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Abstract 

Many studies have been conducted to explore the influence of feature selection 

(FS) techniques on software defect prediction (SDP) models, with conflicting 

empirical results and research outcomes. These reported contradictions may be 

due to relative research limitations, such as types of FS techniques or the size of 

defect datasets. In the instance of FS methods, it was discovered that selecting a 

suitable threshold value for picking top-ranked features in FS methods might be 

a cause of discrepancies in reported findings on SDP. Investigating and assessing 

the impacts of threshold values for the rank-based filter (RBF) FS techniques, as 

done in this work, becomes critical.  4 RBF (Chi-square, Correlation, Information 

Gain, and Relief) methods with 5 thresholds (No FS, log2N, Top20%, Top 30%, 

and Top 50%) values were investigated with 2 prediction models (Naïve Bayes 

(NB) and Decision Tree (DT)) on 25 software defects datasets. The experimented 

RBF techniques were selected based on distinct computational features to assure 

heterogeneity, as well as their performance in the current SDP research. 

Developed SDP models were evaluated using accuracy and area under the curve 

(AUC) values while the Scott-KnottESD rank statistical test technique was 

employed to rank experimented RBF methods with applied threshold values. 

According to the experimental results, selecting the Top20% of top-ranked 

features in RBF methods had a greater (positive) impact on the prediction 

performances of SDP models than other applied threshold values. Furthermore, 

the outcomes of this study corroborate previous research on the capacity of FS 

techniques to improve the prediction efficacies of SDP models. Consequently, 

we urge that FS methods be utilized in SDP tasks. In the case of RBF methods, 

the Top20% threshold value should be used since it outperforms de-factor log2N 

and other threshold values. Moreover, findings from this study can be a guide to 

subsequent SDP studies and further strengthen the tenacity of experimental 

findings and conclusions in SDP studies. 
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1.  Introduction 

Software defect prediction (SDP) is the usage of machine learning (ML) techniques 

for the identification of defective modules or components in a software system 

before software release. SDP takes place before the software release and is based 

on the elemental characteristics of software systems. These fundamental properties 

of a software system are measurable features of software systems that can be 

investigated and evaluated to determine the degree of software systems’ reliability 

and quality [1-3]. In other words, these features such as software coupling, 

cohesion, and complexity are processed by ML techniques for knowledge 

derivation. The derived knowledge can be used for software process improvements. 

The goal of software engineers is to build high-quality and reliable software using 

available resources [4-7]. Hence, SDP is pivotal in the software development life 

cycle (SDLC). 

Nowadays, developed software systems are inherently voluminous and 

convoluted with multiple modules or components that are interrelated. Moreover, 

these software systems regularly undergo scheduled updates and upgrades for 

additional features as specified in software requirements or end-users’ requests. 

Hence, ascertaining the fundamental properties of such software systems often 

engage numerous software metrics with distinct assessments [8-10]. Consequently, 

this result in a high-dimensionality problem as the amount of generated software 

features is customarily enormous and somewhat redundant [7, 11, 12]. Some 

studies in SDP have investigated and reported that the unsatisfactory prediction 

performances of SDP models can be attributed to the presence of redundant and 

irrelevant software metrics. Besides, high-dimensional data often incur high 

computational complexity and memory wastage. Hence, the selection of the 

relevant set of software metrics is of utmost importance [13-16]. 

Feature selection (FS) is a data pre-processing task usually deployed to resolve the 

high dimensionality problem in ML tasks. FS targets and selects a subset of features 

from a dataset that most depict the full features from the dataset without compromising 

the essence of the dataset [17-19]. FS augments the efficacy of SDP models by 

improving the quality of the software metric datasets. Based on these reasons, several 

research studies have proposed and assessed the efficacy and impact of various FS 

methods on the prediction performances of SDP models [11, 13-15, 20-25].  

Therefore, it is imperative to regularly study and analyse the effectiveness of 

these FS methods. Some current literature has examined  the effect of FS techniques 

on the prediction performances of SDP models with differing findings. For 

instance, some studies stated that some specific FS methods such as rank-based 

filter FS methods are better than other FS methods like wrapper FS methods while 

some studies remain resolute that there is no significant difference in the efficiency 

of FS methods in SDP [13-15, 21, 24-27]. We observed that one of such factors 

that may lead to these contradictions can be the threshold value for rank-based filter 

FS methods. As gathered in existing SDP studies, log2 N (N = number of features) 

has been used as the de-factor threshold values for rank-based filter FS methods 

[13-15, 25, 28]. However, in FS-based studies from other research domains such as 

bioinformatics, log2 N isn’t the only threshold value used in selecting features in 

rank-based filter FS methods. Notably, some of the existing studies have recorded 

better efficacy of rank-based filter FS methods with other threshold values such as 

Full features, Top20%, Top30% and Top50% [29, 30]. Therefore, it is imperative 
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to investigate the effect of varying threshold values in rank-based filter FS methods. 

Findings from this study will guide researchers on the selection of threshold values 

for rank-based filter FS methods in SDP. Also, the outcome of this study will 

further support the scientific grit of experimental findings and observations in 

existing FS-based empirical studies. 

Consequently, an empirical study of 4 rank-based filter FS methods with 4 distinct 

threshold values was conducted with 2 classifiers to examine the effect of diverse 

threshold values on rank-based filter FS methods on the prediction performances of 

SDP models. The deployed rank-based filter FS techniques are chosen based on 

consistency in efficacy and popularity as used in current SDP literature.  

Summarily, the following are the major contributions of this study: 

• An empirical analysis of the impact and effectiveness of various threshold 

values on 2 classifiers over 25 datasets in SDP on selected rank-based filter FS 

methods. The strength of this research is an objective study of this magnitude.  

• This study empirically validates the suitability and efficiency of 4 distinct 

threshold values for rank-based filter FS methods.  

This research paper is structured and divided into six sections. Section 2 reviews 

related current SDP literature. Section 3 discusses applied FS methods, selected 

classifiers, defect datasets, and performance evaluation metrics. The developed 

experimental framework and procedures used in conducting experiments are 

presented in Section 4 while results from experiments are presented and discussed 

in Section 5. Conclusions and future research works are given in Section 6. 

2. Literature Review 

From existing studies on SDP, it has been reported that high dimensionality, a data 

quality problem, dampens the efficacy and efficiency of SDP models' predictive 

performance. Feature selection techniques are implemented to pick only the 

necessary and irredundant software features for the SDP phase as a practical solution 

to the dimensionality drawback in SDP. Several refereed scientific research studies 

have identified the effectiveness of FS techniques on SDP models. Contrasting views 

and research findings have been gathered from these studies. This may be due to the 

choice and scope of FS methods investigated by these studies. Notably, some studies 

have investigated the problem of inconsistencies in the effectiveness of FS methods 

in SDP.  

For instance, Xu et al. [15] performed study on performance impact analysis of 

32 FS techniques in SDP. Their study aimed at addressing the limitations in existing 

studies SDP studies but was limited to the noise level and type of defect dataset 

used in existing studies. 14 rank-based filter FS methods were investigated. 

However, the threshold value of  log2 𝑁 was used for their RBF methods.  

In another study, Balogun et al. [13] investigated and analysed the effectiveness 

of 18 FS methods on 5 defect datasets to overcome certain inconsistencies in 

current literature. Similarly, the relatively limited scope of their study focused only 

on search methods absent in current literature. log2 𝑁 was utilized as the threshold 

value in selecting optimal features for respective RBF methods. From the results of 

both studies, it was observed that there is no concrete difference (statistically) in 
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the effectiveness of the studied FS methods. Besides, Balogun et al. [13] claimed 

that FFR methods produced more stable performance accuracy values.  

Shivaji et al. [31] conducted an empirical study on 6 FS methods on 11 SDP 

datasets with support vector machine (SVM) and NB as base classifiers. 4 rank-

based filter methods were used in their study. Afzal and Torkar [11] also compared 

8 FS methods on 5 defect datasets. 2 rank-based filter methods were investigated 

in their study. From their experimental results, both studies concluded that FS 

techniques are integral and useful for SDP as it enhances the prediction efficacies 

of examined classifiers. However, we noted different threshold values for RBF 

methods that were used. Afzal and Torkar [11] used 1/3(N), 1/5(N) and 1/2 while 

Shivaji et al. [31] utilized log2 𝑁 as their threshold values.  

Also, Rathore and Gupta [25] investigated the effectiveness of 15 FS methods 

with different underlining computational properties. Based on their experimental 

findings, they observed that both principal component analysis (PCA) and 

information gain (IG) outperform other examined FS techniques. Similarly, Ghotra 

et al. [14] performed an extensive empirical analysis which consists of  11 RBF 

methods and log2 𝑁 was their threshold value. They concluded that the RBF method 

outperforms other applied methods. However, this finding may be different if another 

threshold value for RBF methods were used as suggested by Afzal and Torkar [11]. 

Based on the aforementioned reviews, it is observed and evident that prediction 

performances of SDP models can be improved by applying FS techniques. As such, 

many FS method has been proposed and deployed to improve the prediction 

performances of SDP models since the effect of mispredictions of software defects 

can be detrimental [4, 32]. Nonetheless, in some of these studies, as presented in 

Table 1, conflicting experimental findings and test results have been found. It was 

found that these inconsistencies typically come from the study scope of these 

studies, which are relative in most instances.  

It was observed that the threshold values used for RBF methods vary amongst 

existing studies. This variation could be the main reason for the inconsistencies in 

existing studies as the effect of RBF methods depends on the threshold value used 

for selecting optimal features for the SDP process.  

Another observation is the variation in size and granularity of software defect 

datasets used in existing studies. For instance, Ghotra et al. [14] and Xu et al. [15] 

conducted their experiments on different granularity and number of software defects 

datasets (18 and 16 respectively). Less amount of software defect datasets was 

experimented with [13, 33, 34]. These defect datasets are from diverse repositories 

and have disparate properties. Studies like Gao et al.[35] experimented on private 

datasets. Moreover,  research outcomes from experimental procedures with a limited 

number of datasets may not be generalizable since defect datasets have disparate 

characteristics and granularity [15]. This can also be seen as one of the sources of the 

discrepancies and contradictions described in current studies.  

Therefore, to empirically validate the understanding of FS techniques in SDP, 

it is imperative to discuss the constraints of current studies generally. This research 

carries out an empirical research study on the effects of FS techniques on SDP. 

Specifically, this study investigates the effect of threshold values on rank-based 

filter FS techniques on software defect datasets with disparate characteristics and 

granularity. Findings from this study will further substantiate the impact of the FS 
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method on SDP models and validate the applicable threshold values for rank-based 

filter FS techniques. To the best of our knowledge, no study had considered 

addressing these limitations in SDP studies. 

Table 1. Analysis of current literature on the 

effect of rank-based filter methods on SDP models. 

Current 

Literature 

Feature Selection 

Methods 
Filter 

Threshold 

Value 

Datasets 
Rank-Based 

Filter Methods 

Ghotra et al. [14] 11 filter Rank 

Methods 

log2N 18 datasets 

(NASA and 

PROMISE) 

Xu et al. [15] 14 filter Rank 

Methods 

log2N 16 Datasets 

(NASA and 

AEEEM) 

Shivaji et al. [31] 4 filter Rank 

Methods 

1/2(N) 11 software 

projects 

Muthukumaran 

et al. [24] 

7 filter Rank 

Methods 

1/3(N), 

1/2(N),1/5(N) 

16 Datasets 

(NASA and 

AEEEM) 

Gao et al. [35] 7 filter Rank 

Methods 

log2N Private Dataset 

Wang et al. [27] 6 filter Rank 

Methods 

log2N 3 datasets 

Khoshgoftaar et 

al. [36] 

7 filter Rank 

Methods 

log2N 16 datasets 

Rathore and 

Gupta [25] 

7 filter Rank 

Methods 

log2N 14 datasets 

(PROMISE) 

Afzal and 

Torkar [11] 

2 Filter Rank 

Method 

1/3(N), 

1/2(N),1/5(N) 

5 datasets 

Balogun et al. 

[13] 

4 filter Rank 

Methods 

log2N 5 datasets 

(NASA) 

3. Methodology 

This sub-section highlights FS methods, classification techniques, software defect 

datasets, and the evaluation metrics deployed in this research. FS methods were 

chosen from current and similar research for a broad empirical analysis [13-15, 25].  

3.1. Rank-based filter (RBF) FS method 

Rank-based filter (RBF) FS Methods consider and use characteristics derived from 

datasets to assess and rank features of datasets. Rank and weight scores are 

produced based on the underlining computational functionalities of RBF methods. 

The performance of RBF methods is independent of the influence of classifier(s) to 

be used for categorizing a dataset. Features are chosen based on their rank and 

weight scores [13, 15]. In this study, 4 RBF methods (See Table 2) with distinct 

computational characteristics and the Ranker search method for subset selection are 

used.  Specifically, Chi-Square Filter (CSF), Correlation Filter (COF), Information 

Gain Filter (IGF) and Relief Filter (REF) were selected in this study. The preference 
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for the selected RBF methods is due to their reported recurrent usage and 

performance in existing FS-related SDP studies [13-15, 25, 35, 37].  

3.1.1. Chi-square filter (CSF) 

The Chi-square Filter (CSF) technique is feature selection proposed based on a 

statistical basis technique and it is used to indicate the level of independence score 

by checking feature independence in the class label. Feature with a high obtained 

score, have a higher dependency relationship between the feature and the class 

label. Scientifically is represented as: 

X2(ci) = ∑
(𝑂𝑖−𝐸𝑖 )2

𝐸𝑖
                (1) 

where: C = degree of freedom, O = observed value(s), E = Expected value(s) 

3.1.2. Correlation filter (COF) 

The correlation filter (COF) method is another statistics-based FS method that 

selected features based on similarity measures between features. That is, COF uses 

the association between the continuous features and the class feature for its FS 

process. Specifically, if any given two features are linearly independent, then the 

correlation co-efficient score (r) is ±1 or 0 otherwise. The value of r is generated as: 

𝑟 =  
∑(𝑋𝑖−�̅�𝑖)(𝑌𝑖−�̅�𝑖)

√∑(𝑋𝑖−�̅�𝑖)2√∑(𝑌𝑖−�̅�𝑖)2
                 (2) 

3.1.3. Information gain filter (IGF) 

The information Gain filter (IGF) technique considers one of the most popular filter 

techniques used to select the appropriate features in the case of unknown features, 

by lowering the uncertainties attributed to detecting the class label with reference 

to the mechanism of information theory. The information theory support and assist 

to select top features before initiating the educating process [38, 39]. The concept 

of IG is based on entropy while aiming at decreasing the level of entropy, starting 

from the root node to the leaf nodes. The entropy of an instance X can be 

determined as:  

𝐻(𝑋) = ∑  ̵𝑃𝑥𝑖   
𝑙𝑜𝑔2(𝑃𝑥𝑖

)𝑖                  (3) 

where 𝑃𝑥𝑖   
represents the prior probabilities of X.  

The entropy of X indicated a new instance Y is represented as: 

𝐻(𝑋|𝑌) = − ∑ 𝑃𝑦𝑗   
∑ 𝑃

(𝑥𝑖|𝑦𝑗)𝑖𝑖 𝑙𝑜𝑔2 𝑃
(𝑥𝑖 |𝑦𝑗)

              (4) 

The entropy is indicated as the level by which the entropy of X decreases to 

present further information regarding X as given by Y, and is described as: 

𝐼𝐺(𝑋|𝑌) = 𝐻(𝑋) − 𝐻(𝑋|𝑌)                (5) 

where H = Entropy, Y = dependent variable, and X = independent variable 

3.1.4. Relief filter (REF) 

ReliefF filter (REF) technique deploys sampling procedure on a particular dataset 

and then detects the closest neighbors from the same and alternative classes. The 
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features of the sampled instances are compared with those of their vicinity, and then 

a score of relevance is assigned to each feature. REF is an instance-based FS 

technique could be utilized to noisy and unfinish datasets. It shows dependencies 

between features with minimal bias[38, 39]. 

Table 2. Rank-based filter FS methods. 

Rank-based Filter FS 

Methods 

Computational 

Characteristics 
References 

Chi-Square Filter (CSF) 
Statistic-based 

Filter method 
[13-15, 25, 35] 

Correlation Filter (COF) 
Statistic-based 

Filter method 
[13-15, 25, 35] 

Information Gain Filter 

(IGF) 

Probability-based 

Filter method 
[13-15, 25, 35] 

Relief Filter (REF) 
Instance-based 

Filter method 
[14, 15, 24] 

3.2. Classification techniques 

In this study, the duo of Naïve Bayes (NB) and Decision Tree (DT) classifiers are 

deployed to evaluate the effectiveness and influence of the studied FS techniques. NB 

and DT classifiers are independent of the FS techniques and have been extensively 

used in SDP experiments and studies. Also, NB and DT have been reported to have 

good prediction performance, adequately handle the class imbalance problem, and 

produce stable classification models [40-43]. Table 3 presents NB and DT classifiers 

with respective parameter settings as used in this study. 

Table 3. Classification techniques. 

Classification 

Techniques 

Computational 

Characteristics 
Parameter Setting 

NB 
A probability-based 

classifier. 

NumDecimalPlaces = 2; 

UseKernelEstimator = True 

DT 
An information 

entropy-based classifier. 

Confidence factor = 0.25; 

 MinNumObj = 2 

3.3. Software defect datasets 

The datasets utilized in this research were collected from publicly accessible 

software repositories such as NASA, PROMISE, ReLink and AEEEM. The choice 

and selection of defect datasets from these repositories are to ensure the usage of 

defect datasets with diverse defect granularity. In this research, Shepperd et al. [44] 

version of the NASA repository defect datasets is used. The NASA datasets are 

from static code metrics culled at the function level [14, 15]. PROMISE repository 

defect datasets are generated from object-oriented metrics at the class level. 

Specifically, PROMISE defect datasets are derived from java-based Apache 

software [14, 23, 25].  Developed by Wu et al. [45], ReLink dataset uses details 

from a program such as version control and it is commonly used in SDP 

experiments [46-48]. The AEEEM datasets are quite different as it comprises 

software features gotten from source code metrics [14, 15, 23, 24]. A detailed 

overview of studied defect datasets is provided in Table 4. 
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Table 4. Software defect datasets. 

Datasets Repository Granularity References 

EQ 

AEEEM 

  

JDT Class Level [14, 15, 23, 24, 49] 

ML   

PDE   

CM1 

NASA 

  

KC1   

KC2   

KC3   

MW1 Function  [13-15, 34, 44] 

PC1 Level  

PC3   

PC4   

PC5   

ANT 

PROMISE 

  

CAMEL   

JEDIT Class  

REDKITOR Level [14, 34, 44] 

TOMCAT   

VELOCITY   

XALAN   

SAFE 

ReLink File Level 

 

ZXING  

APACHE [45-48] 

ECLIPSE  

SWT  

3.4. Performance evaluation metrics  

Accuracy and the Area Under the Curve (AUC) were adopted to measure the 

prediction efficiency of SDP models concerning the impact of the proposed RBF 

methods as performance assessment metrics. These metrics are commonly used and 

chosen from current SDP literature [13, 14, 25]. 

i. Accuracy is the rate of instances correctly predicted by the total number of instances. 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝐹𝑃+𝐹𝑁+𝑇𝑁
                (6) 

ii. The Area under Curve (AUC) illustrates the trade-off between TP and FP. Its 

value varies between 0 and 1 and it provides an aggregate output metric across 

all possible thresholds for classification. High AUC values show superior 

predictive performance. 

where TP = Correct Prediction, FP = Incorrect Prediction, TN = Correct Misprediction, 

and FN = Incorrect Misprediction. 

The Scott-Knott Effect Size Difference (Scott-KnottESD) (α=0.05) and the 

Double Scott-KnottESD rank statistical test are also utilized to further determine 

the importance of the effect of the RBF FS threshold methods on the baseline 

classifiers (NB and DT). The Scott-KnottESD statistical rank test is a method of 

mean comparison that uses a hierarchical method of clustering to divide mean 

values into statistically meaningful partitions of non-negligible differences. [48,  

50]. That is, Scott-KnottESD ranks, and partitions mean values such that mean 

values in the same partition have no significant differences (based on Cohen’s d 
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effect size) while mean values in different partitions have significant differences. 

As such, the results from Scott-KnottESD are statistically significant partitions 

without any overlap. The Double Scott-KnottESD rank statistical test is the double 

application of the Scott-KnottESD on mean values. Double Scott-KnottESD re-

ranks the Scott-KnottESD results on a general scale [14, 15]. The essence of Double 

Scott-KnottESD is to ensure that the statistical rankings are not dependent on the 

evaluation metric values (accuracy and AUC). 

4. Experimental Framework 

As shown in Fig. 1, this section explains the experimental context of this research. 

To investigate the impact of varying threshold values on RBF methods SDP, 4 RBF 

methods (See Table 2) with varying threshold values (log2N, Top 20%, Top 30%, 

and Top 50%) are experimented with 2 classification techniques (NB and DT) on 

25 software defect datasets (See Table 4).  The Cross-validation (CV) technique 

was utilized as the experimental assessment tool to mitigate data variability and the 

possible overfitting problem  [51]. The choice of the CV technique is to minimize 

the bias and variance of experimented models [52]. Specifically, in the k-fold CV 

technique (in this study, k=10), each dataset is randomly split into k folds of 

approximately equal proportions. Each fold is utilized iteratively on the remaining 

k-1 folds [51-54]. The Waikato Environment for Knowledge Analysis (WEKA) 

machine learning library [55] and R programming language [56] are utilized for the 

experimentation on an Intel(R) Core™ machine equipped with i7-6700, running at 

a speed of 3.4 GHz CPU with 16 GB RAM. 

The experimental framework is sub-divided into 2 distinct levels:  

i.  Rank-Based Filter FS Method Level: 

Each of the RBF techniques, as presented in Table 2, is deployed on the training 

dataset for software defect datasets as it can be seen in Table 6. That is, CSF, COF, 

IGF and RFE with Ranker Search Method are used to assess and rank features of 

each dataset. Relevant and top-ranked features generated by each of the RBF 

methods will be selected based on varying threshold values (log2N, Top 20%, Top 

30%, and Top 50%) (where N is the number of features in each dataset). The 

essence of this is to investigate and determine which threshold value selects the 

most important features (features with best predictive performance values) 

irrespective of the characteristics of the defect datasets and RBF methods in SDP. 

In the end, datasets with reduced features will be generated. The original software 

defect datasets are pre-processed at the end of this stage.  

ii. SDP Model and Performance Evaluation Level:  

At this level, SDP models based on NB and DT classification techniques are built 

based on the 10-folds CV technique. The main objective of this level is to 

measure the efficacy and importance of lowered software metrics in SDP. 

Besides, the 10-fold CV will help address biases and overfitting of the ensuing 

prediction patterns. Most especially class inequality problem is a lurking data 

quality problems [40, 41, 57]. The predictive performances of the resulting SDP 

approaches are assessed according to accuracy and AUC values. To guard against 

chance divisions of the data, the 10-fold CV was repeated 10 times (10X10 

execution for each model development) and the average values of the 
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performance metrics were obtained [58-60]. Table 5 shows labels for each RBF 

method with varying threshold values.  

 

Fig. 1. Experimental framework. 
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Table 5. Labelled RBF methods with different threshold values. 

Rank-based Filter 

Methods 
Threshold Values Labels 

Chi-Square Filter (CSF) Full Features RBF1 

Log2N RBF2 

Top20% RBF3 

Top30% RBF4 

Top50% RBF5 

Correlation Filter (COF) Full Features RBF6 

Log2N RBF7 

Top20% RBF8 

Top30% RBF9 

Top50% RBF10 

Information Gain Filter 

(IGF) 

Full Features RBF11 

Log2N RBF12 

Top20% RBF13 

Top30% RBF14 

Top50% RBF15 

Relief Filter (REF) Full Features RBF16 

Log2N RBF17 

Top20% RBF18 

Top30% RBF19 

Top50% RBF20 

5.  Results and Discussion 

The experimental findings based on the experimental context are discussed in this 

section (See Fig. 1). Accuracy and AUC are used to evaluate the efficacy of the 

ensuing prediction models from the impact of threshold values for RBF methods. 

WEKA machine learning tool was used to build all prediction models, R-language 

was used for statistical analysis and OriginLab was deployed for the graph analysis. 

The experimental results were analysed based on each of the studies of RBF 

methods. The essence of this is to investigate and validate the effect of change in 

threshold values for selecting top-ranked features in studied RBF FS methods.  

Figure 2 shows the box-plot interpretations of the prediction performance of 

CSF on NB and DT classifiers with varying threshold values. Based on the average 

accuracy of the NB classifier, RBF3 (See Table 5) had the highest average accuracy 

value of 81.72%, followed by RBF2 with 80.47% and then RBF4 (80.1%) and 

RBF5 (77.61%). Except for RBF5, other labels (RBF2, RBF3, and RBF4) were 

superior to RBF1 (when all full features are used). Based on NB average AUC 

values, RBF3 (0.779) was superior to other methods (RBF1 (0.745), RBF2 (0.766), 

RBF4 (0.767), RBF5 (0.759)). In the case of the DT classifier, according to 

accuracy, the results were similar to that of NB. RBF3 recorded the highest average 

accuracy of 84.29 followed by RBF4 (83.34%), RBF2 (83.33%), and RBF5 

(82.94%). Concerning average AUC values, RBF3 had an average AUC value of 

0.706 which was superior to the average AUC values of RBF1 (0.671), RBF2 

(0.69), RBF3 (0.686), and RBF5 (0.686). From these, in the case of CSF, RBF3 

(CSF with Top20%) is superior to other methods (RBF1, RBF2, RBF4, and RBF5) 

on accuracy and AUC values with NB and DT classifiers. 



198        M. Almomani et al. 

 
 
Journal of Engineering Science and Technology        February 2023, Vol. 18(1) 

 

Fig. 2. Box-Plot representations of the predictive performances  

of NB and DT models based on CSF with varied thresholds. 

Just as in the case of CSF, Fig. 3 demonstrates the box-plot interpretations of the 

predictive performance of COF on NB and DT classifiers with varying threshold 

values. Based on the average accuracy of the NB classifier, RBF8 (See Table 5) 

recorded the best average accuracy value of 80.87%, followed by RBF7 with 80.36% 

and then RBF9 (79.46%) and RBF10 (78.75%). It was also observed that RBF7, 

RBF8, RBF9 and RBF10 were superior to RBF6 (when all full features are used). 

With respect to average AUC values, RBF8 (0.775) was superior to other methods 

(RBF6 (0.745), RBF7 (0.77), RBF9 (0.764), RBF10 (0.765)). For the DT classifier, 

based on accuracy, RBF8 had the highest average accuracy of 84.1% followed by 

RBF7 (83.67%), RBF9 (83.05%), and RBF10 (83.04%). As for average AUC values, 

RBF8 outperforms other methods (RBF6 (0.675), RBF7 (0.69), RBF9 (0.685), and 

RBF10 (0.686)) with an average AUC value of 0.71. Similar to CSF, RBF8 (COF 

with Top20%) is superior to other methods (RBF6, RBF7, RBF9, and RBF10) in 

accuracy and AUC values with NB and DT classifiers.  

Figure 4 shows the box-plot interpretations of the predictive performance of 

IGF on NB and DT classifiers with different threshold values. Based on average 

accuracy of NB classifier, RBF13 (80.38%) was superior to RBF11 (77.56%), 

RBF12 (79.77%), RBF14 (78.76%), and RBF15 (77.58%). With average AUC 

values, RBF13 (0.768) and RBF14 (0.768) recorded same performance but were 

superior to other methods (RBF11 (0.745), RBF12 (0.764), and RBF15 (0.762)). 

Regarding the DT classifier, based on accuracy, RBF13 had the highest average 

accuracy of 83.57% followed by RBF12 (83.49%), RBF14 (83.47%), and RBF15 
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(83.16%). Although, there exist no significant differences in the average accuracy 

values of these methods. Concerning average AUC values, RBF13 had an average 

AUC value of 0.706 which was superior to the average AUC values of RBF11 

(0.68), RBF12 (0.692), RBF14 (0.694), and RBF5 (0.689. Conclusively, RBF13 

(IGF with Top20%) is superior to RBF11, RBF12, RBF14, and RBF5) on accuracy 

and AUC values with NB and DT classifiers. 

Figure 5 shows the box-plot interpretations of the prediction performance of 

REF on NB and DT classifiers with varying threshold values. Based on the 

average accuracy of the NB classifier, RBF18 had the highest average accuracy 

value of 82.06%, followed by RBF17 with 81.42% and then RBF19 (80.9%) and 

RBF20 (79.73%). Based on NB average AUC values, RBF19 (0.772) was 

superior to other methods (RBF16 (0.737), RBF17 (0.748), RBF18 (0.763), 

RBF20 (0.769)). In the case of the DT classifier, with reference to accuracy, 

RBF18 recorded the highest average accuracy of 83.69% followed by RBF19 

(82.8%), RBF16 (82.68%), RBF17 (82.58%) and RBF20 (82.48%). Concerning 

average AUC values, RBF18 had an average AUC value of 0.694 which was 

superior to the average AUC values of RBF16 (0.667), RBF17 (0.648), RBF19 

(0.687), and RBF20 (0.685). Nonetheless, in the case of REF, RBF18 (REF with 

Top20%) is superior to RBF16, RBF17, RBF19, and RBF20 on accuracy and 

AUC values with DT and NB classifiers except in the case of AUC values for NB 

where RBF19 had the highest value. 

Fig. 3. Box-Plot representations of the predictive performances  

of NB and DT models based on COF with varied thresholds. 
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Fig.4. Box-Plot representations of the predictive performances  

of NB and DT models based on IGF with varied thresholds. 

 
Fig. 5. Box-Plot representations of the predictive performances  

of NB and DT models based on REF with varied thresholds. 
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Summarily, Figs. 2-5 present the box-plot interpretations of the predictive 

performance of CSF, COF, IGF and RFF on NB and DT classifiers respectively with 

different threshold values (Full features, Log2N, Top20%, Top30%, Top50%) on the 

studied datasets. From the representations, it was observed that prediction models 

(NB and DT) based on RBF methods were superior to those when no FS method (Full 

features) was used. That is, RBF methods improve the predictive performances of 

NB and DT classifiers. This result coincides with current research studies on the 

impact of FS techniques on SDP models [11, 13-15, 24, 25, 35]. Also, models with 

RBF with Top20% ranked features were superior to other SDP models based on other 

investigated threshold values (Full feature, Log2N, Top30%, and Top50%). 

To further strengthen the experimental results, a double Scott-Knott statistical 

test was performed on the experimental results to determine if there are statistically 

significant differences in the impact of the threshold values on RBF methods with 

NB and DT classifiers over the studied datasets. Figure 6 presents the Double Scott-

Knott Statistical Test Results according to Accuracy and AUC values of NB and 

DT Classifiers with varying threshold values. Table 6 summarizes the statistical 

rank test results as shown in Fig. 6. 

 

Fig. 6. Double Scott-Knott statistical rank test results based on accuracy and 

AUC values of RBF-based NB and DT models with varying threshold values. 

From Table 6, based on the average accuracy value, it can be observed that 

the Top20% threshold value ranked first with a significant difference from other 

threshold values for SDP models with reference to NB and DT classifiers. Log2N 

threshold value ranked second in the case of NB classifier; however, there is no 

significant difference in its (log2N) impact on the RBF than Top30 and Top 50% 

threshold values for DT-based models. Based on the average AUC value, the 
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Top20% threshold value ranked first, while other threshold values (log2N, 

Top20%, and Top50%) ranked second while using full feature ranked third for 

RBF-based DT models. There is no statistically significant difference among the 

threshold values for RBF-based NB models. That is, Log2N, Top205, Top30% 

and Top50% threshold values all ranked jointly first while full features ranked 

last. Scott-Knott rank test of each RBF method can be seen in Appendix A (see 

Figs. A-1 to A-4). 

Table 6. Summary of double Scott-Knott rank test of  

RBF-based NB and DT models with different threshold values. 

Statistical Ranking based  

on Average Accuracy 

Statistical Ranking based  

on Average AUC 

NB DT NB DT 

Rank 
Threshold 

Value 
Rank 

Threshold 

Value 
Rank 

Threshold 

Value 
Rank 

Threshold 

Value 

1 Top20% 1 Top20% 1 Top20%, 

Log2N, 

Top30%, 

Top50% 

1 Top20% 

2 Log2N 2 Log2N, 

Top30%, 

Top50%, 

Full 

Features 

2 Full 

Features 

2 Log2N, 

Top30%, 

Top 50% 

3 Top30%   
 

 3 Full 

Features 

4 Top50%, 

Full 

Features 

      

It can be deduced that using Top20% as a threshold value for RBF methods 

proved to be superior to other threshold values (Full features, Log2N, Top30% and 

Top50%) irrespective of the classification algorithm used. Of utmost concern is the 

Log2N threshold as most existing studies have been based on it for selecting top-

ranked features. From the research findings, we recommend the usage of the 

Top20% threshold value for the selection of top-ranked features on RBF feature 

selection techniques in SDP. 

6. Conclusions 

The experimental results showed that selecting the appropriate threshold values for 

RBF methods is crucial as the impact of threshold values on RBF varies. 

Accordingly, using a Top20% threshold value for selecting top-ranked features in 

SDP proved to be superior to other threshold values (Full features, Log2N, Top30% 

and Top50%). Also, it was observed that RBF methods have a positive effect on 

the prediction performances of SDP models which coincides with current literature. 

Hence, this research study recommends the usage of the Top20% threshold value 

for the selection of top-ranked features for RBF methods in SDP. The above 

guidelines will serve as a guide to choosing the acceptable threshold value and RBF 

methods for SDP for software professionals and researchers. Latent data quality 

concerns for instance class disparity, outliers, data imputation and ultimate values 

relating to FS techniques in SDP will be investigated in future works.  
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Abbreviations 

AUC 

COF 

CSF 

CV 

DT 

FFR 

FN 

FP 

FS 

IGF 

ML 

NASA 

NB 

PCA 

RBF 

Area Under the Curve 

Correlation Filter 

Chi-Squared Filter 

Cross Vali 

Decision Tree 

Filter Feature Rank 

False Negative 

False Positive 

Feature Selection 

Information Gain Filter 

Machine Learning 

National Aeronautics and Space Administration 

Naïve Bayes 

Principal Component Analysis 

Rank-based Filter 

REF 

SDP 

Relief Filter 

Software Defect Prediction 

SDLC Software Development Life Cycle 

SVM 

TN 

TP 

WEKA 

Support Vector Machine 

True Negative 

True Positive 

Waikato Environment and Knowledge Analysis 
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Appendix A 

Fig. A-1. Scott-Knott Statistical Test of the predictive performance of models 

based on CSF with different threshold values on all studied datasets. 

Fig. A-2. Scott-Knott Statistical Test of the predictive performance of  

models based on COF with different threshold values on all studied datasets. 
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Fig. A-3. Scott-Knott Statistical Test of the predictive performance of  

models based on IGF with different threshold values on all studied datasets. 

 
Fig. A-4. Scott-Knott Statistical Test of the predictive performance of  

models based on IGF with different threshold values on all studied datasets. 


