC

NB DT NB DT

Rank
Threshold

Value
Rank

Threshold

Value
Rank

Threshold

Value
Rank

Threshold

Value

1 Top20% 1 Top20% 1 Top20%,

Log2N,

Top30%,

Top50%

1 Top20%

2 Log2N 2 Log2N,

Top30%,

Top50%,

Full

Features

2 Full

Features

2 Log2N,

Top30%,

Top 50%

3 Top30%

 3 Full

Features

4 Top50%,

Full

Features

It can be deduced that using Top20% as a threshold value for RBF methods

proved to be superior to other threshold values (Full features, Log2N, Top30% and

Top50%) irrespective of the classification algorithm used. Of utmost concern is the

Log2N threshold as most existing studies have been based on it for selecting top-

ranked features. From the research findings, we recommend the usage of the

Top20% threshold value for the selection of top-ranked features on RBF feature

selection techniques in SDP.

6. Conclusions

The experimental results showed that selecting the appropriate threshold values for

RBF methods is crucial as the impact of threshold values on RBF varies.

Accordingly, using a Top20% threshold value for selecting top-ranked features in

SDP proved to be superior to other threshold values (Full features, Log2N, Top30%

and Top50%). Also, it was observed that RBF methods have a positive effect on

the prediction performances of SDP models which coincides with current literature.

Hence, this research study recommends the usage of the Top20% threshold value

for the selection of top-ranked features for RBF methods in SDP. The above

guidelines will serve as a guide to choosing the acceptable threshold value and RBF

methods for SDP for software professionals and researchers. Latent data quality

concerns for instance class disparity, outliers, data imputation and ultimate values

relating to FS techniques in SDP will be investigated in future works.

Empirical Analysis of Threshold Values for Rank-Based Filter Feature 203

Journal of Engineering Science and Technology February 2023, Vol. 18(1)

Abbreviations

AUC

COF

CSF

CV

DT

FFR

FN

FP

FS

IGF

ML

NASA

NB

PCA

RBF

Area Under the Curve

Correlation Filter

Chi-Squared Filter

Cross Vali

Decision Tree

Filter Feature Rank

False Negative

False Positive

Feature Selection

Information Gain Filter

Machine Learning

National Aeronautics and Space Administration

Naïve Bayes

Principal Component Analysis

Rank-based Filter

REF

SDP

Relief Filter

Software Defect Prediction

SDLC Software Development Life Cycle

SVM

TN

TP

WEKA

Support Vector Machine

True Negative

True Positive

Waikato Environment and Knowledge Analysis

References

1. Bajeh, A.O.; Oluwatosin, O.J.; Basri, S.; Akintola, A.G.; and Balogun, A.O.

(2020). Object-oriented measures as testability indicators: An empirical study.

Journal of Engineering Science and Technology (JESTEC), 15(2), 1092-1108.

2. Balogun, A.; Bajeh, A.; Mojeed, H.; and Akintola, A. (2020). Software defect

prediction: A multi-criteria decision-making approach. Nigerian Journal of

Technological Research, 15(1), 35-42.

3. Basri, S.; Almomani, M.A.; Imam, A.A.; Thangiah, M.; Gilal, A.R.; and

Balogun, A.O. (2019). The organisational factors of software process

improvement in small software industry: Comparative study. Proceedings of

the 4th International Conference of Reliable Information and Communication

Technology (IRICT), Johor, Malaysia. 1132-1143.

4. Mabayoje, M.A.; Balogun, A.O.; Bello, S.M.; Atoyebi, J.O.; Mojeed, H.A.;

and Ekundayo, A.H. (2019). Wrapper feature selection based heterogeneous

classifiers for software defect prediction. Adeleke University Journal of

Engineering and Technology (JESTEC), 2(1), 1-11.

5. Mabayoje, M.A.; Balogun, A.O.; Jibril, H.A.; Atoyebi, J.O.; Mojeed, H.A.;

and Adeyemo, V.E. (2019). Parameter tuning in KNN for software defect

prediction: An empirical analysis. Jurnal Teknologi dan Sistem Komputer,

7(4), 121-126.

6. Balogun, A.O.; Lafenwa-Balogun, F.B.; Mojeed, H.A.; Adeyemo, V.E.;

Akande, O.N.; Akintola, A.G.; Bajeh, A.O.; and Usman-Hamza, F.E. (2020).

SMOTE-based homogeneous ensemble methods for software defect

204 M. Almomani et al.

Journal of Engineering Science and Technology February 2023, Vol. 18(1)

prediction. Proceeding of the 20th International Conference on Computational

Science and Its Applications (ICCSA), Cagliari, Italy, 615-631.

7. Balogun, A.O.; Shuib, B.; Abdulkadir, S.J.; and Sobri, A. (2019). A hybrid

multi-filter wrapper feature selection method for software defect predictors.

International Journal of Supply Chain Management, 8(2), 916-922.

8. Chauhan, A.; and Kumar, R. (2020). Bug severity classification using semantic

feature with convolution neural network, Proceedings of International

Computing in Engineering and Technology, Aurangabad, India, 327-335.

9. Li, N.; Shepperd, M.; and Guo, Y. (2020). A systematic review of unsupervised

learning techniques for software defect prediction. Information and Software

Technology, 122, 106287.

10. Mojeed, H.A.; Bajeh, A.O.; Balogun, A.O.; and Adeleke, H.O. (2019).

Memetic approach for multi-objective overtime planning in software

engineering projects. Journal of Engineering Science and Technology

(JESTEC), 14(6), 3213-3233.

11. Afzal, W.; and Torkar, R. (2016). Towards benchmarking feature subset

selection methods for software fault prediction. Computational Intelligence

and Quantitative Software Engineering, 33-58.

12. Anbu, M.; and Mala, G.A. (2019). Feature selection using firefly algorithm in

software defect prediction. Cluster Computing, 22(5), 10925-10934.

13. Balogun, A.O.; Basri, S.; Abdulkadir, S.J.; and Hashim, A.S. (2019).

Performance analysis of feature selection methods in software defect

prediction: A search method approach. Applied Sciences, 9(13), 2764.

14. Ghotra, B.; McIntosh, S.; and Hassan, A.E. (2017). A large-scale study of the

impact of feature selection techniques on defect classification models.

Proceedings of the 2017 IEEE/ACM 14th International Conference on Mining

Software Repositories (MSR), Piscataway, NJ, USA, 146-157.

15. Xu, Z.; Liu, J.; Yang, Z.; An, G.; and Jia, X. (2016). The impact of feature

selection on defect prediction performance: An empirical comparison.

Proceeding of IEEE 27th International Symposium on Software Reliability

Engineering (ISSRE), Ottawa, Canada, 1-12.

16. Zemmal, N.; Azizi, N.; Sellami, M.; Zenakhra, D.; Cheriguene, S.; Dey, N.;

and Ashour, A.S. (2018). Robust feature selection algorithm based on

transductive SVM wrapper and genetic algorithm: application on computer-

aided glaucoma classification. International Journal of Intelligent Systems

Technologies and Applications, 17(3), 310-346.

17. Balogun, A.O.; Basri, S.; Mahamad, S.; Abdulkadir, S.J.; Capretz, L.F.; Imam,

A.A.; Almomani, M.A.; Adeyemo, V.E.; and Kumar, G. (2021). Empirical

analysis of rank aggregation-based multi-filter feature selection methods in

software defect prediction. Electronics, 10(2), 179.

18. Balogun, A.O.; Basri, S.; Capretz, L.F.; Mahamad, S.; Imam, A.A.; Almomani,

M.A.; Adeyemo, V.E.; and Kumar, G. (2021). An adaptive rank aggregation-

based ensemble multi-filter feature selection method in software defect

prediction. Entropy, 23(10), 1274.

19. Balogun, A.O.; Basri, S.; Abdulkadir, S.J.; Mahamad, S.; Al-momamni, M.A.;

Imam, A.A.; and Kumar, G.M. (2020). Rank aggregation based multi-filter

feature selection method for software defect prediction. Proceedings of the 2nd

Empirical Analysis of Threshold Values for Rank-Based Filter Feature 205

Journal of Engineering Science and Technology February 2023, Vol. 18(1)

International Conference on Advances in Cyber Security, Penang, Malaysia,

371-383.

20. Hall, M.A.; and Holmes, G. (2003). Benchmarking attribute selection

techniques for discrete class data mining. IEEE Transactions on Knowledge

and Data engineering, 15(6), 1437-1447.

21. He, P.; Li, B.; Liu, X.; Chen, J.; and Ma, Y. (2015). An empirical study on

software defect prediction with a simplified metric set. Information and

Software Technology, 59, 170-190.

22. Kakkar, M.; and Jain, S. (2016). Feature selection in software defect

prediction: a comparative study. Proceedings of the 6th International

Conference on Cloud System and Big Data Engineering, Noida, India, 1-10.

23. Kondo, M.; Bezemer, C.-P.; Kamei, Y.; Hassan, A.E.; and Mizuno, O., (2019).

The impact of feature reduction techniques on defect prediction models.

Empirical Software Engineering, 24, 1-39.

24. Muthukumaran, K.; Rallapalli, A.; and Murthy, N.B. (2015). Impact of feature

selection techniques on bug prediction models, Proceedings of the 8th India

Software Engineering Conference, Bangalore, India, 1-10.

25. Rathore, S.S.; and Gupta, A. (2014). A comparative study of feature-ranking

and feature-subset selection techniques for improved fault prediction,

Proceedings of the 7th India Software Engineering Conference, Chennai,

India, 1-10.

26. Mabayoje, M.A.; Balogun, A.O.; Bajeh, A.O.; and Musa, B.A. (2018).

Software defect prediction: Effect of feature selection and ensemble methods.

FUW Trends in Science & Technology Journal, 3(2), 518-522.

27. Wang, H.; Khoshgoftaar, T.M.; Van Hulse, J.; and Gao, K. (2011). Metric

selection for software defect prediction. International Journal of Software

Engineering and Knowledge Engineering, 21(2), 237-257.

28. Wang, S.; and Yao, X. (2013). Using class imbalance learning for software

defect prediction. IEEE Transactions on Reliability, 62(2), 434-443.

29. Belouch, M.; Elhadaj, S.; and Idhammad, M. (2018). A hybrid filter-wrapper

feature selection method for DDoS detection in cloud computing. Intelligent

Data Analysis, 22(6), 1209-1226.

30. Majd, A.; Vahidi-Asl, M.; Khalilian, A.; Poorsarvi-Tehrani, P.; and Haghighi, H.

(2020). SLDeep: Statement-level software defect prediction using deep-learning

model on static code features. Expert Systems with Applications, 147, 113156.

31. Shivaji, S.; Whitehead, E.J.; Akella, R.; and Kim, S. (2012). Reducing features

to improve code change-based bug prediction. IEEE Transactions on Software

Engineering, 39(4), 552-569.

32. Hall, T.; Beecham, S.; Bowes, D.; Gray, D.; and Counsell, S. (2012). A

systematic literature review on fault prediction performance in software

engineering. IEEE Transactions on Software Engineering, 38(6), 1276-1304.

33. Akintola, A.G.; Balogun, A.O.; Lafenwa-Balogun, F.; and Mojeed, H.A.

(2018). Comparative analysis of selected heterogeneous classifiers for

software defects prediction using filter-based feature selection methods.

FUOYE Journal of Engineering and Technology (JESTEC), 3(1), 134-137.

206 M. Almomani et al.

Journal of Engineering Science and Technology February 2023, Vol. 18(1)

34. Rodriguez, D.; Ruiz, R.; Cuadrado-Gallego, J.; Aguilar-Ruiz, J.; and Garre, M.

(2007). Attribute selection in software engineering datasets for detecting fault

modules, Proceedings of 33rd EUROMICRO Conference on Software

Engineering and Advanced Applications (EUROMICRO 2007), Lubeck,

Germany, 1-6.

35. Gao, K.; Khoshgoftaar, T.M.; Wang, H.; and Seliya, N. (2011). Choosing

software metrics for defect prediction: an investigation on feature selection

techniques. Software: Practice and Experience, 41(5), 579-606.

36. Khoshgoftaar, T.M.; Gao, K.; and Napolitano, A. (2012). An empirical study of

feature ranking techniques for software quality prediction. International Journal

of Software Engineering and Knowledge Engineering, 22(02), 161-183.

37. Balogun, A.O.; Basri, S.; Mahamad, S.; Abdulkadir, S.J.; Almomani, M.A.;

Adeyemo, V.E.; Al-Tashi, Q.; Mojeed, H.A.; Imam, A.A.; and Bajeh, A.O.

(2020). Impact of feature selection methods on the predictive performance of

software defect prediction models: An extensive empirical study. Symmetry,

12(7), 1147.

38. Ghotra, B.; McIntosh, S.; and Hassan, A.E. (2017). A large-scale study of the

impact of feature selection techniques on defect classification models.

Proceedings of 14th International Conference on Mining Software

Repositories (MSR), 2017 IEEE/ACM, Buenos Aires, Argentina, 1-12.

39. Osman, H.; Ghafari, M.; and Nierstrasz, O. (2017). Automatic feature selection

by regularization to improve bug prediction accuracy. Proceedings on IEEE

Workshop on Machine Learning Techniques for Software Quality Evaluation

(MaLTeSQuE), Klagenfurt, Austria, 1-6.

40. Balogun, A.O.; Basri, S.; Abdulkadir, S.J.; Adeyemo, V.E.; Imam, A.A.; and

Bajeh, A.O. (2019). Software Defect Prediction: Analysis of Class Imbalance

and Performance Stability. Journal of Engineering Science and Technology

(JESTEC), 14(6), 3294-3308.

41. Yu, Q.; Jiang, S.; and Zhang, Y. (2017). The performance stability of defect

prediction models with class imbalance: An empirical study. IEICE

TRANSACTIONS on Information and Systems, 100(2), 265-272.

42. Menzies, T.; Greenwald, J.; and Frank, A. (2007). Data mining static code

attributes to learn defect predictors. IEEE Transactions on Software

Engineering, 33(1), 2-13.

43. Lessmann, S.; Baesens, B.; Mues, C.; and Pietsch, S. (2008).

Benchmarking classification models for software defect prediction: A

proposed framework and novel findings. IEEE Transactions on Software

Engineering, 34(4), 485-496.

44. Shepperd, M.; Song, Q.; Sun, Z.; and Mair, C. (2013). Data quality: Some

comments on the nasa software defect datasets. IEEE Transactions on

Software Engineering, 39(9), 1208-1215.

45. Wu, R.; Zhang, H.; Kim, S.; and Cheung, S.-C. (2011). Relink: recovering

links between bugs and changes. Proceedings of the 19th ACM SIGSOFT

symposium and the 13th European conference on Foundations of Software

Engineering, Szeged, Hungary, 1-11.

Empirical Analysis of Threshold Values for Rank-Based Filter Feature 207

Journal of Engineering Science and Technology February 2023, Vol. 18(1)

46. Song, Q.; Guo, Y.; and Shepperd, M. (2019). A comprehensive investigation

of the role of imbalanced learning for software defect prediction. IEEE

Transactions on Software Engineering, 14(12), 1253-1269.

47. Nam, J.; Fu, W.; Kim, S.; Menzies, T.; and Tan, L. (2017). Heterogeneous defect

prediction. IEEE Transactions on Software Engineering, 44(9), 874-896.

48. Tantithamthavorn, C.; McIntosh, S.; Hassan, A.E.; and Matsumoto, K. (2018).

The impact of automated parameter optimization on defect prediction models.

IEEE Transactions on Software Engineering, 45(7), 683-711.

49. Rodriguez, D.; Herraiz, I.; Harrison, R.; Dolado, J.; and Riquelme, J.C. (2014).

Preliminary comparison of techniques for dealing with imbalance in software

defect prediction. Proceedings of the 18th International Conference on

Evaluation and Assessment in Software Engineering, New York, USA, 1-10.

50. Tantithamthavorn, C.; McIntosh, S.; Hassan, A.E.; and Matsumoto, K. (2016).

An empirical comparison of model validation techniques for defect prediction

models. IEEE Transactions on Software Engineering, 43(1), 1-18.

51. James, G.; Witten, D.; Hastie, T.; and Tibshirani, R. (2013). An introduction

to statistical learning. Vol. 112, Springer Cham, Berlin/Hedielberg, Germany.

52. Kuhn, M.; and Johnson, K. (2013). Applied predictive modeling. Vol. 26.

Springer Cham, Berlin/Hedielberg, Germany.

53. Alsariera, Y.A.; Adeyemo, V.E.; Balogun, A.O.; and Alazzawi, A.K. (2020).

Ai meta-learners and extra-trees algorithm for the detection of phishing

websites. IEEE Access, 8, 142532-142542.

54. Alsariera, Y.A.; Elijah, A.V.; and Balogun, A.O. (2020). Phishing Website

Detection: Forest by Penalizing Attributes Algorithm and Its Enhanced

Variations. Arabian Journal for Science and Engineering, 45, 10459-10470.

55. Hall, M.; Frank, E.; Holmes, G.; Pfahringer, B.; Reutemann, P.; and Witten,

I.H. (2009). The WEKA data mining software: an update. ACM SIGKDD

Explorations Newsletter, 11(1), 10-18.

56. Crawley, M.J. (2012). The R book. John Wiley & Sons.

57. Adeyemo, V.E.; Balogun, A.O.; Mojeed, H.A.; Akande, N.O.; and Adewole,

K.S. Ensemble-based logistic model trees for website phishing detection.

Proceedings of 2nd International Conference on Advances in Cyber Security.

2020, Penang, Malaysia, 627-641.

58. Yadav, S.; and Shukla, S. (2016). Analysis of k-fold cross-validation over

hold-out validation on colossal datasets for quality classification,

Proceedings of IEEE 6th International Conference on Advanced

Computing (IACC), Bhimavaram, India, 78-83.

59. Arlot, S.; and Lerasle, M. (2016). Choice of V for V-fold cross-validation in

least-squares density estimation. The Journal of Machine Learning Research,

17(1), 7256-7305.

60. Balogun, A.O.; Basri, S.; Jadid, S.A.; Mahamad, S.; Al-momani, M.A.; Bajeh,

A.O.; and Alazzawi, A.K. (2020). Search-Based Wrapper Feature Selection

Methods in Software Defect Prediction: An Empirical Analysis. Proceedings

of 6th Computer Science On-line Conference. Zlin, Czech Republic, 492-503.

208 M. Almomani et al.

Journal of Engineering Science and Technology February 2023, Vol. 18(1)

Appendix A

Fig. A-1. Scott-Knott Statistical Test of the predictive performance of models

based on CSF with different threshold values on all studied datasets.

Fig. A-2. Scott-Knott Statistical Test of the predictive performance of

models based on COF with different threshold values on all studied datasets.

Empirical Analysis of Threshold Values for Rank-Based Filter Feature 209

Journal of Engineering Science and Technology February 2023, Vol. 18(1)

Fig. A-3. Scott-Knott Statistical Test of the predictive performance of

models based on IGF with different threshold values on all studied datasets.

Fig. A-4. Scott-Knott Statistical Test of the predictive performance of

models based on IGF with different threshold values on all studied datasets.

