
Journal of Engineering Science and Technology 
Vol. 17, No. 6 (2022) 4377 - 4397 
© School of Engineering, Taylor’s University 
 

4377 

RANKED MULTI-VIEW SKELETAL  
VIDEO-BASED SIGN LANGUAGE RECOGNITION  

WITH TRIPLET LOSS EMBEDDINGS 

SHAIK ASHRAF ALI, M. V. D. PRASAD, P. V. V. KISHORE* 

Department of ECE, Koneru Lakshmiah Education Foundation, Vaddeswaram, AP, India 
*Corresponding Author: pvvkishore@kluniversity.in 

 
 
 
 
 
 
 
 
 
 
 
 
 

Abstract 

Learning from multiview skeletal video data is difficult due to overlapping joints 
across views. In this work, we propose to overcome the above challenge by 
pairing views into positive intra and negative inter classes that are trained using 
a triplet loss embedding network. Further, the positive intra class views are 
ranked into two subgroups as view positive and support positive pairs through a 
view select network. Subsequently, the positive pairs are grouped with negative 
intra class views which are learned contrastively on a ranked multi-view deep 
metric learning network (RMVDML) using triplet and cross-entropy loss 
embeddings. This ensures highly discriminating class view features for 
classification on fully connected layers. Experimentations were conducted on 2D 
multi-view skeletal sign language videos and four benchmark action datasets. 
The proposed RMVDML has enhanced the efficiency of the skeletal video data 
for recognition tasks when compared to baselines. 

Keywords: Deep metric learning, Sign language recognition, Skeletal video data, 
Triplet loss. 
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1.  Introduction 
The previous three decades have shown a tremendous improvement in the methods 
for visual recognition through the application of machine learning. One challenging 
use of the above area that has recorded a performance improvement was sign 
language recognition (SLR). The SLR was supported by computer vision and 
machine learning algorithms in different domains. Recent advances in the areas have 
boosted confidence in the SLR applications. Convolutional neural networks (CNNs) 
[1-3] and long short-term memory (LSTMs) [4, 5] are the two primary deep learning 
methods that elevated the confidence of the SLR systems. Though these deep models 
have shown higher recognition accuracies they could not assure a real-time 
deployable system. The main problem is with the hand and body movements during 
the signing process that will augment single view data into a multi-view data recovery 
problem. This kind of multi-view problems are commonly found in action 
recognition. However, multi-view problems can also occur in sign language due to 
subjects’ movements or the camera positioning during capture. 

Here we propose to expand the capacity of current deep metric learning (DML) 
[6] concepts to design a view-sensitive sign language recognition system. Generally, 
DML has succussed in the fields of speaker identification [7], face recognition [8], 
action recognition [9], satellite image classification [10], and person re-identification 
[11] problems. Here, DML is being investigated for solving multi-view recognition 
problems. The concept of DML used for SLR is unfolded in Fig. 1, where the model 
is trained to learn the within-class similarities and discriminate the across class 
dissimilarities. The learning process is instigated using a loss function defined by 
triplet loss. The triplet loss embedding is a distance metric that learns by maximizing 
the gap between within and between class features. 

 
Fig. 1. Illustration of multi-view triplet loss embedding  

network architecture for sign language or action recognition. 

Traditionally, DML pairs the entire labelled dataset as positive, negative and 
anchor pairs for training. As a result, each video sign or action class divides into 
video frames and transforming all these video frames into triplet pairs is a complex 
task. This process also increases the computational complexities of deep networks. 
Moreover, the numbering of triplet pairs in each class depends on the number of 
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views available for processing. Compensating for the above problems we present a 
set based hard positive sample pairing mechanism which decreases the network 
loads for generating the triplet loss embedding for processing multi-view video 
data. For example, in a 𝑁𝑁view sign language dataset, we have constructed an 
𝑁𝑁𝐶𝐶2anchor - positive and anchor-negative pairs in each class. This learning process 
ranks the intra class views into two maximally dissimilar positive pairs. 
Subsequently, we construct 𝑁𝑁𝐶𝐶3 pairs for training the deep model with two positive 
intra class pairs and a set of inter class negative pairs. Significantly, the proposed 
model has reduced complexity without compromising the recognition accuracy. 

Accordingly, we propose an inter class multi-view hard positive sample pairing 
mechanism using a view select network (P-VSN). First, we extract the features 
using a regular CNN on all available views within a class label. The extracted multi-
view features are paired by finding the cosine distance between the views. Then we 
select (N-k) views that have maximum distance between views from within the 
class, where𝑘𝑘gives ranked views in the view positive set. We call them maximally 
dissimilar view positive set (VP). Consequently, the remaining views are grouped 
into a view positive support set (VPS), which will be used during the training of 
DML. Accordingly, the view negative set (VN) is constituted by intra class views 
between different classes in the dataset. To classify using deep metric learning 
(DML), training pairs are constructed with (VP, VPS) and (VN, VPS). Since the 
construction of a positive set has a ranking effect, we named our process Ranked 
Multi-View Deep Metric Learning (RMVDML). The proposed network learns by 
computing the triplet and cross-entropy loss embeddings on pairs to (VP, VPS) and 
(VN, VPS). This process will improve the performance of the multi-view classifier 
by maximizing the inter-class distance and minimizing intra class distance between 
views. The separation is handled by a margin parameter between the two distances. 
Figure 2 shows the proposed ranked multi-view triplet loss embedding on skeletal 
video datasets. 

Fig. 2. Block representation ranked multi-view triplet loss  
embedding network architecture for skeletal video recognition tasks. 

Finally, we test RMVDML on our own 200 class multi-view sign language 
dataset KLEF3DSL_2Dskeletal [12] with 𝑁𝑁 = 15 views. Further, the designed 
ranked multi-view triplet loss embedding networks is being analysed on benchmark 
skeletal action datasets such as NTU RGB-D [13], SBU Kinect Interaction [14], 
KLYoga3D [15] and KL3D_MVaction [16]. Following this introduction is an 
overview of past methods with an insight into the advantages and disadvantages. The 
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next section discusses methods applied for multi-view recognition of sign language. 
Finally, results and discussions were followed by conclusions that were drawn on the 
proposed solution for multi-view skeletal SL video recognition problems. 

2.  Literature Review 
This section of the paper dwells on the advantages and disadvantages of the 
previous methods of sign language and action recognition in multiple views. 
Additionally, it also discusses the current models in deep metric learning.  

SLR has been practiced in various forms based on data, features and 
classification algorithms [17]. The data usually comes from 3 sources, hand gloves 
(1D) [18], video cameras (2D) [19] and Kinect or leap motion (3D)[5]. The 4th and 
unique high-priced source are motion capture technology that has produced high 
precision synthetic sign language skeletal data [20]. Despite being a costly data 
source, the 3D motion captured signs exhibit naturalistic resemblance to real time 
human actions with far better representations than the other sources. However, the 
most commonly used source for research experimentations is 2D RGB video data 
[21]. A wide variety of algorithms were proposed in the last few decades for video 
pre-processing, feature extraction and recognition [22, 23]. Most of these 
algorithms solved some type of spatial, temporal or paired feature representation of 
video object data effectively. These features are further classified using all the 
traditional machine learning algorithms. The most popular classifiers were Hidden 
Markov Models(HMM) [24] and Artificial Neural Networks(ANN) [25].  

With the advent of deep learning frameworks, the 2D video based SLR has 
become powerful with the option of feature learning rather than feature extraction. 
A large contingent of them are available for perusal [26]. The accuracies reported 
by these methods are not reproducible or they simply fail to generalize on the video 
quality or the signer. This has motivated researchers towards higher dimensional 
data such as RGB – D or 3D skeletal representations. Multimodal video sequences 
that are fed into multiple streams of Convolutional Neural Networks (CNNs) have 
been dominating this research field. Undoubtedly, the  evidence points to 
exceptional performances in real-time for sign (action) recognition applications 
[27]. The recognition accuracies were better than the single modal datasets. 
However, the training requires higher computing powers, and the datasets are 
captured with special devices making it an unfeasible deployable solution.  

Eventually, to develop a real-time SLR or HAR system, it is intuitive to learn 
multiple views across datasets. This has initiated action recognition research to move 
in the direction of developing view-based learning algorithms [28]. Multi-view HAR 
has evolved through research using dictionary learning [29,30], Neural Networks 
with adaptable views [31], CNN’s [32] and deep attention models [33], to name a 
few. The most widely researched and acknowledged models are from deep learning 
networks. Moreover, visual attention models with deep CNNs have established 
themselves as a formidable solution to multi-view learning [34]. Despite their 
success, attention models are specific to a particular view and the view-specific 
features are to be fused accordingly for classification by the dense layers. The fusion 
mechanisms ensemble the view-specific features into a multi-view feature vector that 
has failed to capture view variations in multi-view data [35].  
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This motivated us to look for a more robust learning model that can learn to 
collaborate between views during training. Consequently, deep metric learning 
(DML) has shown to cluster highly similar within-class samples by learning the 
loss dynamics across different classes [36]. The loss dynamics is calculated using 
the contrastive [37] and triplet functions [38] for training. In the past few years, 
DML has become a driving force in multiple vision-based applications such as 
person identification, face recognition in the wild, speaker identification, image 
classification and remote sensing [36]. Additionally, there are multiple procedures 
in which the loss can be included in the objective function apart from triplet and 
contrastive techniques. Some of them are, hierarchical triplet loss, hard triplet loss 
[39], angular loss [40] and n – pair multiclass loss [41]. All these losses have 
distinctive advantages, especially in maximizing within class and minimizing 
across class similarities for utmost performance. Lastly, these losses are difficult to 
implement due to multiple regularizations that are specific to the application.  

The objectives of the proposed work are threefold: 1. To extract the most 
relevant views from a large pool of views. 2. To compute triplet loss embedding 
across the paired views from inter and intra classes. 3. To classify multi-view 
skeletal signs using triplet and cross-entropy losses with a margin parameter. 
Contrastingly, the uniqueness of the proposed method when compared to the 
existing deep metric learning models is threefold: 1. Application of DML for multi-
view skeletal video recognition with novel pairing mechanism. 2. The reduced 
complexity in triplet pairing for generating highly discriminative features is 
automated using the view select network (P-VSN). 3. Calculating set-based view 
distances in the proposed work as against sample-based distances in the existing 
triplet loss setting.  

3.  Methodology: Rank View Triplet Loss Embedding 
This work aims to optimize the rank-based triplet loss embedding on multi-view 
skeletal sign(action) datasets by training deep networks for recognition. We first 
present the view select network (P-VSN) architecture followed by the procedure to 
create an optimized triplet pair for training the DML. Secondly, we derive the 
procedure to train a deep network on the derived training pairs using the triplet loss 
embedding and global cross-entropy loss functional.  

3.1. View select network (P-VSN) 
This section aims to develop the underlying theoretical background applied to 
select pairs for training triplet loss networks from a large pool of views. Let there 
be a set of 𝑁𝑁video views. The goal is to select a set of positive view pairs 
𝑘𝑘𝐶𝐶2 ∀{𝑘𝑘 = Ranked Pairs}in pairs of two in ranked order. This is in contrast to the 
regular pairing mechanism where the number of positive pairs generated will 
be𝑁𝑁𝐶𝐶2. The remaining views are then grouped into support set. We propose to 
automate the process of selecting high-ranked positive pairs using CNNs for feature 
extraction and consequently finding similarities in these feature spaces. The idea is 
to form positive pairs within a class that are dissimilar enough to act as an anchor 
and positive sample sets. Consequently, the support set forms the negative set with 
inter-class views. The triplet loss embeddings are computed on the positive pairs 
and the negative support samples to learn the view variance features that can help 
in decision making. The following Fig. 3 shows the architecture of view selective 
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deep network (P-VSN) for generating automatic positive sample pairs across 
multiple views.  

 
Fig. 3.The positive view select network architecture. 

The architecture of CNN is incepted from trimmed VGG with 16 layers. 
However, our P-VSN has only 12 layers, i.e., 6 convolutional + ReLu, 3 Maximum 
pooling, 1 flatten and 2 dense layers. The strides across max pooling layers in kept 
constant at two, whereas it is one across convolutional layers. Contrasting to the 
regular multi-stream CNN models, we used a single stream CNN model that was 
accessed multiple times depending on the dataset views available for training. Let 
𝑥𝑥𝑣𝑣 = {𝑉𝑉𝑣𝑣}∀𝑣𝑣 = 1 𝑡𝑡𝑡𝑡 𝑁𝑁 be the RGB skeletal video sequences in𝑁𝑁views with 𝑉𝑉 ∈
𝑅𝑅3. The CNN model will extract the features from 𝑥𝑥𝑣𝑣with view specific labels 𝑦𝑦𝑣𝑣 
using the trainable parameters 𝜃𝜃𝑝𝑝−𝑣𝑣𝑣𝑣𝑣𝑣 by optimizing a loss function 𝐿𝐿 on the overall 
multi-view dataset as 

𝜃𝜃𝑝𝑝−𝑣𝑣𝑣𝑣𝑣𝑣 = 𝑎𝑎𝑎𝑎𝑎𝑎 𝑚𝑚𝑚𝑚𝑚𝑚
𝜃𝜃𝑝𝑝−𝑣𝑣𝑣𝑣𝑣𝑣

𝐿𝐿�𝜃𝜃𝑝𝑝−𝑣𝑣𝑣𝑣𝑣𝑣; 𝑥𝑥𝑣𝑣 ,𝑦𝑦𝑣𝑣�                                                                    (1) 

The trained model 𝜃𝜃𝑝𝑝−𝑣𝑣𝑣𝑣𝑣𝑣  has view specific features 𝑓𝑓𝑣𝑣  at the output of the 
dense layers as  

{𝑓𝑓𝑣𝑣}𝑣𝑣={1,𝑁𝑁} = ∑ ∑ 𝑥𝑥𝑣𝑣(𝑚𝑚, 𝑗𝑗)𝐽𝐽
𝑗𝑗=1

𝐼𝐼
𝑖𝑖=1 ∗ 𝐾𝐾(𝑘𝑘 − 𝑚𝑚, 𝑘𝑘 − 𝑗𝑗)∀𝑘𝑘 ∈ kernel size                          (2) 

The features from each of the views are extracted and cosine similarity is 
calculated on all possible view pairs. For a 𝑁𝑁view data, we will have 𝑁𝑁𝐶𝐶2 feature 
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pairs. The cosine similarity 𝐶𝐶(𝑣𝑣,𝑣𝑣+1) between view feature pairs with 𝑚𝑚 attributes in 
each feature vector is computed as 

cos(𝑓𝑓𝑣𝑣 , 𝑓𝑓𝑣𝑣+1) = 𝐶𝐶(𝑣𝑣,𝑣𝑣+1) = ∑ 𝑓𝑓𝑣𝑣𝑖𝑖𝑓𝑓𝑣𝑣+1
𝑖𝑖𝑣𝑣

𝑖𝑖=1

�∑ 𝑓𝑓𝑣𝑣𝑖𝑖
𝑣𝑣
𝑖𝑖=1 �∑ 𝑓𝑓𝑣𝑣+1

𝑖𝑖𝑣𝑣
𝑖𝑖=1

                                                                           (3) 

The cosine similarity scores are ranked in chronological order as  
𝐶𝐶𝑓𝑓(𝑝𝑝) = 𝑎𝑎𝑎𝑎𝑎𝑎 𝑚𝑚𝑚𝑚𝑚𝑚

∀𝑖𝑖=1 𝑡𝑡𝑡𝑡 𝑁𝑁𝐶𝐶2
(𝐶𝐶𝑣𝑣,𝐶𝐶𝑣𝑣+1)𝑖𝑖                                                                             (4) 

where 𝑝𝑝 points to the pair placeholder which contains the two views with maximum 
distance. Here, we select the top pair that has minimum similarity or maximum 
dissimilarity between them. These highly dissimilar within class pairs act as anchor 
positive pairs �𝐹𝐹𝑎𝑎,𝐹𝐹𝑝𝑝� . We can also use top 𝑃𝑃 pairs for training. Specifically, the 
remaining samples will be grouped into a negative support set 𝐹𝐹𝑣𝑣. Subsequently, 
iterating the above process over the entire dataset results in inter class positive pairs 
and intra class support negative class. Even though there are few positive samples 
in support class, we will consider only intra class features during the training of 
each set. The complete view sample sets for training the deep metric learning model 
will be �𝐹𝐹𝑎𝑎,𝐹𝐹𝑝𝑝,𝐹𝐹𝑣𝑣�. The reconstituted triplet pairs will be applied as input to the 
ranked multi-view deep metric learning network (RMVDML) for learning the 
multi-view features.  

This process ensures that the positive anchor pairs within the class features are 
pulled closer while the anchor negative pairs across the classes are pushed farther 
by a margin parameter during training. The following subsection presents a bird’s 
eye view of the designed architecture and the advantages it offers over the 
traditional multi-stream CNN models. 

3.2. Ranked multi-view deep metric leaning (RMVDML) 
This implementation aims to maximize the recognition accuracy by pulling the 
highly relatable within class views from discriminating them from uncorrelated 
inter-class views. The primary function of metric learning is similarity 
measurement between pairs of data samples by preserving the distance metrics. 
There are two types of metric learning models followed extensively: contrastive 
[36] and triplet loss [37]. 

Given a pair of features in embedding space �𝑓𝑓𝑣𝑣𝑖𝑖 , 𝑓𝑓𝑣𝑣𝑗𝑗�from different classes in 
the dataset, the contrastive loss 𝑙𝑙𝑐𝑐 is calculated with the cost function defined as  

𝑙𝑙𝑐𝑐�𝑓𝑓𝑣𝑣𝑖𝑖, 𝑓𝑓𝑣𝑣𝑗𝑗 ,𝑦𝑦𝑖𝑖𝑗𝑗� = ∑ 𝑦𝑦𝑖𝑖𝑗𝑗𝑑𝑑2�𝑓𝑓𝑣𝑣𝑖𝑖 ,𝑓𝑓𝑣𝑣𝑗𝑗�𝑖𝑖,𝑗𝑗 + �1 − 𝑦𝑦𝑖𝑖𝑗𝑗�ℎ �𝛿𝛿 − 𝑑𝑑�𝑓𝑓𝑣𝑣𝑖𝑖, 𝑓𝑓𝑣𝑣𝑗𝑗��
2
                    (5) 

where ℎ is the hinge loss operator defined as 

ℎ(𝑓𝑓𝑣𝑣) = 𝑚𝑚𝑎𝑎𝑥𝑥(𝑓𝑓𝑣𝑣, 0)                                                                                                 (6) 

The class label indicator 𝑦𝑦𝑖𝑖𝑗𝑗 on the trained model parameter 𝜃𝜃 is defined as 

𝑦𝑦𝑖𝑖𝑗𝑗 = �
1   ∀  �𝜃𝜃(𝑓𝑓𝑣𝑣𝑖𝑖) = 𝜃𝜃�𝑓𝑓𝑣𝑣𝑗𝑗��

0   ∀  �𝜃𝜃(𝑓𝑓𝑣𝑣𝑖𝑖) ≠ 𝜃𝜃�𝑓𝑓𝑣𝑣𝑗𝑗��
                                                                                (7) 
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Finally, the parameter 𝑑𝑑�𝑓𝑓𝑣𝑣𝑖𝑖 , 𝑓𝑓𝑣𝑣𝑗𝑗� is the Euclidian distance calculated on the 
feature embeddings �𝑓𝑓𝑣𝑣𝑖𝑖 , 𝑓𝑓𝑣𝑣𝑗𝑗� defined as 

𝑑𝑑�𝑓𝑓𝑣𝑣𝑖𝑖 , 𝑓𝑓𝑣𝑣𝑗𝑗� = �𝑓𝑓𝑣𝑣𝑖𝑖 − 𝑓𝑓𝑣𝑣𝑗𝑗�2                                                                                                (8) 

Interestingly, the contrastive loss embedding 𝑙𝑙𝑐𝑐 aims for decreasing the distance 
between intra class paired features and penalizes the inter class features by a margin 
𝛿𝛿 as given by the contrastive cost function in Eq. (5). Specifically, a more effective 
loss function is shown to leverage its properties in the form of triplet loss when 
compared to contrastive loss.  

In this manuscript, we propose to apply the triplet loss embeddings to the ranked 
multi-view paired features. Specified a set of multi-view training data 𝑆𝑆 =
�𝑋𝑋𝑣𝑣(𝑖𝑖),𝑦𝑦𝑖𝑖�∀𝑚𝑚 = 1 𝑡𝑡𝑡𝑡 𝐶𝐶, 𝑣𝑣 =  1 𝑡𝑡𝑡𝑡 𝑁𝑁with 𝑁𝑁 views and 𝐶𝐶 classes, the multi-view DML 
classifier focuses on learning a mapping function relating the video views 𝑋𝑋𝑣𝑣(𝑖𝑖)  to 
𝑦𝑦𝑖𝑖such that the predicted label 𝑦𝑦�𝑖𝑖 → 𝑦𝑦𝑖𝑖 . In this work, we try to learn this mapping by 
reducing the view-specific triplet loss and the global cross-entropy loss functional. As 
proposed earlier, we trained a deep model 𝐷𝐷𝑝𝑝𝑝𝑝 for extracting within class maximally 
distant positive feature pairs 𝑓𝑓𝑣𝑣(𝑖𝑖) ∈ 𝑅𝑅𝑑𝑑in 𝑑𝑑 dimensions being represented as 

𝑓𝑓𝑣𝑣(𝑖𝑖) = 𝐷𝐷𝑝𝑝𝑝𝑝�𝑋𝑋𝑣𝑣(𝑖𝑖),𝜃𝜃𝑝𝑝𝑝𝑝�∀𝑣𝑣 = 1 𝑡𝑡𝑡𝑡 𝑁𝑁                                                                       (9) 

Here 𝜃𝜃𝑝𝑝𝑝𝑝  consists of trained parameters of the model 𝐷𝐷𝑝𝑝𝑝𝑝  that extracts the 
positive pairs within classes. This pair of features that are maximally distant within 
a class of views are considered as anchor positive �𝑓𝑓𝑎𝑎(𝑖𝑖), 𝑓𝑓𝑝𝑝(𝑖𝑖)� pairs. The remaining 
samples of the 𝐷𝐷𝑝𝑝𝑝𝑝  were grouped into support negatives �𝑓𝑓𝑣𝑣(𝑖𝑖)�. This process is 
computed on the entire dataset. Finally, during each iteration a single triplet pair 
𝑡𝑡𝑧𝑧 = �𝑓𝑓𝑎𝑎(𝑖𝑖), 𝑓𝑓𝑝𝑝(𝑖𝑖), 𝑓𝑓𝑣𝑣(𝑖𝑖)�  is constructed by following the condition 𝑦𝑦𝑎𝑎 = 𝑦𝑦𝑝𝑝 ≠ 𝑦𝑦𝑣𝑣 . 
Figure 4 shows the deep network used for learning from 𝑡𝑡𝑧𝑧 . The RMVDML 
network learns the view mapping function through view-specific loss computed on 
the feature embedding space 𝑡𝑡𝑧𝑧. The triplet loss functional 𝑙𝑙𝑡𝑡𝑡𝑡𝑖𝑖𝑝𝑝𝑡𝑡𝑡𝑡𝑡𝑡  is 

𝑙𝑙𝑡𝑡𝑡𝑡𝑖𝑖𝑝𝑝𝑡𝑡𝑡𝑡𝑡𝑡(𝑡𝑡𝑧𝑧) = ∑ ℎ �𝛿𝛿 − �𝑓𝑓𝑎𝑎(𝑖𝑖)
𝑧𝑧 − 𝑓𝑓𝑣𝑣(𝑖𝑖)

𝑧𝑧 �2 + �𝑓𝑓𝑎𝑎(𝑖𝑖)
𝑧𝑧 − 𝑓𝑓𝑝𝑝(𝑖𝑖)

𝑧𝑧 ��∀𝑁𝑁                                   (10) 

where 𝛿𝛿 is the allowable margin that marks the boundary to discriminate between 
positive and negative pairs. Here ℎ( ) = 𝑚𝑚𝑎𝑎𝑥𝑥(, 0) is the hinge loss. The triplet 
loss aims to rationalize the weight vectors in the direction dictated by maximizing 
the metrics between negative pairs and minimizing metrics between positive pairs, 
respectively. The negative pairs are interring class features, and the positive pairs 
are class multi view features.  

As it can observed the proposed RMVDML accessed the deep network only 
three times during training as compared to other multi-view multi stream networks. 
This has greatly reduced the load on the network trainable parameters and increased 
the throughput. Consequently, the triplet loss 𝑙𝑙𝑡𝑡𝑡𝑡𝑖𝑖𝑝𝑝𝑡𝑡𝑡𝑡𝑡𝑡  is used to update the weights 
during each iteration to penalize the negative set. For classification tasks, we need 
a global loss function to discriminate the classes with the help of SoftMax layers. 
The class label prediction is computed on the embedding space using the cross-
entropy loss functional as 

𝑙𝑙𝐶𝐶𝑡𝑡𝑡𝑡−𝐸𝐸𝑣𝑣𝑡𝑡 = −∑ (𝑦𝑦𝑖𝑖 𝑙𝑙𝑡𝑡𝑎𝑎(𝑦𝑦𝚤𝚤�) + (1 − 𝑦𝑦𝑖𝑖) 𝑙𝑙𝑡𝑡𝑎𝑎(1 − 𝑦𝑦𝚤𝚤�))𝐶𝐶
𝑖𝑖=1                                          (11) 
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Fig. 4. Ranked multi-view deep metric leaning (RMVDML) architecture.  

The RMVDML model in Fig. 4 is jointly minimized by applying the following 
loss function 

𝑙𝑙𝑡𝑡𝑟𝑟𝑣𝑣𝑑𝑑𝑟𝑟𝑡𝑡 = 𝑙𝑙𝐶𝐶𝑡𝑡𝑡𝑡−𝐸𝐸𝑣𝑣𝑡𝑡 + 𝜆𝜆𝑙𝑙𝑡𝑡𝑡𝑡𝑖𝑖𝑝𝑝𝑡𝑡𝑡𝑡𝑡𝑡                                                                                   (12) 

where, 𝜆𝜆 is the loss balancing parameter between the classification loss and the 
view specific triplet loss embeddings.  

The following procedure is instigated to train the RMVDML. First, the positive 
view pairing network in Fig. 3 is trained on the entire dataset to extract positive and 
negative pairing samples in each class. Secondly, the network in Fig. 4 is first 
trained with 𝜆𝜆 = 0, using only the cross-entropy loss. Next the dense+SoftMax 
layers are trained with 𝑙𝑙𝑡𝑡𝑡𝑡𝑖𝑖𝑝𝑝𝑡𝑡𝑡𝑡𝑡𝑡  loss function on the feature embeddings. Finally, we 
fine tune the whole network by selecting a value of 𝜆𝜆  on 𝑙𝑙𝑡𝑡𝑟𝑟𝑣𝑣𝑑𝑑𝑟𝑟𝑡𝑡  loss. After 
multiple iterations, for our multi view skeletal video sign language dataset, we fixed 
𝜆𝜆 = 0.35 and 𝛿𝛿 = 0.28 . We trained the networks with a video frame size of 
256 × 256 × 3. Each view consisted of 50 frames. A learning rate of 0.0001 is 
selected initially, which was the progressively regularized with a decay of 0.1 
whenever the error became constant. The model was trained on stochastic gradient 
descent optimizer on an 8GB NVDIA 1070x GPU with a memory support of 16GB. 
The batch size of 32 was considered for training the network. The entire model has 
been developed in Tensorflow-2.3 with keras wrapper. Subsequent section presents 
the validation of our proposed method on KLEF3DSL_2Dskeletal multi view 
skeletal video dataset and other benchmarks. 
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4. Results and Discussion 
RMVDML model is being evaluated on multi-view skeletal video datasets from sign 
language and action instances. We present an extensive description of the multi-view 
skeletal datasets with various training and testing ratios for evaluation. Subsequently, 
we present the evaluation metrics for validating the model’s capabilities. Next, the 
proposed loss embeddings against the previously proposed models. Finally, we 
present a comparison of various networks against the proposed network. 

4.1. Skeletal video datasets and evaluation metrics 
The multi-view sign language dataset KLEF3DSL_2Dskeletal with 𝑁𝑁 = 15views, 
200 classes are generated at KL Biomechanics and Vision Computing Research 
Centre using 3D motion capture technology [12]. Further, the proposed model is 
evaluated on multi-view benchmark skeletal action datasets such as NTU RGB-D 
[13], SBU Kinect Interaction [14], KLYoga3D [15] and KL3D_MVaction [16]. A 
small subset of a data sample from KLEF3DSL_2Dskeletal is presented in Fig. 5 
for a sign basketball. In this work, we are limiting our views to 15 due to 
computational constraints. The training testing ratios are kept constant across all 
networks and datasets. The selected train test ratios are 4:11, 5:10, 10:5 and 12:3. 
The remaining views were also evaluated but are not presented here as they have 
not produced any noticeable performance changes when compared to the selected 
ones. Since there are no multi-view sign language datasets, we evaluated our model 
on multi-view benchmark action datasets. Since there is a competition among the 
models, we selected only 40 action classes for training with 15 views from each 
class. The unavailability of views has prompted us to generate random views by 
altering the viewing angles of joints. Here, the evaluation is performed independent 
of the type of view in which the action is recorded. Figure 6 shows samples from 
the NTU RGB-D dataset. Figure 7 shows samples from KL3D_MVaction and Fig. 
8 shows multi-view samples from the KLYoga3D dataset. We used mean 
recognition accuracy (mRA) and mean f1 score (mf1) along with precision recall 
curves for evaluation. All the experiments were conducted on an 8GB GPU from 
NVIDIA RTX 1080, 16GB DDR4 RAM and 256GB SSD. 

 
Fig. 5. KLEF3DSL_2Dskeletal sign language video dataset.  

A sample frame in 15 different views for the sign “Basketball”. 
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Fig. 6. NTU RGB-D in 5 views.                Fig. 7. KL3D_MVaction in 5 views.  

4.2. Evaluating RMVDML on KLEF3DSL_2Dskeletal sign dataset 
We first pass the entire training samples through the PVS network and find 
nonmatching pairs across each class. The view positive pairs are ranked in the order 
of maximum dissimilarity between views using the cosine distance function on the 
features from CNN in Fig. 3. The ranked positive pairs are grouped into positive 
pairs from each class and the remaining are grouped to form negative pairs with 
other class view samples. Once the grouping process is completed the positive pairs 
will have within class view samples and the negative set will have across the class 
view samples. Hence, there will be two views per positive pair and the any view 
other than the considered class as negative pair. Figure 9 shows the pairing process 
used in pre-processing stage. 

The green group corresponds to the views from within class samples and the 
red is the negative pair formed across class view samples. During training, only one 
positive pair and all the other views in the negative pair are trained together. After 
each training episode, i.e., for each negative sample, the loss is calculated and 
averaged across all negative samples. Consequently, this operation is performed for 
the top 4 positive pairs selected by the architecture in Fig. 3 for all negative pairs 
in each episode. The cumulative loss on all pairs is averaged across positive pairs 
and then used to update the weights of the dense layers of the network in Fig. 4. 
This process ensures that all positive view pairs are learned against the negative 
view pairs. Contrasting to the traditional triplet loss models where each view has to 
form a pair, the P-VSN enables that only the contributing views selected will be 
processed which reduces the computational complexity of the network. Further, 
each epoch will have 4 episodes. Specifically, this process happens in the SoftMax  
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Fig. 8. KLYoga3D in 9 views. 
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Fig. 9. The pairing structure in the  

proposed method using the network in Fig. 3. 

and dense layers after the feature maps were built using the cross-entropy loss. 
Finally, the entire network is fined tuned using both the losses. We performed a 5- 
fold cross validation with a batch size of 16 and the accuracies were averaged over 
the entire dataset. For our KLEF3DSL_2Dskeletal sign language vide dataset, we 
present in Figs. 10 and 11, the confusion matrices for two train test ratios, 5:10 and 
10:5, respectively. 

 
Fig. 10. Confusion matrix for 5:10 train  

test ratio on RMVDML model on 30 classes. 
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Fig. 11. Confusion matrix on train test ratio of 10:5. 

The mean average recognition (mRA) obtained is around 78.34% which is far 
better than the traditional models such as VGG-16, ResNet-50, Google Net 
architectures. Similarly, mf1 is around 0.7685 for an average across a 5-fold cross 
validation. The 𝜆𝜆 value selected is 0.35 with a learning rate of 0.001. Successively, 
a comparative analysis of the proposed triplet loss embedding behavior on multiple 
standard networks such as VGG-16, Inception V4, GoogleNet and Resnet-50 is 
performed. We record the mRA and mf1 scores to indicate the performance of each 
of the networks against our proposed model across all datasets.  

4.3. Comparison with standard architectures on proposed loss 
embeddings 

The comparisons among state-of-the-arts against RMVDML are presented in table 
1. Here it shows the effect of the loss embedding parameter 𝜆𝜆 and the effect of 
triplet loss on the training process. Table 1 comparison is performed on sign 
language skeletal video dataset KLEF3DSL_2Dskeletal. The comparative 
networks were trained with the proposed loss embedding function in Eq. (12). The 
outputs of P-VSN are used to train the standard models.  

Table 1. Comparison between standard CNN models against the  
proposed RMVDML on KLEF3DSL_2Dskeletal sign language dataset. 

Models mRA mf1 mRA mf1 mRA mf1 mRA mf1 
Loss selection 
parameter 𝝀𝝀 = 𝟎𝟎.𝟑𝟑𝟑𝟑 𝝀𝝀 = 𝟎𝟎 

Train Test 
ratios 5:10 10:5 5:10 10:5 

VGG-16 0.709 0.707 0.728 0.727 0.610 0.591 0.636 0.602 
Inception V4 0.722 0.715 0.742 0.735 0.640 0.623 0.651 0.638 
GoogleNet 0.734 0.728 0.746 0.738 0.649 0.618 0.659 0.639 
ResNet-50 0.683 0.693 0.702 0.692 0.581 0.526 0.618 0.602 
RMVDML 0.752 0.741 0.772 0.754 0.659 0.639 0.668 0.644 

From Table 1, we see that the RMVDML has been shown to outperform the 
standard models. This higher performance can be attributed to lesser layers which 
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have resulted in faster training and a small number of training parameters. Our 
proposed network trains faster and no regularizations on weights are required as 
there are no vanishing gradients problems. 

To validate our proposed method across cross data platforms, we apply our 
model to multi-view benchmark action datasets. The obtained results are compared 
against the standard networks. Training and testing of the networks have been 
uniform across all datasets. Here only 40 classes are trained and tested in 15 views. 
Tables 2 to 5 give the results of the experimentation. 

The proposed ensemble loss gives better performance over the cross-entropy 
loss in all networks across all skeletal action video datasets. In the following section 
we evaluate the networks performance on the efficiency to retrieve class labels. 

Table 2. Comparison between standard CNN models  
against the proposed RMVDML on NTU RGB – D action dataset. 

Models mRA mf1 mRA mf1 mRA mf1 mRA mf1 
Loss selection 
parameter 𝝀𝝀 = 𝟎𝟎.𝟑𝟑𝟑𝟑 𝝀𝝀 = 𝟎𝟎 

Train Test 
ratios 5:10 10:5 5:10 10:5 

VGG-16 0.729 0.711 0.745 0.738 0.643 0.623 0.661 0.632 
Inception V4 0.742 0.724 0.787 0.767 0.676 0.664 0.698 0.672 
GoogleNet 0.754 0.733 0.785 0.756 0.679 0.647 0.696 0.678 
ResNet-50 0.713 0.701 0.739 0.721 0.616 0.597 0.636 0.611 
RMVDML 0.762 0.752 0.793 0.768 0.683 0.651 0.697 0.679 

Table 3. Comparison between standard CNN models  
against the proposed RMVDML on SBU Kinect Interaction dataset. 

Models mRA mf1 mRA mf1 mRA mf1 mRA mf1 
Loss selection 
parameter 𝝀𝝀 = 𝟎𝟎.𝟑𝟑𝟑𝟑 𝝀𝝀 = 𝟎𝟎 

Train Test 
ratios 5:10 10:5 5:10 10:5 

VGG-16 0.599 0.544 0.639 0.609 0.583 0.563 0.620 0.565 
Inception V4 0.574 0.537 0.625 0.583 0.564 0.573 0.595 0.558 
GoogleNet 0.613 0.572 0.667 0.614 0.633 0.623 0.633 0.592 
ResNet-50 0.615 0.580 0.652 0.625 0.638 0.625 0.635 0.600 
RMVDML 0.625 0.593 0.655 0.625 0.672 0.642 0.646 0.613 

Table 4. Comparison between standard CNN models  
against the proposed RMVDML on KLYoga3D yoga dataset. 

Models mRA mf1 mRA mf1 mRA mf1 mRA mf1 
Loss selection 
parameter 𝝀𝝀 = 𝟎𝟎.𝟑𝟑𝟑𝟑 𝝀𝝀 = 𝟎𝟎 

Train Test 
ratios 5:10 10:5 5:10 10:5 

VGG-16 0.678 0.648 0.795 0.693 0.622 0.602 0.660 0.630 
Inception V4 0.664 0.622 0.769 0.660 0.603 0.612 0.646 0.604 
GoogleNet 0.706 0.653 0.790 0.695 0.672 0.662 0.688 0.635 
ResNet-50 0.691 0.664 0.799 0.702 0.677 0.664 0.673 0.646 
RMVDML 0.694 0.664 0.818 0.726 0.711 0.681 0.676 0.646 
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Table 5. Comparison between standard CNN models  
against the proposed RMVDML on KL3D_MVaction action dataset. 

Models mRA mf1 mRA mf1 mRA mf1 mRA mf1 
Loss selection 
parameter 𝝀𝝀 = 𝟎𝟎.𝟑𝟑𝟑𝟑 𝝀𝝀 = 𝟎𝟎 

Train Test 
ratios 5:10 10:5 5:10 10:5 

VGG-16 0.655 0.635 0.727 0.712 0.629 0.610 0.716 0.697 
Inception V4 0.636 0.646 0.693 0.697 0.610 0.620 0.717 0.687 
GoogleNet 0.705 0.695 0.728 0.740 0.679 0.669 0.720 0.698 
ResNet-50 0.710 0.697 0.735 0.724 0.684 0.671 0.735 0.709 
RMVDML 0.744 0.715 0.760 0.728 0.718 0.689 0.778 0.728 

4.4. Efficiency of the proposed ensemble loss embeddings. 
This section evaluates the capabilities of deep networks to retrieve information on 
skeletal video datasets. The evaluation is conducted by plotting precision recall 
curves on various datasets. The curves are obtained during testing of the networks on 
the proposed ensemble loss embeddings with 𝜆𝜆 = 0.35 . The curves show the 
capabilities of the networks to retrieve different kinds of multi - view skeletal data. 
Figure 12 shows the plots of precision recall on the five multi - view skeletal datasets. 

 
Fig. 12. Precision recall curves on various benchmark datasets. 
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Figure 12 shows that the proposed RMVDML has exceptional good confidence 
in retrieving skeletal video data when compared to other standard networks. In the 
next phase, we check the ensemble loss function proposed in this work against the 
existing losses on different networks. 

4.5. Evaluating the Proposed Ensemble loss Functional. 
This section presents the experiments for testing different types of losses for weight 
training across the baseline networks. Here, we test the sensitivity of the networks 
to learn across multiple loss embeddings in metric learning. Figure 13 shows the 
plots of the percentage of test views applied to the percentage of error generated. 
The plots point to the fact that the proposed ensemble loss embedding function with 
triplet and cross-entropy losses has the highest learnable capacity on all networks 
across all datasets. The cross-entropy loss has shown to have the least learning 
capacity. The triplet loss is the next best embeddings on the feature space. 

 
Fig. 13. Testing views fraction vs. mean  
error across different loss embeddings. 
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5. Conclusions 
The work presents an ensemble loss embedding on feature space in deep metric 
learning model. The proposed loss is a mixture of triplet and cross – entropy loss 
functions. The proposed RMVDML method is a multi-view metric learning 
architecture for skeletal sign language recognition problems. The RMVDML is a 
combination of two networks, where the primary network P-VSN is a view select 
network and the secondary is a deep network that learns multiple views using the 
proposed loss embeddings. The results showed that the proposed model offers higher 
recognition accuracies over the standard networks across skeletal video datasets.  

 

Nomenclatures 
 
C Class Number 
𝐷𝐷𝑝𝑝𝑝𝑝 Deep metric Leaning model 
F Feature Embedding space 

𝐹𝐹𝑎𝑎  Anchor Features 
𝐹𝐹𝑝𝑝  Positive Features 

𝐹𝐹𝑣𝑣  Negative Features 
f Feature vectors 
ℎ  Hinge loss 

𝑙𝑙𝑐𝑐   Constative Loss 
𝑙𝑙𝐶𝐶𝑡𝑡𝑡𝑡−𝐸𝐸𝑣𝑣𝑡𝑡  Cross Entropy Loss 
𝑙𝑙𝑡𝑡𝑟𝑟𝑣𝑣𝑑𝑑𝑟𝑟𝑡𝑡   Ensemble loss 
𝑙𝑙𝑡𝑡𝑡𝑡𝑖𝑖𝑝𝑝𝑡𝑡𝑡𝑡𝑡𝑡   Triplet loss 

S Training Samples 
y Output Labels 
 
Greek Symbols 
𝜆𝜆  loss balancing parameter. 
𝛿𝛿  Metric Learning Hyperparameter 
𝜃𝜃𝑝𝑝𝑝𝑝  Trainable Parameters of DML 

𝜃𝜃𝑝𝑝−𝑣𝑣𝑣𝑣𝑣𝑣  Trainable Parameters of view select network. 
X Input vectors 
  
 
Abbreviations 

CNN Convolutional Neural Networks 
DML Deep Metric Learning 
LSTM Long Short-Term Memory 
mf1 mean F1 Score 
mRA mean Recognition Accuracy 
P-VSN Positive View Select Network 
RMVDML Ranked Multi View Deep Metric Learning 
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