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Abstract 

This study proposes a path-planning algorithm that combines the Rapidly-

exploring Random Tree (RRT) and Particle Swarm Optimization (PSO) 

algorithms. This research aims to achieve near-optimal values with fast 

convergence using the proposed algorithm. The RRT algorithm can generate a 

faster path, but it is not optimal. The RRT algorithm is hybridized with the PSO 

algorithm to improve its performance and produce a near-optimal path. Each 

iteration of the combination process involves spinning a roulette wheel. The 

outcome of the spinning roulette wheel determines whether the following 

sampling process is carried out randomly, around the local best path, or around 

the global best path. Consequently, as the quality of a path increases, the 

probability of sampling along that path also increases. The PSO-RRT algorithm 

is the name given to the proposed algorithm. The PSO-RRT algorithm is tested 

and compared to the RRT* and informed RRT* algorithms. The test is based on 

simulation and employs various benchmarks such as clutter, multiple-narrow, 

square field, and tough passage environments. The results of this test, discussed 

in the result and discussion section, show that the proposed algorithm 

outperforms the RRT* and the informed RRT*. 

Keywords: Fast convergence, Particle swarm optimization, Path planning, Rapidly-

exploring random tree. 
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1. Introduction 

Finding a path in a configuration area starting from an initial location to a 

destination location while fulfilling a set of rules is known as a path planning 

problem [1]. Path planning algorithms are used in various applications, such as 

autonomous vehicles [2], graphic animation [3], medical applications [4], robotic 

surgery [5], and cell transport [6]. The Rapidly-exploring Random Tree (RRT) 

algorithm is one of the most widely used path planning algorithms [7-10]. The RRT 

algorithm was developed by LaValle [11, 12]. The RRT algorithm can quickly 

solve problems in multidimensional systems [13]. However, it has the drawback of 

only offering a sub-optimal answer [14]. The RRT algorithm was then developed 

into RRT* [15, 16], which gives the optimal solution [17]. However, it has the 

disadvantage of slow convergence speed.  

Several techniques have been developed to improve the performance of the 

RRT and RRT* algorithms. Kuffner and Lavalle introduced RRT-Connect [18] as 

a dual-tree version of RRT. Mashayekhi et al. [15] developed the RRT*-Connect 

algorithm, which combines RRT-Connect and RRT*. Ma et al. [19] introduced the 

Informed RRT* algorithm, which uses informed sampling on the RRT* after the 

first solution was found. Mashayekhi et al. [20] proposed the Informed RRT*-

Connect algorithm, which works similarly to RRT*-Connect until the first path is 

discovered. After the first solution is found, the sampling area of Informed RRT*-

Connect is limited in the same way it is in Informed RRT*.  

In its development, the RRT algorithm has been hybridized with other 

algorithms to get better performance, such as Viseras et al. [21], who proposed a 

hybrid path planning algorithm by proposing a hybrid of the RRT algorithm with 

ACO. Implementing the RRT and ACO algorithms requires discretization from the 

configuration space, reducing the algorithm's performance in the high-dimensional 

configuration space.  

Pohan et al. [22] developed a path planning algorithm that combines the RRT 

and the Ant Colony System (ACS) algorithms. RRT-ACS is the name of the 

algorithm. Then Aria  proposed a path planning algorithm using the hybrid method 

between the informed RRT*-Connect algorithm and the local search algorithm, 

where the results of this algorithm proposal obtained an algorithm with a better 

speed of convergence value than the RRT* algorithm. Nevertheless, to the author's 

knowledge, no previous studies have tried to improve the quality of the RRT 

algorithm using the combination of the RRT algorithm with the PSO algorithm. 

This study focuses on developing a path planning algorithm based on the RRT 

algorithm and combining it with the PSO algorithm to create an algorithm capable 

of rapidly reaching near-optimal values with a fast convergence speed. In each 

iteration of the combination process, a roulette wheel is spun. The outcome of the 

roulette wheel determines whether the following sampling process is done at 

random, around the local best path, or around the global best path. As a result, as 

the quality of a path increases, so does the likelihood of sampling along that path. 

The proposed algorithm is dubbed the PSO-RRT algorithm. The PSO-RRT 

algorithm is tested and compared to the RRT* and informed RRT* algorithms. The 

test is based on simulation and includes benchmarks such as clutter, multiple-

narrow, square field, and tough passage environments. The results of this test show 

that the proposed algorithm outperforms the RRT* and the informed RRT*. 
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2. Method 

Algorithm 1 in Fig. 1 illustrates the PSO-RRT algorithm. Each iteration will 

involve spinning a roulette wheel based on the values of 𝑤, 𝜑1 , and 𝜑2 . If the 

roulette wheel's output value is less than w, the next sampling process will be 

carried out randomly. If the roulette wheel's output value is between 𝑤 and 𝜑1, the 

next sampling process will be carried out around the local best path. Meanwhile, if 

the roulette wheel's output value is between 𝜑1 and 𝜑2, the next sampling process 

will be carried out around the global best path.  

The value of 𝜑1 is the fitness value of the best path generated by a particle. The value 

of  𝜑2 is the fitness value of the best path generated by all particles. Thus, the higher the 

fitness value of the local and global paths, the higher the possibility of performing path-

biased sampling on these paths. The length of the local and global paths will determine 

the fitness value of the path. The fitness value will increase as the path length decreases.  

Algorithm 1: 𝑋𝑏𝑠 ←PSO-RRT(𝑚𝑎𝑝) 

1: % ========== Initialization 

2: 𝑇 ← 𝐼𝑛𝑖𝑡𝑖𝑎𝑙𝑖𝑧𝑒𝑇𝑟𝑒𝑒() 

3: 𝑇 ← 𝐼𝑛𝑠𝑒𝑟𝑡𝑁𝑜𝑑𝑒(∅, 𝑞𝑖𝑛𝑖𝑡, 𝑇) 

4: 𝑠 ← 0 

5:  while 𝑡𝑒𝑟𝑚𝑖𝑛𝑎𝑡𝑖𝑜𝑛 𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛 𝑛𝑜𝑡 𝑚𝑒𝑡 do 

6:     for 𝑘 = 1 to 𝑛𝑢𝑚𝑏𝑒𝑟_𝑜𝑓_𝑝𝑎𝑟𝑡𝑖𝑐𝑙𝑒𝑠 do 

7:         while 𝑠 = 0 do 

8:                𝑐𝑏𝑒𝑠𝑡  ← 𝐶𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑒𝑆ℎ𝑜𝑟𝑡𝑒𝑠𝑡𝑃𝑎𝑡ℎ(𝑋𝑏𝑠) 

9:                𝑛 ← 𝑅𝑜𝑢𝑙𝑒𝑡𝑡𝑒𝑊ℎ𝑒𝑒𝑙[𝑤, 𝜑1, 𝜑2]  
10:               if 𝑛 ≤  𝑤 

11:                      (𝑇, 𝑠) ← 𝑹𝑹𝑻∗(𝑇, 𝑚𝑎𝑝) 

12:               else if  𝑤 < 𝑛 ≤  𝜑1 

13:                      (𝑇, 𝑠) ← 𝑷𝒂𝒕𝒉𝑩𝒊𝒂𝒔𝒆𝒅(𝑋𝑙𝑜𝑐𝑎𝑙(𝑘), 𝑚𝑎𝑝) 

14:               else 

15:                      (𝑇, 𝑠) ← 𝑷𝒂𝒕𝒉𝑩𝒊𝒂𝒔𝒆𝒅(𝑋𝑔𝑙𝑜𝑏𝑎𝑙 , 𝑚𝑎𝑝) 

16:               end if 

17:        end while 

18:        𝑋(𝑘) ← 𝑀𝑎𝑘𝑒𝑃𝑎𝑡ℎ from 𝑇 

19:        if 𝒇𝒊𝒕𝒏𝒆𝒔𝒔(𝑋(𝑘))  < 𝒇𝒊𝒕𝒏𝒆𝒔𝒔(𝑋𝑙𝑜𝑐𝑎𝑙(𝑘)) 

20:               𝑋𝑙𝑜𝑐𝑎𝑙(𝑘) = 𝑋(𝑘) 

21:               if 𝒇𝒊𝒕𝒏𝒆𝒔𝒔(𝑋(𝑘))  < 𝒇𝒊𝒕𝒏𝒆𝒔𝒔(𝑋𝑔𝑙𝑜𝑏𝑎𝑙) 

22:                      𝑋𝑔𝑙𝑜𝑏𝑎𝑙 = 𝑋(𝑘) 

23:                      𝑷𝒓𝒖𝒏𝒆𝑻𝒓𝒆𝒆(𝑇) 

24:               end if 

25:        end if 

26:    end for 

27: end while 

Fig. 1. PSO-RRT algorithm. 

The sampling process will be carried out using Algorithm 2 in Fig. 2 if the 

roulette wheel results determine that the next sampling process will be carried out 

randomly based on RRT* algorithm principle. The sampling process will be carried 

out using Algorithm 3 in Fig. 3 if the roulette wheel results determine that the next 

sampling process is based on the sampling around the local best path or global best 

path. Algorithm 3 used path-biased sampling, in which the sampling process is 

carried out around the best local or best global path to obtain a better path. The 
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sampling opportunity will be greater in the path area closer to the goal node in the 

path-biased sampling process. 

The PSO-RRT algorithm has several advantages because it uses two types of 

sampling process methods. A sampling process that imitates the RRT* method, 

ensures that this algorithm has optimal asymptotic properties and avoids being 

trapped in the optimal local solution. A path-biased sampling will accelerate the 

convergence to better paths during planning [23].  

Algorithm 2: (𝑇, 𝑠) ← 𝑹𝑹𝑻∗(𝑇, 𝑚𝑎𝑝) 

1: 𝑞𝑟𝑎𝑛𝑑 ← 𝐼𝑛𝑓𝑜𝑟𝑚𝑒𝑑𝑆𝑎𝑚𝑝𝑙𝑒(𝑘) 

2: 𝑄𝒏𝒆𝒂𝒓  ← 𝑁𝑒𝑎𝑟𝑁𝑜𝑑𝑒𝑠(𝑇, 𝑞𝑟𝑎𝑛𝑑) 

3: 𝑞𝑝𝑎𝑟𝑒𝑛𝑡 ← 𝑁𝑒𝑎𝑟𝑒𝑠𝑡𝑁𝑒𝑖𝑔ℎ𝑏𝑜𝑟(𝑞𝑟𝑎𝑛𝑑 , 𝑄𝑛𝑒𝑎𝑟 , 𝑇) 

4: 𝑞𝑛𝑒𝑤  ← 𝑆𝑡𝑒𝑒𝑟 (𝑞𝑛𝑒𝑎𝑟𝑒𝑠𝑡 , 𝑞𝑟𝑎𝑛𝑑 , ∆𝑞) 

5:  if 𝑂𝑏𝑠𝑡𝑎𝑐𝑙𝑒𝑓𝑟𝑒𝑒(𝑞𝑛𝑒𝑤 , 𝑞𝑛𝑒𝑎𝑟𝑒𝑠𝑡 , 𝑚𝑎𝑝) then 

6:      𝑄𝒏𝒆𝒂𝒓  ← 𝑁𝑒𝑎𝑟(𝑇, 𝑞𝑛𝑒𝑤) 

7:      𝑞𝑚𝑖𝑛 ← 𝐶ℎ𝑜𝑜𝑠𝑒𝑃𝑎𝑟𝑒𝑛𝑡(𝑞𝑛𝑒𝑤 , 𝑄𝑛𝑒𝑎𝑟 , 𝑞𝑛𝑒𝑎𝑟𝑒𝑠𝑡) 

8:       𝑇 ← 𝐼𝑛𝑠𝑒𝑟𝑡𝑁𝑜𝑑𝑒(𝑞𝑚𝑖𝑛,𝑞𝑛𝑒𝑤 , 𝑇) 

9:       if 𝑑(𝑞𝑛𝑒𝑤 , 𝑞𝑔𝑜𝑎𝑙) ≤ ∆𝑞 and 𝑂𝑏𝑠𝑡𝑎𝑐𝑙𝑒𝑓𝑟𝑒𝑒 then 

10:            𝑇 ← 𝐼𝑛𝑠𝑒𝑟𝑡𝑁𝑜𝑑𝑒(𝑞𝑔𝑜𝑎𝑙𝑞𝑛𝑒𝑤, 𝑇) 

11:            𝑠 ← 1 

13:       end if 

14: end if 

Fig. 2. The next sampling process will be carried  

out randomly based on RRT* algorithm principle. 

Algorithm 3 : 𝑋𝑠𝑜𝑙(𝑛𝑒𝑤) ← 𝑷𝒂𝒕𝒉𝑩𝒊𝒂𝒔𝒆𝒅(𝑋𝑠𝑜𝑙 , 𝑚𝑎𝑝) 

1: 𝑞𝑟𝑎𝑛𝑑 ← 𝑆𝑎𝑚𝑝𝑙𝑖𝑛𝑔𝑁𝑒𝑎𝑟𝐵𝑒𝑠𝑡𝑃𝑎𝑡ℎ(𝑘) 

2: 𝑄𝒏𝒆𝒂𝒓  ← 𝑁𝑒𝑎𝑟𝑁𝑜𝑑𝑒𝑠(𝑇, 𝑞𝑟𝑎𝑛𝑑) 

3: 𝑞𝑝𝑎𝑟𝑒𝑛𝑡 ← 𝑁𝑒𝑎𝑟𝑒𝑠𝑡𝑁𝑒𝑖𝑔ℎ𝑏𝑜𝑟(𝑞𝑟𝑎𝑛𝑑 , 𝑄𝑛𝑒𝑎𝑟 , 𝑇) 

4: 𝑞𝑛𝑒𝑤  ← 𝑆𝑡𝑒𝑒𝑟 (𝑞𝑛𝑒𝑎𝑟𝑒𝑠𝑡 , 𝑞𝑟𝑎𝑛𝑑 , ∆𝑞) 

5:  if 𝑂𝑏𝑠𝑡𝑎𝑐𝑙𝑒𝑓𝑟𝑒𝑒(𝑞𝑛𝑒𝑤 , 𝑞𝑛𝑒𝑎𝑟𝑒𝑠𝑡 , 𝑚𝑎𝑝) then 

6:      𝑄𝒏𝒆𝒂𝒓  ← 𝑁𝑒𝑎𝑟(𝑇, 𝑞𝑛𝑒𝑤) 

7:      𝑞𝑚𝑖𝑛 ← 𝐶ℎ𝑜𝑜𝑠𝑒𝑃𝑎𝑟𝑒𝑛𝑡(𝑞𝑛𝑒𝑤 , 𝑄𝑛𝑒𝑎𝑟 , 𝑞𝑛𝑒𝑎𝑟𝑒𝑠𝑡) 

8:       𝑇 ← 𝐼𝑛𝑠𝑒𝑟𝑡𝑁𝑜𝑑𝑒(𝑞𝑚𝑖𝑛,𝑞𝑛𝑒𝑤 , 𝑇) 

9:       if 𝑑(𝑞𝑛𝑒𝑤 , 𝑞𝑔𝑜𝑎𝑙) ≤ ∆𝑞 and 𝑂𝑏𝑠𝑡𝑎𝑐𝑙𝑒𝑓𝑟𝑒𝑒 then 

10:            𝑇 ← 𝐼𝑛𝑠𝑒𝑟𝑡𝑁𝑜𝑑𝑒(𝑞𝑔𝑜𝑎𝑙𝑞𝑛𝑒𝑤, 𝑇) 

11:            𝑠 ← 1 

13:       end if 

14: end if 

Fig. 3. The next sampling process is based on the  

sampling around the local best path or global best path. 

3. Results and Discussions 

The output performances analysed in this research are the quality of the resulting 

path or solution cost, computation time, and the number of iterations required. The 

test is based on simulation using LabVIEW software and uses various benchmarks 

such as clutter, multiple-narrow, square field, and tough passage environments. The 

test results will be compared to the informed RRT* and RRT* algorithms to 
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determine whether the proposed algorithm outperforms them. The test consisted of 

50 trials, with the iteration value in each environment set to 5000. 

3.1. The performance of the PSO-RRT algorithm in a clutter environment 

Table 1 displays the results obtained from testing in a clutter environment. The 

average cost value obtained by PSO-RRT in the clutter environment is 306.97, with 

an average iteration of 122.02 and an average time required of 327.66 s. The highest 

PSO-RRT cost value was obtained with a value of 311.23 and a time requirement 

of 631.61s. The informed RRT* algorithm's average cost value is 306.13, with an 

average iteration of 4101.54 and a time required of 1533.76 s. With a value of 306.6 

and a time requirement of 1340.90 s, the highest informed RRT* solution cost value 

was obtained. The RRT* algorithm's average cost value is 309.25, with an average 

iteration of 3606.94 and a time required of 316.62 s. The highest RRT* solution 

cost value was 313.737, with a time requirement of 123.98 s. 

Table 1. Average results from 50 trials in a cluttered environment. 

Method 
𝒙̅ Solution 

cost score 

𝒙̅ Iterations 

required 
𝒙̅ 𝐓𝐢𝐦𝐞 (𝐬) 

Smallest 

Solution Cost 

Value 

RRT* 

algorithm 
309.25 3606.94 316.62 306.63 

Informed 

RRT* 

algorithm 

306.13 4101.54 1533.76 305.67 

PSO-RRT 

algorithm 
306.97 122.02 327.66 305.71 

Figure 4 depicts the convergence graph of each algorithm's solution costs after 

50 trials. Figure 5 depicts the path with the lowest solution cost produced by each 

algorithm. In terms of iteration and computation, the PSO-RRT algorithm 

outperforms RRT* and informed RRT* in the clutter environment. In terms of 

solution costs, informed RRT* performs slightly better than PSO-RRT, but 

informed RRT* requires more time and iterations than PSO-RRT. PSO-RRT also 

produces the smallest solution cost of all trials, with the smallest solution, 

iterations, and computation time compared to RRT*. 

 

Fig. 4. The convergence graph of each algorithm's solution costs after 50 trials. 
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(a) (b) 

 
(c) 

Fig. 5. The path with the lowest solution cost produced  

by each algorithm: (a) RRT*, (b) informed RRT*, and  

(c) PSO-RRT algorithms in a clutter environment. 

3.2. The performance of the PSO-RRT algorithm in a multiple 

narrow environment 

The results obtained in multiple narrow environments are shown in Table 2. The 

average cost value obtained by PSO-RRT in the narrow environment is 464.41, 

with an average iteration of 315.2 and an average time required of 1205.41 s. The 

highest PSO-RRT cost value was obtained with a value of 464.71 and a time 

requirement of 1298.12 s. The informed RRT* algorithm's average cost value is 

468.26, with an average iteration of 4395.43 and a time required of 269.37 s. With 

a value of 495.53 and a time requirement of 151.08 s, the highest informed RRT* 

solution cost value was obtained. The RRT* algorithm's average cost value is 

473.31, with an average iteration of 3901.65 and a time required of 131.51 s. The 

highest RRT* solution cost value was 530.21, with a time requirement of 94.91 s. 

Table 2. Average outcomes from the  

50 trials in the multiple narrow environment. 

Method 
𝒙̅ Solution 

cost score 

𝒙̅ Iterations 

required 
𝒙̅ 𝐓𝐢𝐦𝐞 (𝐬) 

Smallest 

Solution Cost 

Value 

RRT* 

algorithm 
473.31 3901.65 131.51 465.12 

Informed 

RRT* 

algorithm 

468.26 4395.43 269.37 464.44 

PSO-RRT 

algorithm 
464.41 315.2 1205.41 464.38 
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Figure 6 depicts the convergence graph of each algorithm's solution costs after 

50 trials. Figure 7 depicts the path with the lowest solution cost produced by each 

algorithm. In multiple narrow environments, PSO-RRT produces the smallest 

average solution cost and the smallest number of iterations required from all 

experiments, although the informed RRT* and RRT* algorithms compute faster 

than PSO-RRT. PSO-RRT takes about 200 seconds longer to compute than RRT* 

and informed RRT*. On the other hand, PSO-RRT produced solutions for all trials, 

whereas the informed RRT* and RRT* could only produce solutions in some tests. 

 

Fig. 6. The test result corresponds from the highest to  

the lowest value of (a) solution cost, (b) iteration, and (c) time  

computation algorithms in the multiple narrow environment of 50 trials. 

  
(a) (b) 

 
(c) 

Fig. 7. The path with the lowest solution cost produced  

by each algorithm: (a) RRT*, (b) informed RRT*, and 

 (c) PSO-RRT algorithms in a multiple narrow environment. 
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3.3. The performance of the PSO-RRT algorithm in a square field 

environment 

The results obtained in square field environments are shown in Table 3. The average 

cost value obtained by PSO-RRT in the narrow environment is 325.60, with an 

average iteration of 122.46 and an average time required of 331.07 s. The highest 

PSO-RRT cost value was obtained with a value of 333.58 and a time requirement of 

61.53 s. The informed RRT* algorithm's average cost value is 325.41, with an 

average iteration of 4278.24 and a time required of 958.78 s. With a value of 325.743 

and a time requirement of 1162.20 s, the highest informed RRT* solution cost value 

was obtained. The RRT* algorithm's average cost value is 328.16, with an average 

iteration of 3404.24 and a time required of 414.93 s. The highest RRT* solution cost 

value was 331.458, with a time requirement of 749.18 s. 

Table 3. Average outcomes from the 50 trials in the multiple square field. 

Method 
𝒙̅ Solution 

cost score 

𝒙̅ Iterations 

required 
𝒙̅ 𝐓𝐢𝐦𝐞 (𝐬) 

Smallest 

Solution Cost 

Value 

RRT* 

algorithm 
328.16 3404.24 414.93 326.52 

Informed 

RRT* 

algorithm 

325.41 4278.24 958.78 325.14 

PSO-RRT 

algorithm 
325.60 122.46 331.07 325.17 

Figure 8 depicts the convergence graph of each algorithm's solution costs after 

50 trials. Figure 9 depicts the path with the lowest solution cost produced by each 

algorithm. The same results are obtained in the square environment as in the clutter 

environment. PSO-RRT also has the lowest solution cost of all trials, with the 

fewest iterations and computation time compared to RRT* and informed RRT*. 

However, informed RRT* generates a very small difference in solution cost. 

Informed RRT* yields a solution cost value of 325.14, while PSO-RRT yields 

325.17, a difference of 0.03. 

 

Fig. 8. The test result corresponds from the highest to the lowest  

value of (a) solution cost, (b) iteration, and (c) time computation  

algorithms in the square field environment of 50 trials. 
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3.4. The performance of the PSO-RRT algorithm in a tough 

passages environment 

Table 4 displays the results obtained from testing in a tough passages environment. 

The average cost value obtained by PSO-RRT in the tough passages environment 

is 220.74, with an average iteration of 243.9 and an average time required of 665.65 

s. The highest PSO-RRT cost value was obtained with a value of 222.10 and a time 

requirement of 916.33 s. The informed RRT* algorithm's average cost value is 

221.94, with an average iteration of 4334.62 and a time required of 794.15 s. With 

a value of 223.80 and a time requirement of 520.31 s, the highest informed RRT* 

solution cost value was obtained. The RRT* algorithm's average cost value is 

229.35, with an average iteration of 3971.7 and a time required of 346.72 s. The 

highest RRT* solution cost value was 236.02, with a time requirement of 184.46 s. 

  
(a) (b) 

 
(c) 

Fig. 9. The path with the lowest solution cost produced  

by each algorithm: (a) RRT*, (b) informed RRT*, and  

(c) PSO-RRT algorithms in a square field environment. 

Table 4. Average outcomes from the  

50 trials in the multiple narrow environment. 

Method 
𝒙̅ Solution 

cost score 

𝒙̅ Iterations 

required 
𝒙̅ 𝐓𝐢𝐦𝐞 (𝐬) 

Smallest Solution 

Cost Value 

RRT* algorithm 229.35 3971.7 346.72 222.13 

Informed RRT* 

algorithm 
221.94 4334.62 794.15 220.23 

PSO-RRT 

algorithm 
220.74 243.9 665.65 219.93 

Figure 10 depicts the convergence graph of each algorithm's solution costs after 

50 trials. Figure 11 depicts the path with the lowest solution cost produced by each 

algorithm. The same results are obtained in the tough passage environment as in 

multiple narrow environments. Although RRT* computes faster than PSO-RRT, 
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PSO-RRT produces the smallest solution cost and iteration of all trials compared 

to RRT* and informed RRT*. 

 

Fig. 10. The test result corresponds from the highest to  

the lowest value of (a) solution cost, (b) iteration, and (c) time  

computation algorithms in the tough passages environment of 50 trials. 

Based on the results of the tests, it is clear that the informed RRT* algorithm 

outperforms the RRT* algorithm. This is consistent with Gammell et al. [24] and Zhang 

et al. [25]. The PSO-RRT algorithm, which combines the RRT* and PSO algorithms, 

outperforms the RRT* and Informed RRT* algorithms. The superior performance of 

the PSO and RRT hybridization algorithms is consistent with Shami et al. [26], who 

claim that the hybridization process can produce a new algorithm that outperforms the 

individual algorithms. Chai et al. [27], Sayah and Hamouda [28], as well as Kiran et al. 

[29] also hybridized an algorithm with the PSO algorithm and all reported obtaining a 

new algorithm that is better than the individual algorithms. 

  
(a) (b) 

 
(c) 

Fig. 11. The path with the lowest solution cost produced  

by each algorithm: (a) RRT*, (b) informed RRT*, and  

(c) PSO-RRT algorithms in tough passages environment. 
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4. Conclusion  

The path planning algorithm was created using a combination of the RRT and PSO 

algorithms and was tested using simulation using LabVIEW software. In each 

environment that has been tried, the results have been different.  

The proposed algorithm outperforms the RRT* algorithm and the informed 

RRT* algorithm by obtaining a small cost value, iteration, and computational time 

in the clutter and square field environments. In multiple narrow environments, the 

PSO-RRT algorithm provides a small cost value and iteration cost, but the PSO-

RRT algorithm takes considerable computational time.  

Furthermore, unlike the RRT* and informed RRT* algorithms, the PSO-RRT 

algorithm can obtain a cost solution value in each trial. For 50 trials, the RRT* and 

informed RRT* algorithms can only produce 30 cost solution values.  

In tough passage environments, the PSO-RRT algorithm outperforms the 

informed RRT* and RRT* algorithms. The RRT* algorithm is slightly faster in 

terms of computational time, but the PSO-RRT algorithm has the lowest solution 

cost and iteration value compared to the RRT* algorithm.  

Therefore, using the solution cost value, iteration, and computational time 

generated by each test, it can be concluded that the PSO-RRT algorithm 

outperforms the RRT* algorithm and the informed RRT* algorithm. 
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