
Journal of Engineering Science and Technology
Vol. 17, No. 6 (2022) 4487 - 4504
© School of Engineering, Taylor’s University

4487

IMPLEMENTING LOAD-BALANCED
CONCURRENT SERVICE LAYER FOR IMPROVING

THE RESPONSE TIME OF AN IOT NETWORK

J. K. R. SASTRY1,*, K. V. SOWMYA2

1Department of Electronics and Computer Science, KLEF University

Vaddeswaram, Guntur District, Andhra Pradesh, India
2Department of Electronics and Communication Engineering, KLEF University

Vaddeswaram, Guntur District, Andhra Pradesh, India

*Corresponding Author: drsastry@kluniversity.in

Abstract

Most IoT networks suffer from poor response as designing such a network is done

without considering the expected response time. Performance of IoT networks

suffers due to several issues that include heterogeneity among the devices, varying

speeds for communication, lack of alternative paths for communication, frequent

failure of the devices, etc. The issues relating to the performance vary from layer to

layer. The performance of an IoT network suffers due to the lack of a proper

working system to handle service requests from either side of the users and the

devices. In this paper, a load balancing system, a system of architecting the service

management, and the decision relating to optimum RESTful servers have been

addressed that enhance the performance of an IoT network by more than 69.5%

compared to the performance enhancement achieved through other methods.

Keywords: Load balancing, Networking topology in the services layer, Performance

enhancement of IoT network, RESTful service management.

4488 J. K. R. Sastry and K. V. Sowmya

Journal of Engineering Science and Technology December 2022, Vol. 17(6)

1. Introduction

The Internet of Things (IoT) describes the network of physical objects - "things"—

that are embedded with sensors, software, and other technologies to connect and

exchange data with other devices and systems over the internet [1]. D. All things

connected to the Internet can talk to each other, enabling a much smarter system

where the decision-making process becomes easy. IoT is being applied in almost

all sectors, including industries, retail, medicine, etc., paving the way to a fully

digitalized world.

IoT networks are multi-layer networks consisting of different layers such as the

device layer, controller layer, restful services layer, gateway layer, and cloud layer.

Although an IoT application looks simple, it is only with all these layers'

involvement that makes an IoT application is complete.

The controller layer keeps the status of the devices, buffers the data, and initiates

any control required through actuating. The device layer consists of devices viz.,

sensors responsible for gathering the data related to physical surroundings into which

they are deployed. The data collected from these devices is communicated to the

Controller layer through a base station, where this layer processes the data received

from the sensors. The device layer consists of devices viz., sensors responsible for

gathering the data related to physical surroundings into which they are deployed. The

data collected from these devices is communicated to the Controller layer through a

base station, where this layer processes the data received from the sensors. The device

layer consists of devices viz., sensors responsible for gathering the data related to

physical surroundings into which they are deployed. The data collected from these

devices is communicated to the Controller layer through a base station, where this

layer processes the data received from the sensors.

REST stands for Representational State transfer Architecture for implementing

lightweight WEB services, generally called RESTful services. The WEB services

are implemented through API that can be called whoever a service is required. An

API is treated as a resource, and service is requested by referring to a resource. The

APIs are scalable in the sense that an API can be called any number of times as

different instances of the same service

The Restful Services layer provides different end-user services for moving the

data to the cloud where the data is stored or retrieved. The design of the service

layer becomes the key as most of the processing is undertaken in the layer. The

services are implemented as WEB services using API, referred to as Restful API.

A user can initiate the request to an API by invoking a request for an API by

transmitting a message in XML format to the server that hosts the services as

RESTful API. Django server is generally used for hosting the web services as

RESTful API. The services hosted in this layer must be lightweight as the

processing has a heavy bearing on the response time within which the transactions

initiated by the user or devices must be answered. Most of the time, processing the

transactions initiated by the user is consumed in the services layer. Traffic handling

capacity is the key to bearing on the scheduled and processed services. The design

and implementation of the layer thus become quite critical.

The gateway layer acts as a medium for transporting the data from the services

layer to the cloud layer. Finally, the cloud layer stores the received from the services

layer. The flow of data in an IoT network is always bi-directional, wherein the

Implementing Load-Balanced Concurrent Service Layer for Improving 4489

Journal of Engineering Science and Technology December 2022, Vol. 17(6)

bottom to top approach the data from the devices is sent to the cloud. In contrast,

in a top-to-bottom approach, a user controls the devices from a remote location

where the data flows from the user via the cloud layer to the device layer.

A technology that can connect things and communicate is the Internet of things

(IoT). Devices in an IoT network can sense the physical parameters and send this

information to the higher layers through many intermediate layers. Various

applications can effectively communicate using web services available on the

Internet. All the communications in a web service are encoded using XML Web

services can also be called information exchange systems that enable one

application to exchange data with another using the Internet. An overview of web

services is given, and a discussion about the two types of web services viz. SOAP-

based web services and Restful web services are carried out. The Restful services

layer is important for handling the requests sent by the remote clients [2].

An IoT network can be more efficient if it can provide more services to its

clients. In [3-5], the importance of Restful web services, i.e., the web services that

follow Representational state transfer (REST) architecture in which there is a

stateless connection between the server and client highlighted. Restful web services

are gaining much importance nowadays since they are lightweight, simple, and

stateless. IoT is a technology sandwiched with other technologies to enhance its

importance and deliver promising solutions to all problems.

The data collected from devices in an IoT network is stored in the cloud. Due

to the tremendous increase in the number of devices connected to an IoT network,

data storage in the cloud is also increasing, a challenge. Data gathering and

processing technologies should be so that they pre-process the data before being

transmitted to the cloud to eliminate any unwanted data. Edge computing is one

such technology that has emerged and proved to be an effective solution for the

increased storage capacity at the cloud layer. Porter et al. [6] discussed an effective

data gathering and processing system based on Restful web services, and the

MERN stack is used to build an effective web service for the IoT system.

An IoT network's performance depends on several factors like the protocol

used, heterogeneity among the layers, transmission speeds, latency, availability of

various alternate paths for communication, etc. An IoT network's performance

depends on the performance of individual layers, which can be computed as a

summation of performances at all the layers mentioned above.

Each layer in an IoT network needs to be connected to a different topology to

derive maximum performance from the whole network. Establishing

communication between these layers having different topologies is a real challenge.

In addition to the topology, other issues must be addressed at each layer, which

affects the topology issue. Different other issues must be addressed at each layer,

which affects the issue of other issues that must be addressed at each layer, affecting

the response time.

Power minimization and extending the longevity of devices is the key issue

relating to the device layer. In the Controller layer communicating with a base

station, internal control processing and the flow of requests to the services layer

become the key issue. In the Restful server layer, the server should provide the

required services, and the rate of service should match the speed at which the data

is communicated. The gateway layer establishes high-speed communication into

4490 J. K. R. Sastry and K. V. Sowmya

Journal of Engineering Science and Technology December 2022, Vol. 17(6)

the cloud while dealing with different communication protocols to pump the data

into the gateway.

The important metrics used in accessing the performance of an IoT network are

response time and throughput, which are dependent on various other factors such

as the bandwidth available, packet loss ratio, protocol conversions that happen at

different layers, speed of data communication, and latency of the devices, etc.

The main issue that needs to be addressed in the service layer is handling the

services request traffic emanating from the devices and the users on the cloud side.

One critical issue that must be addressed is to match the speed of communication

matching to the speed of processing the request. Many users might request the same

simultaneously, requiring heavy service request instance management. Load

balancing of the traffic when several servers are used for service management is

another critical issue. The decision to use an optimum number of servers is another

critical issue that must be considered. When several servers are used, establishing

a connection with the controllers through a load balancer by choosing a proper

networking topology is one of the most important key issues that must be addressed.

The relationship between all these issues with the overall performance of an IoT

network must be assessed, which is the prime focus of this paper.

The novelty of the work

Enhancing the response time of the IoT network through load balancing at services

layer into which several redundant, concurrent, and similar servers are added. The

balancing system is fully integrated with performance enhancements done in the

controller and the device layer.

In the rest of the paper, section 2 covers related work which identifies the GAP regarding

performance optimization within the services layer. Section 3 describes a prototype network

and its related performance computations considering the transmission of three data packets

commencing from a device until it reaches the cloud. Section 4 presents a revised IoT

network, focusing on the device and controller layers. Performance computations and the

efficiencies that accrue when optimum Wi-Fi data packet size and speed, Optimum CDMA

data packet size and speeds have been elaborated in this section. Section 5 deals with the

limitations of using a single server at the services layer. Section 6 presents an architecture

that shows how RESTful services can be used to implement the service layer of an IoT

network. In section 7, a load balancing system is explained, and it has been shown how the

performance of the IoT is improved. Architecture is presented in this section, which shows

that the load balancing at the services layer is achieved. An algorithm that implements the

load balancing is presented in this section. The results relating to the performance of the load-

balanced IoT networks have also been discussed in this section

2. Related Work

Several issues have been discussed in the literature connected to the IoT network's

performance in one way or the other. A review of the contributions is placed in this section.

Sowmya and Sastry presented [7] a detailed review of the basic issues that must

be addressed to enhance the performance of the IoT networks. The same authors [8]

also presented a solution for enhancing IoT networks' performance by implementing

a clustering algorithm and a multi-stage network within the device level. Next, a

method that enhances the performance in the controller layer through high-speed

Implementing Load-Balanced Concurrent Service Layer for Improving 4491

Journal of Engineering Science and Technology December 2022, Vol. 17(6)

communication and using effective and sufficient data buffers has been presented [9,

10]. A parallel architecture for controller coupled with clustered architecture for

device layer is presented, which proved a very high improvement in the performance

of the IoT network. Sasi Bhanu et al. [11] presented a high-speed computing at the

services layer, though the solution did not look much into service layer orientation.

Sastry et al. [12] proposed a coupler-based implementation to enhance the

performance at the gateway level.

Numbers of authors have presented algorithms relating to selecting a device to

act as a cluster Head to effect communication of the sensed data and receive the

data for affecting the actuating function. The issue of power minimisation of the

sensors has been discussed in [13-21].

Some contributions focus on how the sensed data is stored in the cloud [22].

Some issues related to securing the data for transmitting from source to destination

have been presented by Kwon and Park [23].

Determination of an optimum number of clusters is another important issue

addressed. Some of the contributions in this regard include Puschmann et al. [24].

Various methods of selecting cluster head were proposed in [25-28].

Researchers of [29-37] discussed several issues in handling heterogeneity among

devices in the IoT networks, ways of clustering devices at the device layer, etc.

High-performance computing requirements have been felt necessary for

building IoT networks, especially to build the services layer, as the customers

require a fast response of the order of a few seconds. Implementation of HPC within

IoT, however, is expensive. IoT being lightweight, high performance in the services

layer must be achieved without adding to the cost.

HPC implementation within cloud computing systems to implement all the

desired computing requirements has been discussed [38]. The connection between

IoT and HPC has been discussed in [39]. New paradigms and devices that can be

used with HPC implemented within IoT layers have been presented. He also has

presented how IOT can be supported with HPC.

The performance of the IoT networks generally suffers due to the need to deal

with more unwanted data than the actual data transmitted [40]. Maintenance of

redundancy within the IoT networks to make the network fault tolerance also leads

to poor performance. They have also suggested including another layer within the

IoT network, called the Local IoT controller layer, to improve performance.

They have shown how education can be imparted by implementing HPC as a

service within a Cloud computing system. Boobala et al. [41] have presented

Different ways of optimizing the performance of cloud computing systems when

HPC is implemented as a part of the cloud has been discussed in [41]. HPC as a

service can be implemented for a user [42]. The process of optimizing performance

when HPC is offered as a service is demonstrated by implementing a different kind

of task of scheduling.

Implementing microservices-based middleware that implements an intelligent

API layer has been discussed [43]. The API also implements various components

that include external service assembler, service auditor, service monitor, and

service router component to coordinate service publishing, subscription,

decoupling, and service combination within the architecture.

4492 J. K. R. Sastry and K. V. Sowmya

Journal of Engineering Science and Technology December 2022, Vol. 17(6)

Several performance improvement techniques have been presented in the

literature [44-46] that include performance monitoring of lathes through IoT

performance monitoring UPS. Batteries through IoT, Implementation of asymmetric

processing on multi-core processors to implement IoT applications on GNU/Linux

framework, testing of message scheduling middleware algorithm with SOA for

message traffic control in IoT environment, and Development of hybrid execution

service-oriented architecture (HESOA) to reduce response time for IoT application

The literature mostly concentrated on performance optimization within Cluster

Layer and Layer to a certain extent. The issues related to performance enhancement

in the services layer have been dealt with the extent of implementing high-

performance computing, not much focusing on the issue of service requests related

traffic, and dependence on the performance at the service layer on the methods

implemented in other layers the IoT network,

3. Prototype IoT Network for Experimentation

The IoT network has been built considering all the typical and comprehensive IoT

network layers, including the device, controller, services, gateway, and computing

layers. The Devices in the device layer are connected as a cluster. A typical IoT

network developed for carrying out the experimentation is shown in Fig. 1.

Fig. 1. Experimental IoT network.

Four clusters have been used to sense two inputs (temperature and Humidity)

and actuate two outputs (Fans and Air conditioners). Each cluster is provided with

a cluster head that communicates with the base station on behalf of all the devices

in the cluster to transmit or receive the data. The communication between the

cluster heads and the base stations and in between the base stations and the

controller is implemented through CDMA. Certain optimizations are implemented

within the cluster to determine optimum speeds in our earlier works. Controllers

are connected to the Restful service's server through a USB interface. Restful

services are primarily designed to implement different types of service requests.

The Restful services server is connected to a gateway to connect the local network

to the cloud through the Internet.

Implementing Load-Balanced Concurrent Service Layer for Improving 4493

Journal of Engineering Science and Technology December 2022, Vol. 17(6)

Computing the response time is the real challenge before improving the IoT

network's performance. Time consumed by every device and within every layer for

sensing, processing, protocol conversion, receiving, and transmitting must be

computed and added to find the overall response time. A process is added into every

layer to log data in terms of receiving the data, unpacking the data, packing the data,

and transmitting the data. Table 1 shows the time components that must be considered

in each layer. Summation of time taken in each of the layers will show the total time

taken by an IoT network to complete the transactions initiated from a low-end device

until the stage of storing the data in the cloud or the time taken to receive the message

from the end-user until the device where the request of the user is processed.

Table 1. Time components that affect the performance of an IoT network.

Serial
Time Component

Symbol
Time component Description

1 TRLi Time taken to receive the data in the ith layer.

2 TUPLi Time taken to unpacking and packing data in the ith layer

3 TTLi Time taken to transmit the data in the ith layer.
4 TTLLi Time Taken to Log the Data

5 TSUMi Total time taken to process the data. ∑ 𝑇𝑅𝐿𝑖 + 𝑇𝑈𝑃𝐿𝑖 +𝑁
𝑖=1

𝑇𝑇𝐿𝑖 + 𝑇𝑇𝐿𝐿𝑖

The prototype model's performance computations have been carried out

considering the 4 clusters of sensing and actuating devices, each headed by a cluster

head that receives the data using the Wi-Fi protocol, fixed at 11Mbps, the data size

of 13 Bytes, and the CDMA communication speed fixed at 110Mbps. The ethernet

speed is fixed at 110Mbps to transmit the data to the cloud through the gateway.

The time calculations for transmission of the data are shown in Table 2. It can be

seen from this table that it has taken 1152 microseconds to complete the

transmission of data to a cloud.

 Table 2 Time computations of prototype IoT network.

4494 J. K. R. Sastry and K. V. Sowmya

Journal of Engineering Science and Technology December 2022, Vol. 17(6)

4. 4. Enhancing the Performance at the Device layer and Controller

Layer - Revised IoT Network

The prototype IoT network shown in Fig. 2 is the modified network considering

the device Layer and the Controller Layer through a multi-stage network in the

device layer and providing the parallel computing considering both the base

stations and Microcontrollers. Parallel paths are designed into the networks s to

communicate between the devices and the controllers faster. Four Base stations and

four controllers are added to the network. Three cluster heads are implemented

within each of the clusters. The devices are connected to the cluster heads through

a multi-stage network. This arrangement provided several communication paths

between the devices and cluster heads. Three cluster heads are connected to two

base stations to provide dual paths for communication. Again, parallel

communication is provided between a base station and a set of Microcontrollers to

implement parallelism at the controller level. All the controllers are connected to a

services server through a USB interface. The revised network provides several

paths for communication leading to high fault tolerance and availability of any

paths for effecting communication simultaneously. Services server is connected to

the gateway to be the onward connection to the Internet.

Fig. 2. Prototype IoT network with

modifications effected at device and controller layer.

The detailed performance computations of an IoT network with changes made

into the device layer and the controller layer are shown in Table 3. From Table 3,

one can see that choice of Wi-Fi speed at 11Mbps, Wi-Fi data size 48 bytes per

packet can be transmitted using the Cellular speed fixed at 170 Mbps, and data size

fixed at 64 bytes/packet using zero latency time of data transmission at Cluster

Head. However, 0.001 Microseconds of time will be sent for repacking and

packaging into cellular data packets. It can be seen from Table 3 it took only 792

Microseconds of time to transmit 174 Bytes of payload as against 1152

Microseconds of time taken to transmit the size of payload that effecting to

timesaving of 57%.

Implementing Load-Balanced Concurrent Service Layer for Improving 4495

Journal of Engineering Science and Technology December 2022, Vol. 17(6)

5. Limitation of a Single Server in an IoT network

A layer that deals with user requests, the services layer, works like middleware in an

IoT network. The services layer is usually developed using a server interfaced with a

gateway on one side and the Microcontroller on the other side. In Fig. 2, it can be seen

that the service's servers get connected to the Microcontroller through a USB interface-

driven with a speed of 120 Mbps which means 15×106 Bytes driven per second. On

average, if the data packet size of 15 Bytes is considered, and when the transaction is

converted into XML standard, the request size will be nearly 100 bytes leading to a

request load of 10,000 requests per second. A typical server designed with the 2.5 GHz

speed of the processor can process 2500 requests per second, implying 40 Microseconds

of processing one request. If all the 10,000 requests are to be processed by a single

processor, it will take 10,000×40 microseconds of time which is a huge time not

acceptable to any user. With a single server used in the IoT network, there will be a

considerable delay in response time, which is unacceptable to the end-user.

6. Implementing RESTful Services Server within an IoT Network

The services server is implemented as a RESTful (Representational state transfer)

Server (Application) to communicate using an API for availing different services.

The REST full server implements a different API. The user can request to run the

API through the initiation of the REST full server implements different APIs. The

user can request to run the API by initiating an XML message transmitted through

either HTTP or TCP/IP protocol. The architecture of a restful services server is

shown in Fig. 3.

Table 3. Performance computations - Revised IoT (With Changes DEV +CNT) network.

4496 J. K. R. Sastry and K. V. Sowmya

Journal of Engineering Science and Technology December 2022, Vol. 17(6)

Operating System

Dejango

RESTful Server

Listner

Responsder

Listner

Responsder

GatewayController

RESTful

API-1

RESTful

API-2

RESTful

API-3

RESTful

API-4

RESTful API-2-

Instance-1

RESTful API-2

Instance-2

RESTful API-2

Instance-3

Fig. 3. Restful services server architecture.

A Listener program keeps waiting to receive a service request called through a

gateway or controller in an XML message. The Listener receives the message,

parses the API required, and the RESTful server will initiate the API in a separate

thread by passing the requested parameters. The API will process the request, gets

the output, converts the same to an XML message, and transmit the same to the

user who initiated the request. When several users request the same service, several

service instances are instantiated.

The application developer can develop different APIs and register the same with

the Django server by providing the specification of the function in terms of the

function name, arguments list and the return value, and the format in which the

output must be returned. The DData is stored or retrieved using API functions

through one of the database engines. Django REST Framework is used to

implement the RESTful API. For the prototype application to be implemented, 12

different services (Status of the Fan1, Status of the Fan2, Status of the Fan3, Status

of AC1, Status of AC2 Status of AC3, State of Humidity1, State of Humidity2,

State of Humidity3, State of Temp1, State of Temp2, State of Temp3) are

considered for implementing typical IoT network. Users can query any of the

statuses, and the status is provided as a text string (ON/OFF) to the user. The

number of instances to be handled depends on the traffic scheduled to each server.

A single restful service server is generally not sufficient. Therefore, many servers

must be added to the system to cater to the load and respond within an acceptable

time. A single restful service server is generally not sufficient. Therefore, many

servers must be added to the system to cater to the load and respond within an

acceptable time. A single restful service server is generally not sufficient. Therefore,

many servers must be added to the system to cater to the load and respond within an

acceptable time single restful service server is generally not sufficient. Therefore,

many servers must be added to the system to cater to the load and respond within an

acceptable time. Two thousand four hundred requests, when evenly distributed over

Implementing Load-Balanced Concurrent Service Layer for Improving 4497

Journal of Engineering Science and Technology December 2022, Vol. 17(6)

12 different types of requests, 200 instances for each of the API (request) have to be

processed, which means the server should be able to cater to 2400 threads' massive

processing requirement. Two thousand four hundred requests, when evenly

distributed over 12 different types of requests, 200 instances for each of the API

(request) have to be processed, which means the server should be able to cater to 2400

threads' massive processing requirement. Two thousand four hundred requests, when

evenly distributed over 12 different types of requests, 200 instances for each of the

API (request) have to be processed, which means the server should be able to cater to

2400 threads' massive processing requirement. Two thousand four hundred requests,

when evenly distributed over 12 different types of requests, 200 instances for each of

the API (request) have to be processed, which means the server should be able to

cater to 2400 threads' massive processing requirements.

7. Improving the Design of the IoT Network at the Service Layer for

Enhancement of the Response Time

The response time can be improved by adding more servers into the services layer.

In that case, many issues are to be addressed. The load on the servers needs to be

managed such that all the servers must be equally loaded to get an acceptable

response time. Figure 4 shows the redesign of the IoT network with multiple servers

to address the service request traffic.

The network explained earlier has been improved further by intruding a load

balancer to which the four controllers are connected through a USB interface, and four

restful servers are connected to the output side of the Balancer. The restful servers are

identical, and each server can provide any service designed into the IoT network. All

the restful servers are connected to the Internet through a multi-channel gateway.

Fig. 4. Revised IoT network - more servers in service layer

with service requests distributed through a load balancer.

4498 J. K. R. Sastry and K. V. Sowmya

Journal of Engineering Science and Technology December 2022, Vol. 17(6)

7.1. Load balancing the service requests

A load balancer is a hardware-software solution mainly meant to maintain even request

load on each server. The software architecture of the load balancer is shown in Fig. 5.

Four listeners keep communicating with its peer controller side Transmitter

within the Load Balancer. The listeners receive a request, assign a priority based

on the type of request, write a priority based on the type of request, write a priority

based on the type of request, write a priority based on the request, and write it into

a priority queue. Priorities are assigned to the requests as per their urgency of

servicing. The requests within the queue are ordered according to the queue. A

dispatcher program is an intelligent program that keeps track of the load on each

physical server's physical servers by maintaining a memory-resident table, as

shown in Table 4. A loading strategy is to select the less loaded server until the

server reaches the peak load. The loading of the requests must also be done in a

round-robin fashion and skipping the server that has reached the maximum load.

Architecture reveals how different software components are related and interact

to accomplish overall requirements. There is one program that runs in each controller

to transmit the data. Four individual threads of the Load balancer keep listening on

the controller port and receive the data as and when transmitted by the controller. The

listers write the data transmission requests into a queue by attaching priority based on

the data centricity. The dispatcher program keeps account of the load on each server

and schedules the requests to the server, which is less loaded. The server writes the

output to the gateway channel to which the server is connected.

Fig. 5. Load balancer architecture.

Table 4. Memory resident table for keeping status of the load.

Server-ID
Number of requests

under process

Maximum Capacity

of the server

(Number of requests

Load on the server in

percentage

1 2000 2500 80

2 1900 2500 76

3 1800 2500 72
4 1700 2500 68

Total 7400 10000 74

The number of servers required can be decided based on the Maximum Load

expected. From Table 5, three servers are sufficient to handle 7400 requests, with

a maximum of 7500 requests. There is a need to estimate the number of concurrent

Implementing Load-Balanced Concurrent Service Layer for Improving 4499

Journal of Engineering Science and Technology December 2022, Vol. 17(6)

requests that the services layer of the IoT network must cater to. If the load varies

heavily, then one must have the strategy to decide on the number of maximum

servers required. There should also be a strategy to manage the servers such that

the required number of servers only be connected that are sufficient to manage the

load at any point in time

Algorithm (Load balancer Listener process)

{

QUEUE [i] // is the request queue where i stands for the request number.

PRIORITY [j] // is the priority to be set for the ith service as per Table 5

Receive the request packet, which is in the XML message format.

Parse the message, the Kind of reservation requested.

Attach priority to the request and write into the queue with incremented for every request.

}

Table 5. Priority set for the services.

Service Number Service Priority

1. AC1ONOFF 950

2. AC2ONOFF 900

3. AC3ONOFF 850

4. FAN1ONOFF 800

5. FAN2ONOFF 750

6. FAN3ONOFF 700

7. SET-HUMIDITY1 650

8. SET-HUMIDITY2 600

9. SET-HUMIDITY3 550

10. SET-TEMP1 500

11. SET-TEMP2 450

12. SET-TEMP3 400

Algorithm (Despatcher process)

LOAD [i] // Load on each of the servers where i stands for server

THRESHOLD[j] // Threshold load on each of the server j

QUEUE [k] where k stands for a request placed in the QUEUE

CURRQST // Current Request

While (True)

{

Read CURRQST

i= 0

LOOP

{

i = i+1

if (i > 12) then i=0

If LOAD[i] < THRESHOLD[i] THEN

{

LOAD[i] = LOAD[i] +1

TRANSMIT, the request to SERVER[i]

If SERVICECOMPLETED = TRUE then LOAD[i] = LOAD[i]-1

}

}

}

4500 J. K. R. Sastry and K. V. Sowmya

Journal of Engineering Science and Technology December 2022, Vol. 17(6)

7.2. Discussion and results

The performance computation considering the revised IoT network considering that

the IoT network is developed using four servers is shown in Table 6 which is placed

after references section. Comparative analysis of response time computation

considering typical scenarios is shown in Table 7. The response time is the least

when the data size is 468 bytes considering the changes made in the device layer +

Controller Layer and considering device layer + Controller Layer + services Layer.

With the Multi-servers introduced in the services layer, the response time is

decreased from 3.63 Microseconds/byte to 1.14 Microseconds per byte, an

Improvement in response time by 69.5%.

Table 7. Comparisons of performance considering

the prototype model and the revised model with change in data size.

Type Model

Total data

transmitted

in bytes

Response Time

in Microseconds

Time takes per

byte Transferred

in Microseconds

Prototype model 156 1152.80 7.39

Device + Controller

Modified Model

156 792.19 5.08

312 1244.48 3.99

468 1696.77 3.63

1560 4862.78 3.12

Device + Controller +

Services Later Modified

Model

156 605.35 3.88

312 437.90 1.40

468 533.71 1.14

1560 1204.41 0.77

Table 6. Performance computations - Revised IoT (With Changes DEV +CNT+Services) network.

Implementing Load-Balanced Concurrent Service Layer for Improving 4501

Journal of Engineering Science and Technology December 2022, Vol. 17(6)

8. Conclusions and Future Work

Performance of the IoT network is the key, especially when such networks are built

for the aerospace and automobile sectors. In this paper, performance improvement

considering the Device layer + Controller Layer + Services layer has been presented.

The performance improvements have been achieved considering each layer or set of

layers or all the layers together. 69.5% performance improvement has been achieved

by using four servers, each capable of handling a Load of 2500 Requests per second.

And the load is distributed through an Intelligent Load Balancer. The servers could

be estimated to meet the Highest traffic and manage the servers to be hooking on the

network based on the actual load dynamically. It has been found a data load of 468

bytes per request will yield optimum response time.

Future work

Further research should be carried out to find an optimum number of servers that must

be used for varying degree workloads in terms of the number of service requests that

must be handled, and the cost incurred for implementing such a mechanism.

Further research could be done by considering different performance

enhancement methods implemented at the gateway level integrated with the

methods implemented in the services levels.

Further investigations are also to be carried out to find the possibility of using

an ethernet interface between the Controllers and the Load balance and the

connectivity between the servers and the gateway.

References

1. Oracle. (2022). What is the internet of things (IoT)? IoT topics. December 7,

2022, https://www.oracle.com/in/internet-of-things/what-is-iot/

2. Khachane, J.L.; and Desai, L.R. (2015). Survey paper on web services in IoT.

International Journal of Science and Research (IJSR), 4(12), 635-637.

3. Zhang, L.; Yu, S.; Ding, X.; and Wang, X. (2014). Research on IoT RESTful

web service asynchronous composition based on BPEL. Proceedings of the

2014 Sixth International Conference on Intelligent Human-Machine Systems

and Cybernetics, Hangzhou, China, 62-65.

4. Pan, L.; Xu, M.; Xi, L.; and Hao, Y. (2016). Research of livestock farming IoT

system based on RESTful web services. Proceedings of the 2016 5th

International Conference on Computer Science and Network Technology

(ICCSNT). Changchun, China, 113-116.

5. Laine, M. (2011). RESTful Web services for the internet of things. internet

hosted PDF, December 7, 2022, http://www.sensinode.com/EN/products/nano

service.html.

6. Porter, P.; Yang, S.; and Xi, X. (2019). The Design and implementation of a

RESTful IoT service using the MERN stack. Proceedings of the 2019 IEEE

16th International Conference on Mobile Ad Hoc and Sensor Systems

Workshops (MASSW), Monterey, CA, USA, 140-145.

7. Sowmya, K.V.; and Sastry, J.K.R. (2018). Performance evaluation of IoT

systems - basic issues. International Journal of Engineering & Technology,

7(2.7), 131-137.

http://www.sensinode.com/EN/products/nano

4502 J. K. R. Sastry and K. V. Sowmya

Journal of Engineering Science and Technology December 2022, Vol. 17(6)

8. Sowmya, K.V.; and Sastry, J.K.R. (2021). Performance optimization within

the device layer of IoT networks. Journal of Engineering Science and

Technology (JESTEC), 16(6), 5087-5109.

9. Sowmya, K.V.; and Sastry, J.K.R. (2022, in press). Improving the performance

of heterogeneous IoT networks through multi-stage and parallel computing

systems. SCIENTIA-IRANICA, 1-37.

10. Bhupathi, CH.; Sastry, J.K.R. (in press). Hybrid models for computing fault

tolerance of IoT networks TELKOMNIKA (Telecommunication Computing

Electronics and Control).

11. Sasi Bhanu, J.; Sastry, J.K.R.; Venkata, S.K.P.; Venkata, S.B.; and Sowmya,

K.V. (2019). Enhancing performance of IoT networks through high-

performance computing. International Journal of Advanced Trends in

Computer Science, 8(3), 432-442.

12. Sastry, J.K.R.; Ramya, G.S.; Niharika, V.M.; and Sowmya, K.V. (2019).

Performance optimization of IoT networks within gateway layer. Recent

Advances in Computer Science and Communications, 13(6), 1338-1346.

13. Ananthi, J.V.; Chinnalagi, V.; Murugeswarai, R.; Priyadarsini, T.; and

Rajalakshmi, K. (2017). An effective performance of smart sensor network

using IoT. International Journal of Advance Research, Ideas and Innovations

in Technology, 3(2), 638-645.

14. Ashwini, M.; and Rakesh, N. (2017). Enhancement and performance analysis of

LEACH algorithm in IOT. Proceedings of the 2017 International Conference on

Inventive Systems and Control (ICISC), Coimbatore, India, 1-5.

15. Behera, T.M.; Samal, U.C.; and Mohapatra, S.K. (2018). Energy-efficient

modified LEACH protocol for IoT application. IET Wireless. Sensor Systems,

8(5), 223-228.

16. Bhandari, S.; Sharma, S.K.; and Wang, X. (2017). Cloud-assisted device

clustering for lifetime prolongation in wireless IoT networks. Proceedings of

the 2017 IEEE 30th Canadian Conference on Electrical and Computer

Engineering (CCECE), Windsor, ON, Canada, 1-4.

17. Choi, D.-K.; Jung, J.-H.; and Koh, S.-J. (2018). Enhanced cluster-based CoAP in

Internet-of-Things networks. Proceedings of the 2018 International Conference on

Information Networking (ICOIN), Chiang Mai, Thailand, 652-656.

18. Choi, D.-K.; Jung, J.-H.; Kang, H.-W.; and Koh, S.-J. (2017). Cluster-based

CoAP for message queueing in Internet-of-Things networks. Proceedings of

the 2017 19th International Conference on Advanced Communication

Technology (ICACT), Pyeong Chang, Korea (South), 584-588.

19. Geetha, V.; Kallapur, P.V.; and Tellajeera, S. (2012). Clustering in wireless

sensor networks: Performance comparison of LEACH & LEACH-C protocols

using NS2. Procedia Technology, 4, 163-170.

20. Khedira, S.E.L.; Nasri, N.; Wei, A.; and Kachori, A. (2014). A new approach

for clustering in wireless sensors networks based on LEACH. Procedia

Computer Science, 32, 1180-1185.

21. Liu, Y.; and Zhou, Y. (2018). Development of distributed cache strategy for the

analytic cluster in an Internet of Things system. Proceedings of the 2018 IEEE

15th International Conference on Networking, Sensing and Control (ICNSC),

Zhuhai, China, 1-6.

Implementing Load-Balanced Concurrent Service Layer for Improving 4503

Journal of Engineering Science and Technology December 2022, Vol. 17(6)

22. Tao, X.; and Ji, C. (2015). Clustering massive, small data for IoT. Proceedings

of the 2014 2nd International Conference on Systems and Informatics (ICSAI

2014). Shanghai, China, 974-978.

23. Kwon, M.; and Park, H. (2016). The cluster formation strategies for

approximate decoding in IoT networks. Proceedings of the 2016 International

Conference on Information Networking (ICOIN), Kota Kinabalu, 366-368.

24. Puschmann, D.; Barnaghi, P.; and Tafazolli, R. (2017). Adaptive clustering for

dynamic IOT data streams. Journal of Internet of Things, 4(1), 64-74.

25. Behera, T.M; Mohapatra, S.K.; Samal, U.C.; Khan, M.S.; Daneshmand, M.;

and Gandomi, A.H. (2019). Residual energy-based cluster-head selection in

WSNs for IoT application. Journal of Internet Things, 6(3), 5132-5139.

26. Ju, Q.; and Zhang, Y. (2017). Adaptive clustering for the internet of battery-

less things. Proceedings of the 2017 IEEE Wireless Communications and

Networking Conference (WCNC), San Francisco, CA, USA, 1-6.

27. Puschmann, D.; Barnaghi, P.; and Tafazolli, R. (2017). Adaptive clustering for

dynamic IoT data streams. IEEE Internet of Things Journal, 4(1), 64-74.

28. Zhao, S.; Yu, L.; Cheng, B.; and Chen, J. (2017). IoT service clustering for

dynamic service matchmaking. Sensors, 17(8), 1727.

29. Sastry, J.K.R; and Bhupathi (2020). Enhancing fault tolerance of IoT networks

within device layer. International Journal of Emerging Trends in Engineering

Research, 8(2), 491-509.

30. Sowmya, K.V.; Chandu, A.; Nagasai, A.; Sri Harsha Preetham, C.H.; and

Supreeth, K. (2020). Smart home system using clustering based on internet of

things. Journal of Computational and Theoretical Nanoscience, 17(5), 2369-2374.

31. Geethika, R.A.; Upendra, Y.; Sastry, J.K.R.; and Bhupathi (2020). An approach

to compute fault tolerance of an IoT network having clustered devices using

crossbar networks. International Journal of Emerging Trends in Engineering

Research, 8(4), 987-1004.

32. Sastry, J.K.R.; Tejasvi, N.S.T.; and Aparna, J. (2017). Dynamic scheduling of

message flow within a distributed embedded system connected through an

RS485 network. ARPN Journal of Engineering and Applied Sciences, 12(9),

2809-2817.

33. Pavithra, T.; and Sastry, J.K.R. (2018). Strategies to handle heterogeneity prevalent

within an I.O.T.-based network. International Journal of Engineering &

Technology, 7(2.7), 77-83.

34. Rajasekhar, J.; and Sastry, J.K.R. (2020). Building composite embedded

systems based networks through hybridization and bridging I2C and CAN.

Journal of Engineering Science and Technology (JESTEC), 15(2), 858-881.

35. Krishna, M.S.R.; Sastry, J.K.R.; and Bhanu, J.S. (2017). Building fault

tolerance within wireless sensor networks: A butterfly model. Research

Journal of Applied Sciences, 12(2), 139-147.

36. Priya, B.V.; and Sastry, J.K.R. (2018). A comparative analysis of the methods

used to build information / content-centric networks over software-defined

networks. International Journal of Engineering & Technology, 7(2.7), 746-753.

37. Rajasekhar, J.; and Sastry, J.K.R. (2020). On developing high-speed

heterogeneous and composite embedded system networks through multi-

4504 J. K. R. Sastry and K. V. Sowmya

Journal of Engineering Science and Technology December 2022, Vol. 17(6)

master interface. International Journal of Advanced Computer Science and

Applications, 11(12), 320-333.

38. AbdelBaky, M.; Parashar, M.; Kim, H.; Jordan, K.E.; Sachdeva, V.; Sexton,

J.; Jamjoom, H.; Shae, Z.-Y.; Pencheva, G.; Tavakoli, R.; and Wheeler, M.F.

(2012). Enabling high computing performance as a service. Computer, 45(10),

72-80.

39. El Baz, D. (2014). IoT and the need for high-performance computing.

Proceedings of the 2014 International Conference on Identification,

Information and Knowledge in the Internet of Things. Beijing, China, 1-6.

40. Satpute; S.; and Deora, B.S. (2015). Improving the performance of Internet of

Things by using local IoT controller unit. Proceedings of the 2015 International

Conference on Green Computing and Internet of Things (ICGCIoT), Greater

Noida, India, 1328-1330.

41. Muralitharan, D.B.; Reebha, S.A.B.; and Saravanan, D. (2017). Optimization

of performance and scheduling of HPC applications in the cloud using

cloudsim and scheduling approach. Proceedings of the 2017 International

Conference on IoT and Application (ICIOT). Nagapattinam, India, 1-6.

42. Rajaei, H.; and Jamalian, S. (2016). HPC as a service in education.

Proceedings of the ASEE's 123rd Annual conference and expositions. New

Orleans, L.A.

43. Onoriode, U.; and Gerald, K. (2018). IoT architectural framework: connection

and integration framework for IoT systems, electronic First workshop on

Architectures, Languages and Paradigms for IoT EPTCS 264,

doi:10.4204/EPTCS.264.1, Lancaster, UK, 1-17.

44. Murty, A.S.R.; Teja, K.; and Naveen, S. (2018). Lathe performance monitoring

using IoT. International Journal of Mechanical Engineering and Technology

(IJMET), 9(4), 494-501.

45. Vijaya, M.K.; Prabu, A.V.; Prathyusha, S.M.; and Varakumari, S. (2018).

Performance monitoring of UPS battery using IoT. International Journal of

Engineering & Technology, 7(2.7), 352-355.

46. Poonam, J.S.; Pooja, S.; Sripath, R.K.; Abhilash, K.; Arvind, B.V. (2018).

Implementation of asymmetric processing on multi-core processors to

implement IoT applications on GNU/Linux framework. International Journal

of Engineering & Technology, 7(2.7), 710-713.

https://ieeexplore.ieee.org/author/38149532900

