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Abstract 

Multi-Instance Learning (MIL) classifies a bag of instances rather than an 

individual instance. There is a lack of consideration of feature selection in MIL. 

The large number of features that are irrelevant and redundant in MIL affects the 

classification performance. Besides that, a genuine label of instance is unknown 

in MI data and evaluation of relevancy using bag class label cannot be done 

directly. To address this gap, this paper proposes a Fusion Bag-based Correlation 

Feature Selection (FBC-FS) technique using multiple bag summarization to 

accommodate MI data in an effort to increase performance in MI classification. 

The proposed technique consists of three steps: feature transformation, feature 

evaluation using the bag correlation and fusion of candidate features. The FBS-

FS is evaluated based on the MI dataset (Breast Cancer and Tiger image) with a 

standard Support Vector Machine, K-Nearest Neighbour (KNN) and Decision 

Tree. The superior result achieves up to 91.5% AUC when using KNN for the 

Breast Cancer dataset and the improvement achieves up to 16% with proposed 

FS compared without performing FS task. The results also proved that correlation 

measures in evaluating relevance and redundancy criteria with extended 

parameters to find optimal features contribute highly to the improvement of the 

classification performance.   

Keywords: Bag summary, Correlation measure, Medical image classification, 

Multi-instance feature selection, Redundant feature, Relevant feature. 
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1.  Introduction 

Disease diagnostic accuracy is a major challenge for global healthcare systems [1]. 

It is estimated that on average the rate of diagnosis error is between 3% to 5% every 

year worldwide [2]. In medical imaging, a small bias towards the majority class 

such as a little mark in a retinal image is sufficient to change the image class from 

normal to abnormal, even though the majority of the images are normal [3]. 

Therefore, an accurate disease diagnosis is crucial because it is the key for reducing 

unnecessary surgeries and procedures [4]. Fortunately, Multi-Instance Learning 

(MIL) is an alternative solution to the problem with medical image diagnostic 

systems at conventional single image analysis. A bag in MIL is defined as a 

collection of unlabelled instances.  

Region of interest (ROI) in medical images usually distributed over multiple 

adjacent slices (e.g., in Computed Tomography (CT) or Magnetic Resonance 

Imaging (MRI)) and having correlations in successive slices [5]. Therefore, features 

of MI images may provide complementary information, and provide more insights of 

the disease pathology [6] to achieve class discrimination with higher accuracy [7, 8]. 

This means MIL is able to offer a more accurate diagnosis [9, 10]. However, the MIL 

diagnosis is implemented on the full data set (without FS task) in general. 

There are limited studies regarding feature selection (FS) that have been 

designed for MI problems. Conventionally, MI image features are analysed 

individually and without considering the correlation between different instances 

[11]. The evaluation and analysis of MI features implemented at instance-based 

is prone to a few problems. Firstly, it did not consider full information from the 

structure of bag features. Secondly, it depends on the availability of the target 

instance class label to identify relevant features which the genuine label of 

instances is unknown in MI data [12]. Tackling the ambiguity label by 

assumption may be inappropriate and the instance-based feature evaluation of 

relevancy using bag class label cannot be done directly. 

To address this gap, the objective of this study is to propose a FS technique 

which evaluates the image features as a whole (at bag-based) instead of analysing 

as a single instance (instance-based). This means, evaluating the image’s features 

once from the group of images to obtain optimal features for good performance 

of classification task. Hence, the FS task is enhanced from instance-based to bag-

based process. By implementing the proposed technique, the optimal feature set 

will be identified, and the accuracy of the medical MI image classification is 

hoped to be improved. Three contributions of this study include: (1) analysing 

MI features as multiple bag representation using statistical central tendency 

measures, (2) the bag feature acquired being new bag-based parameter in 

measuring correlation of among bag features and correlation between bag feature 

with a bag class label and (3) a new fusion scheme implement using set theory 

operations on binary relations in selecting the optimal features with considering 

two criteria and multiple bag summarization. 

The remaining of this paper is organized as follows. Section 2 reviews work on 

feature selection and feature transformation in MIL. Section 3 presents the research 

methods including the research framework, the datasets, the proposed technique, and 

the evaluation metrics. Section 4 presents the results and discussions, and finally 

Section 5 concludes the paper with some indications for future works.  
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2.  Literature Review 

In Multi-Instance Learning (MIL) problems, instances are grouped into bags, and the 

entire bags are labelled. MIL was first proposed by [13]. MIL is a weak supervised 

learning framework [14, 15]. Weak supervision in machine learning deals with 

limited or imprecise class labels such as in the case of MIL, when a class represents 

a group or bag of instances rather than a single instance. The learning task is to predict 

the label of bags. Feature Selection (FS) for MIL problems is more challenging than 

Single-Instance Learning (SIL) due to ambiguous input [16], missing instance labels, 

and a mix of positive and negative instances in a particular positive or negative bag. 

The literature shows that tasks involved in MIL can be performed at two 

different levels; instance-based and bag-based [17,18]. However, most previous 

studies implement FS in MIL using instance-based FS technique with different 

categories: based on interaction with classifier (e.g., MI-AdaBoost [19]), ranking 

(e.g., MI-FEAR [20], ReliefF-MI [21], Reliability-based FS [22]) and subset 

selection (e.g., HyDR-MI [23]). However, none consider feature correlation for 

evaluating redundancy and relevance criteria simultaneously in FS of MIL.   

2.1. Feature transformation  

A multi-instance (MI) dataset means a class is represented by a bag of instances 

rather than a single instance. Due to this structure, the FS task cannot be 

implemented directly to the dataset. The instances in a bag have to be transformed 

into a bag vector before they are classified using the standard SIL classifier in order 

to classify the bag labels or classes. To handle MI datasets, feature transformation 

is required especially when the model accuracy is more important than model 

interpretation [24]. Recent research has shown that the use of bag summarization 

by transforming functional vectors in one single case into a new bag vector is 

necessary as a generic learning strategy to tackle the ambiguity of instance class 

[8]. The single value is meaningful to represent the whole bag. All instances of the 

same bag are considered equally important in the bag representation [25]. Table 1 

lists the variation of MI bag representation by feature transformation which 

basically uses a single statistical and distance measure. However, the distance 

measure may ineffective in the case of high-dimensional data [26]. 

Table 1. Variation of MI feature transformation. 

Approach  Comments 

Summarization by arithmetic 

mean, geometric mean, and 

minimax [27] 

The arithmetic mean outperforms the other two 

methods in a few cases. However, it has been done for 

classification task whereas not for FS. 

Weighted representation 

transformation [25] 

The weighted computed by the minimal Hausdorff 

distances between the bags and only considered closed 

instances and used for classification task. 

Arithmetic mean [28] Used for classification task. 

Discriminative Bag Mapping 

[8] 

Only consider a small number of selected instances 

from MI bags and used for classification task. 

Histograms utilized as bag 

representation [29] 

Used for FS task in MIL at instance-level. The 

distance measure used as the criterion to evaluate the 

feature importance. 
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All the implementations used the transformation for classification [29]. Some 

transformations consider all instances such as [27-29] and others consider selected 

instances [8, 25]. Summarization by mean is the most frequently used and generally 

considered the best measure of central tendency [30]. However, some cases in 

analysing numerical features value of real image may exist extreme scores in the 

distribution, may some scores have undetermined values or open-ended distribution. 

These possible cases make the other measures of central tendency preferred [30]. To 

empower the MI image diagnostic, this study proposes a FS technique that involves 

a few transformations process and considers all instances to look at the image features 

as a whole. Instead of using a single measure, the proposed technique considers all 

measures of central tendency to enrich the bag information. 

2.2. Feature evaluation  

Features thus play an important role during the classification stage [31]. A 

redundancy criterion determines the degree of dependency among all features, 

while a relevance criterion determines the degree of dependency between a feature 

to the class in order to see how well a feature discriminates between the classes.  

Formulas for calculating a correlation coefficient are available and the choice of 

measure depends on the type of data to measure the strength of features association.  

Redundancy among features can be evaluated by using the Pearson Correlation 

Coefficient (PCC), which is suited to measure a correlation among continuous data. 

Meanwhile, relevancy features and target class can be evaluated by using the Point 

Biserial Correlation (PBCC) which suits continuous-binary categorical data [32]. 

PCC is commonly used in medical research [33, 34] to evaluate features in a 

dataset such as in Magnetic Resonance Imaging (MRI) dataset [35]. Eq. (1) shows 

the PCC formula to calculate between the two features X and Y, with 𝑥𝑖, 𝑦𝑖 , and the 

respective mean for x and y. Refer to Table 3 for the description of Eq. (1). 

𝑟𝑥,𝑦 =  
∑ 𝑋.𝑌𝑛

𝑖=1

√∑ 𝑋2𝑛
𝑖=1  √∑ 𝑌2𝑛

𝑖=1

  where  𝑋 = 𝑥𝑖 − �̅�  and  𝑌 = (𝑦𝑖 − �̅�). (1) 

PBCC is adequate to analyse whether there is weak or strong correlation among 

features as well as the correlation value in the form of a redundant score to indicate 

feature goodness in a classification task [36]. However, this study will use the 

PBCC to assess relevance between the features and the class label of the images. 

The PBCC is calculated as Eq. (2) [37]. Refer Table 4 for the description. 

𝑟𝑝𝑏(𝑓𝑗, 𝑐𝑖) =
𝑦0̅̅ ̅ −  𝑦1̅̅ ̅

𝑆𝑗

√
 𝑛0𝑛1

𝑛2
 (2) 

These existing correlation measures only use instance-based features parameters 

in calculating the correlation coefficient which need to extend to use for MI data. 

3.  Research Method 

This paper proposes a Fusion Bag-based Correlation Feature Selection (FBC-FS) 

technique to empower feature selection (FS) tasks to improve performance of 

Multi-Instance (MI) classification. Firstly, a brief on research the framework of the 

proposed technique. Secondly, the datasets used are presented. Thirdly, brief on 

feature transformation followed by feature evaluation. Finally, the classifier used. 
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3.1. Research framework  

Generally, the important four stages of MI image diagnostic consist of image 

acquisition and pre-processing of MI images, feature extraction, feature selection, 

and classification [38-40]. However, the first and second stage will not be repeated 

because it has been completed by [41], where the derivation of numerical MI 

dataset was obtained and used as benchmark input (refer subsection 3.3 for the 

details). The main contribution of this study focuses on the third stage, proposes an 

extended FS technique to select optimal features named Fusion Bag-based 

Correlation Feature Selection (FBC-FS) which consists of three main steps: 

transformation (a), evaluation (b) and fusion (c) (refer Fig. 1). 

 
Fig. 1. Framework of the fusion bag-based correlation feature selection. 

At the first step, features are transformed from original features to a new bag 

feature using bag summarization of statistical central measures (refer Fig. 1(a) and 

Section 3.3). At the second step, the bag features acquired will be evaluated using 

correlation measures (refer Fig. 1(b) and Section 3.4). The evaluation considered 

(a) 

(b) 

(c) 
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two criteria: relevance (by looking at BagCorr-FC) and redundancy (by looking at 

BagCorr-FF). The final step is selecting optimal features using set theory operation. 

The candidate features from multiple bag summarization evaluation were combined 

to get candidate fused features for each criterion of relevance (Correlation Feature-

Class: CFC) and redundancy (Correlation Feature-Feature: CFF) by implementing 

union operation. Then, the best selected features are fused using intersection 

operation by looking for features which meet both criteria (refer Fig.1 (c)). Using 

SIL Classifier, the selected bag features being input for the fourth stage of 

classification (refer Section 3.5). In the case of disease diagnosis using medical 

image dataset which refers to predicting the label of image for the subjects. The 

bag is subsequently classified as positive (disease) or the negative (non-disease). 

When the classification is completed at the fourth stage, the performance of the 

diagnosis result will be measured in terms of accuracy and area under the Receiver 

Operating Characteristic (ROC) curve (AUC) (refer Section 3.6 for details). 

3.2. Multi-instance image dataset 

The input for this framework is a secondary dataset acquired from a collection of 

MI dataset defined as vectors on a set of instance features and its bag class labels. 

The numerical data of MI medical image named UCSB Breast Cancer as the main 

dataset has been used. A set of extracted features represented as feature vectors of 

instances. An excerpt of the image is shown in Fig. 2. Each image (called bag) is 

split into patches (called instances) and the image patches are not labelled [42].  

      

Fig. 2. Sample microscopic images of (a) cancer (or malignant)  

and (b) non-cancer (or benign) from UCSB Breast Cancer dataset. 

The public MI medical image is limited. Therefore, a non-medical image 

dataset has been used is a Tiger image as comparison. The dataset is a popular 

benchmark for evaluating new MIL proposals [43] and has the same one 

characteristic as the UCSB Breast Cancer dataset which is categorized as 

multimodal positive distribution. The description for all datasets is listed in Table 

2. The extracted feature vectors for these dataset are publicly available at [44].  

Table 2. Description of benchmark dataset [45]. 

Dataset Total Bags + Bags - Bags Features Total Instances Min Max 

UCSB Breast Cancer 58 26 32 708 2002 21 40 

Tiger 200 100 100 230 1220 1 13 

(a) (b) 
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3.3. Feature transformation into bag summarization of features  

To implement the proposed FBC-FS technique, this is a first step as Figure 1(a) 

represents the bag information as a collection of different numbers of instances into 

a new feature vector in a single value. The new bag features will contain statistical 

values computed from the set values of all instances in a bag that corresponds to 

the original representation. The transformations proposed have been performed on 

the bags using statistical central tendency measures which are mean, mode and 

median mapping. The mean measure is a standard measure at the center of the data 

distribution, the mode measure to the most frequently occurring value in the dataset 

and the median measure to get the middle value for a dataset. Figure 3 shows the 

general idea of the bag vector of features. 

 

Fig. 3. The new bag feature vector based on statistic measure. 

The resulting measures will be used as new bag vectors for the next stage in the 

proposed technique. Note that feature transformation of bag summarization as a 

new bag vector is categorized as a bag-based approach for the FS task. This step 

turns the MIL problem into a mimic SIL problem. However, the single value 

transformed is not an individual instance but a group of instance information. 

3.4. Feature evaluation using bag-based features 

The second step in the proposed FBC-FS technique will calculate redundancy and 

relevance score for each feature using extended parameters of correlation measures.  

3.4.1. Redundancy score using modified Pearson correlation 

The correlation approach is used to measure the association between the features. 

For a pair of features (fj, fi) or (x, y) the correlation coefficient, r, is given by Eq. 

(1). Meanwhile, the extended PCC using bag-based parameters with pair-wise bag 

features is presented in Eq. (3). This correlation is named as BagCorr-FF. Refer 

Table 3 for the description of Eq. (3). 

𝑟𝑏𝑥,𝑏𝑦 =  
∑ (𝑏𝑋)(𝑏𝑌)𝑛𝑏

𝑖=1

√∑ (𝑏𝑋)2𝑛𝑏
𝑖=1  √∑ (𝑏𝑌)2𝑛𝑏

𝑖=1

  

where 𝑏𝑋 = 𝑏𝑋𝑖 − 𝑏𝑋̅̅̅̅   and  𝑏𝑌 = (𝑏𝑦𝑖 − 𝑏𝑦̅̅̅̅ ) 

(3) 

f11 f21 … fj1 

f12 f22 … fj2 

:        :        :        : 

f1k  f2k … fjk 

 
Summarization using statistical measure  

Bif1 Bif2 … Bifj 

 

Original bag i 

New bag features j 
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The proposed Extended PCC (EPCC) is different from the conventional PCC 

with its parameter involved in the calculation. EPCC is able to compute redundancy 

scores which represent the bag feature correlation not instance correlation. 

Table 3. Conventional PCC vs. Extended PCC. 

Conventional PCC: Eq. (1) Extended PCC (Bag-based): Eq. (3) 

𝑟𝑥,𝑦= correlation feature x and y 𝑟𝑏𝑋,𝑏𝑌 = correlation bag feature x and y 

𝑥𝑖= values of x-feature  𝑏𝑋𝑖= values of x-bag feature 

�̅� = mean values of x-feature 𝑏𝑋̅̅̅̅  = mean values of x- bag feature 

𝑦𝑖= values of y-feature  𝑏𝑌𝑖= values of y-bag feature  

�̅� = mean values of y-feature 𝑏𝑌̅̅̅̅  = average of y-bag feature  

𝑛 = number of features 𝑛𝑏 = number of bag features 

3.4.2. Relevance score using modified point biserial correlation 

PBCC measure is an alternative to PCC when the first variable is continuous, and 

the second variable is categorical binary. Determining correlation 𝑟𝐵𝑝𝑏  with the 

binary class used to assess the discriminative power of each bag feature j. The 

correlation is named as BagCorr-FC. Refer Table 4 for the description of Eq. (4). 

𝑟𝐵𝑝𝑏(𝑓𝑗 , 𝑐𝑖) =
𝑦0̅̅ ̅ − 𝑦1̅̅ ̅

𝑆𝑗

√
 𝑛0𝑛1

𝑛2
 

(4) 

Table 4. Conventional PBCC vs. Extended PBCC. 

Conventional PBCC: Eq. (2) Extended PBCC (Bag-based): Eq. (4) 

𝑦0̅̅ ̅ = average of feature j for class 0 𝑏𝑦0
̅̅ ̅̅ ̅ = average of bag feature j for bag class 0 

𝑦1̅̅ ̅ = average of feature j for class 1 𝑏𝑦1
̅̅ ̅̅ ̅ = average of bag feature j for bag class 1 

𝑆𝑗 = standard deviation of feature j 𝑏𝑆𝑗   = standard deviation of bag feature j 

𝑛0 = respective numbers of 0s class 𝑛0 = respective numbers of 1s bag class 0 

𝑛1 = respective numbers of 1s class  𝑛1 = respective numbers of 1s bag class 1 

𝑛 = the total number features 𝑛 = the total number bag features 

The parameters used in Eq. (4) differ from conventional Eq. (2) which use 

instance feature information and ambiguous class information which are not 

genuine instance’s class to evaluate the relevancy score. While the proposed 

Extended PBCC (EPBCC) involved bag feature information to evaluate the feature 

relevance by checking its correlation to the real bag class provided in the dataset. 

3.5. Classification task 

Once the feature was transformed, the MI dataset can now be treated similar to a 

conventional classification. The acquired selected features by the proposed FBC-

FS will then be fed as input to Support Vector Machine (SVM), K-Nearest 

Neighbour (KNN) and Decision Tree (DT) classifiers in order to predict the image 

classes. These three are common techniques used in breast cancer diagnosis [46]. 

SVM is a margin classifier that draws optimal hyperplanes between two classes in 

the feature vector. KNN predicts the class of observation that is dominant among k 

number of nearest neighbours in the feature vector. DT predicts the class by 

learning simple decisions. The default parameters used in this study: linear for 
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SVM and k = 5 for KNN. The dataset was divided into training set and test set using 

10-fold cross-validation approach to avoid biased results as follows [47]. 

3.6. Performance evaluation 

The impact of the proposed technique will be evaluated based on the final 

classification accuracy (Acc.) produced by the standard classifier. The evaluation 

metrics used include the True Positive (TP), False Positive (FP), False Negative 

(FN), and True Negative (TN). These metrics are then represented by a confusion 

matrix, which allow the performance Acc. of the classifiers to be measured as 

described in Table 5. 

Table 5. Performance measurement based on confusion matrix. 

Measurement Indication of Classification Result 

Acc. = (TP+TN)/ N, 

where N=TN+TP+FN+FP 

The score of correct images classified from the total number 

of samples (N) 

Apart from the confusion matrix, the assessment of the goodness of a 

classifier’s prediction from variation of features set in this study can be seen from 

the ROC curves [48]. Area under the curve (AUC) is acquired from the ROC, which 

provides a numerical measurement on the classifier's performance. Each point 

represents a sensitivity (probability of correctly identifying positive image) also 

known True Positive Rate (TPR) and specificity (probability of correctly 

identifying negative images) or also known True Negative Rate (TNR) correspond 

to a particular decision threshold. The performance of classifier by value of AUC 

can be categorized as excellent (1.0 >AUC > 0.9 or 90%), good (0.9 > AUC > 0.8 

or 80%) and not good for disease diagnosis (AUC < 0.7 or 70%). 

4.  Results and Discussion 

The average accuracy (Acc.), average AUC and average ROC curves presented in 

this section are results per test set of the 10-fold cross validation process using 

SVM, KNN and DT techniques respectively for the UCSB Breast Cancer and Tiger 

image. Overall, the performance of multi-instance (MI) classification was 

improved by the reduced features set by the proposed FBC-FS technique when 

compared to the full features for all classifiers tested.  

The average ROC curves shown in Fig. 4 indicates that the selected features by 

multiple bag-fused settings can produce classifications with larger AUC on UCSB 

Breast Cancer using KNN compared to other settings. It also proved the better ROC 

curve when classified using SVM and DT. Refer Figs. A-1 and A-2 (Appendix A). 

The average AUC achieved is categorized as excellent performance up to 91.5% 

for UCSB Breast Cancer and 91.2% for Tiger dataset. Even though the AUC score 

of DT fed by the selected feature of the proposed technique is slightly lower than 

80%, it is still higher than other settings. Refer to the bold score in Table 6. The 

results indicated that the fusion step with considering all statistical central tendency 

measures of the multiple bag summary with mean, median, and mode at Fig. 1(c) 

give comprehensive information to discriminate the class by the reduced features 

feeder to the classifier. This fusion step as proposed technique automatically caters 

to open-ended data distribution which may have the possibility of extreme or 
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undetermined correlation score when only focusing on one central tendency 

measure. This means the selected feature sets have a better classification 

performance than that produced by the single bag summary of feature and full 

features. The improvement achieves 2.5-16%.  

 

Fig. 4. Comparison ROC Curve on variation of reduced features vs. full 

features of UCSB breast cancer dataset using K-Nearest Neighbours. 

Table 6. Average accuracy and area under ROC curve  

on MI image with variation of features evaluation setting. 

D
a

ta
se

t Feature 

Evaluation 

of Setting 

Reduced Feature (%) Full (%) Proposed 

FS vs. 

Without 

FS (%) 

Bag 

Mean 

Bag 

Mode 

Bag 

Median 

Multiple Bag 

Fusion 

(Proposed) 

- 

Classifier Acc. AUC Acc. AUC Acc. AUC Acc. AUC Acc. AUC Improved 

U
C

S
B

 
B

re
a

st
 

C
a

n
ce

r SVM 74 74.6 72.2 68.8 82 84.2 84.9 86.3 78.5 75.4 6.4 

KNN 69.9 79.6 73.4 74.2 80 82.6 84.3 91.5 68.3 71.7 16.0 

DT 62.9 61.7 60.7 54.6 69.5 67.5 77.5 79.2 68.3 62.5 9.2 

T
ig

er
 SVM 83.4 91.1 81.3 91.5 84.5 91.1 84.6 91.2 80.7 86.8 3.9 

KNN 77.7 86 71.5 78.2 78.3 86.7 80.4 86.8 77.9 79.1 2.5 

DT 76.1 77.7 74.7 79.8 76.3 81.2 76.3 79.6 73.7 77.3 2.6 

Average Score 74 78.5 72.3 74.5 78.4 82.2 81.3 85.8 74.7 75.5 6.6 

In the perspective of feature evaluation in terms of relevance and redundancy 

criteria, Table 7 shows 93.4% final average reduced number of features for UCSB 

Breast Cancer image dataset and 97% reduced for dataset Tiger image dataset.  

Based on the findings from the experiments carried out, the reduced feature set 

improved the accuracy of both MI image datasets and more effective to UCSB 

Breast Cancer image. 

Table 7. The reduced number of features using FBC-FS. 

Feature Set-› 
Full 

Reduced % Final 

Reduced Dataset↓ Relevance Only Selected 

UCSB Breast Cancer 708 99 47 93.4% 

Tiger 230 9 7 97% 

The corresponding ROCs are shown in Fig. 5, which show that there is different 

performance between considering relevance features only and excluding strong 
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redundancy features in the relevance features to feed classifiers. Generally, all MI 

data have correlated features. Therefore, features with redundancy score more than 

0.69 are strongly correlated among features [30, 33] was excluded. Figure 5 results 

proved that considering both criteria are better of average ROC Curves than 

considering only single criterion (relevance only) along with the bag-based 

correlation measures by the proposed FS technique for the KNN classifier applied 

on UCSB Breast Cancer dataset. It also proved the better curve when the reduced 

dataset was classified using SVM and DT (refer Figs. A-3 and A-4 (Appendix A)). 

The bag-based summary is an information to extend the parameter used in the 

redundancy measure (by EPCC) and relevance measure (by EPBCC) to get a bag-

based correlation score as Figure 1(b) which gives promising results.  

 

Fig. 5. Comparison ROC Curve on Full Features, with and without redundancy 

features set for UCSB breast cancer dataset using K-Nearest Neighbor. 

Overall, transforming instance-based feature into bag-based feature setting as 

full information being a good parameter of correlation coefficients measure to 

assess criteria for features evaluation. This process fills the gap of genuine label of 

instance is unknown in MI data and evaluation of relevancy using bag class label 

cannot be done directly. The reduced features by consideration of relevancy score 

only and the integrated relevance score without strong redundancy score calculated 

by different bag summary correlation input.  

5.  Conclusions 

Feature selection is a limited issue discussed in image classification problems under 

MIL. This study proposes Fusion Bag-based Correlation Feature Selection (FBC-

FS) technique. By considering the MI data, especially medical image data, have 

correlated instances as well as correlated features, the proposed approach is 

featured by 3 steps: transformation-evaluation-fusion. Experiments indicate that the 

proposed system achieves much improved performance, measured by the accuracy 

and AUC of ROC, over the approach. These results clearly demonstrate the great 

potential of the proposed approach in the classification of MI data and cancer MI 

image data specifically. In the proposed technique, the bag summary 
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transformation contributed to the feature selection task which analyses features as 

a whole, which was only used for classification tasks in the previous studies. The 

fused features acquired by the proposed technique are superior in terms of accuracy 

compared to single bag summary. The three measures complement represents the 

central tendency of data. As MI images are correlated, it is assumed that the 

correlated feature problem also exists. It is also proved that consideration of 

correlation measures to evaluate relevance and redundancy criteria to find optimal 

features contribute to the improvement.  In the future, this study is hoped to explore 

other statistical summarization measures such as variance, skewness. Furthermore, 

it is also hoped to explore different datasets. 
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Appendix A 

 

Fig. A-1. Comparison ROC curve on variation of reduced features vs. full 

features of UCSB breast cancer dataset using support vector machine. 

https://figshare.com/arti
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Fig. A-2. Comparison ROC Curve on variation of reduced features  

vs. full features of UCSB breast cancer dataset using decision tree. 

 

Fig. A-3. Comparison ROC curve on full features, with and without redundancy 

features set for UCSB breast cancer dataset using support vector machine. 

 

Fig. A-4. Comparison ROC curve on full features, with and without  

redundancy features set for UCSB breast cancer dataset using decision tree. 


