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Abstract 
Hand gesture detection using Doppler radar has recently achieved great success. 
Typically, machine learning methods are used to separate the different hand 
gestures by feeding them with Doppler shift signals generated by the moving 
hands. While the success of machine learning-based classification of hand 
gestures has been primarily based on the use of spectral features, time-domain 
features-based recognition has received less attention so far. In this work, a set of 
time-domain features of Doppler signal is investigated in terms of their ability to 
separate hand gestures from a single subject performing four-hand gestures with 
a Doppler radar. The current study aims to investigate the potential of each time-
domain features potential in recognising hand gestures. Using common machine-
learning techniques, we presented the most stable single feature and multiset 
feature. The results show that zero-crossing (ZC) outperforms other features in 
all classification tests. The average classification accuracy for ZC was 80% and 
multiset features with ZC increase to 90%. The obtained result shows the 
capability of time-domain features, despite the simplicity of the method.  

Keywords: Accuracy, Feature extraction, Radar sensor, Supervised machine 
learning, Time-domain features. 
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1.  Introduction 
Hand gesture is an unspoken body language that plays an important role in daily 
communications. Recently, hand-gesture recognition systems have become 
increasingly popular because of their potential applications in the area of human-
computer interfaces (HCI) such as multimedia and game controls [1]. These 
interfaces seem to have several advantages when compared with the conventional 
keyboard. Firstly, hand gesture uses lower cognitive level than a keyboard, thus 
allowing more focus on the actual task. Secondly, they can be designed to work 
with natural actions of hand, which provide more intuitive and simple interaction 
with computer [2]. And thirdly, a hand gesture recognition system can be 
contactless, which enables ones to interact with a computer without endangering 
human life. For instance, to interact with the car multimedia devices and in the 
surgical room where the use of contactless hand gestures can eliminate the risk of 
cross-contamination [3, 4]. 

The two most commons approach in hand gesture detection are based on the 
use of a camera (RGB camera [5], and depth camera [6]), and wearable sensors 
(acceleration sensors [7] and electromyography [8]). While these approaches have 
shown to achieve a high rate of recognition accuracy, they suffer from several 
limitations. For the camera system, the accuracy is limited when operating in a 
noisy environment, such as in low lighting and bad weather conditions. 
Furthermore, it also raises concerns about the privacy of the users. On the other 
hand, the use of wearable sensors requires attaching several sensors on hand, which 
is deemed cumbersome and may limit the hand movements. 

Alternatively, radar can solve the limitations in camera and wearable sensors. 
Radar preserves the anonymity of its use since it works by radiating low-power 
electromagnetic waves to hand, which then reflected to radar for measurement. 
Moreover, its operation is insensitive to dark surroundings and bad weather 
conditions. The recent development of low-cost and miniaturised Doppler radar is 
a promising technology to explore and to develop low-cost yet robust hand gesture 
recognition systems [9]. 

Hand gesture recognition is an intelligent signal processing technology that uses 
a classification algorithm to recognise the intent of the user. A typical classification 
algorithm extracts several features from the acquired signal and then used it to 
recognise the user hand gesture. The recognition is comprised of two processes: 
training and testing. During the training process, the classification algorithm 
“learns” the hand gesture based on the signal features presented to them. 
Subsequently, the testing is to validate how accurate the classification algorithm 
recognises the intended hand gesture.  

Selecting “good” set of features which can effectively identify hand gestures is 
still an open challenge. In literature, the time-frequency domain (TFD) has been 
the primary source of features as the time-frequency signal consists of intricate 
Doppler components induced by the hand motions. Typically, TFD are generated 
using the efficient fast Fourier transform (FFT) algorithm. Although TFD features 
have been shown to provide high classification accuracy and robust [10-13], the 
FFT processing complexity can become very high with growing data samples 
because FFT involves O(Nlog2N) multiplications, where N is the number of data 
samples [14]. For this reasons, recognition based on time-domain (TD) features is 
a promising approach for low-cost and real-time hand gesture recognition systems, 



3380        K. K. M. Shariff et al. 

 
 
Journal of Engineering Science and Technology          October 2022, Vol. 17(5) 

 

as this approach eliminates many complex signals processing such as signal 
transformation. Previous work has evaluated few TD features. These include zero-
crossing and magnitude difference [15-16]. The results demonstrated that the TD 
features can achieve classification accuracy greater than 80%. While there are many 
TD features available in the literature, only two TD features have been investigated 
for radar applications. So far, there is no consensus yet on which TD features to 
suit the recognition task the best.  

In this paper, we aim to 1) evaluate the performance of 8 common TD features 
using 4 classification algorithms and identify the TD features that provide the best 
accuracy. 2) evaluate the performance of the TD feature in a combined form or 
feature set.  

Ideally, the outcome of this study could improve the design of more low-cost 
recognition systems for hand gestures based on radar and provide an alternative to  
the conventional TFD approach. Following this introductory part, Section II 
describes the methodology of the evaluation. Section III presents the evaluation 
results of the TD features, and finally, Section IV gives the concluding remarks. 

2. Methodology 

2.1. Radar time-domain signal acquisition 
The time-domain Doppler signal used in this work was captured using a 
commercially available off-the-shelf Doppler radar named RFbeam K-LC2. The 
radar operates at a frequency of 24 GHz and produces in-phase (I) and quadrature 
(Q) outputs. The radar has a 4-patch antenna with an asymmetrical radiation beam 
of 34°/82° on vertical and horizontal and is suitable for short-range sensing 
applications [17].  

The radar is connected to an intermediate board named RFbeam ST-100. This 
board consists of 73 dB two-stage and dual-channel low-noise amplifiers to amplify 
the I/Q signal from the radar. Subsequently, the analogue I/Q signal is digitised 
using a 16-bit onboard analogue to a digital converter (ADC). The data is sampled 
based on the standard digital audio rate of 44.1 kHz and transmitted to a computer 
by a standard universal serial bus (USB) [18].  

The data collection setup was made simple following the goal of a practical and 
low-cost system. Figure 1 illustrates the general setup. The Doppler radar system 
was placed on 1.3 meters height table and facing the subject hand. The distance 
between the radar and the subject's palm was kept between 20- and 30-centimeters. 
The subject was a 23-year-old male and was standing during the data collection 
process. The environment was kept still from unwanted moving objects, for 
example, moving legs which can be presented as an unwanted Doppler signal.  

Figure 2 depicts the morphology of the individual hand gestures involved in the 
experiment. The red line next to the hand indicates the gesture motions from start 
to finish. A total of four hand gestures are considered. These gestures are based on 
general movement applied to the fingers, palm, wrist, and forearm. The movement 
of each hand gesture also does not focus on a single finger or wrist gesture but 
consisting of motions that use multiple hand parts simultaneously. We named the 
gesture in Figure 2(a) to (d) as HG1, HG2, HG3, and HG4, respectively. 



Evaluation of Radar Doppler Signal Time-Domain Features for Hand . . . . 3381 

 
 
Journal of Engineering Science and Technology          October 2022, Vol. 17(5) 

 

K-LC2 radar

ST-100 

20 cm

 
Fig. 1. The main experimental setup: the  

K-LC2 radar, the ST-100 board, and hand gesture. 

(a) HG1 (b) HG2

(c) HG3 (d) HG4
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Fig. 2. Estimated motions of each hand gesture: (a) swiping from top to down 
and back to top again, (b) swiping hand from right to left and to the right 

again, (c) clenching hand with 90 degrees rotation, and (d) clenching hand. 

A single trial was performed by executing each gesture one after another until 
the fourth gesture was completed. The same trials were repeated 75 times, 
accumulating 300 samples for each gesture and a total of 1200 samples for all hand 
gestures. It should be noted that within a trial, the subject keeps about two seconds 
delay between consecutive hand gestures. this delay is introduced to allow 
automatic segmentation of the signal in the next processing stage. 

The hand gestures are recorded directly in a computer in the form of lossless 
audio format (.wav). Using an in-house MATLAB program, the audio files were 
transformed to MATLAB formatted file (.mat) and split the single audio signal into 
four separate segments containing individual hand gesture signals. A total of 1200 
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segments of Doppler are recorded in a matrix consisting of columns representing 
types of hand gestures and rows indicating the trial repetition. 

An example of the Doppler signal for each hand gesture is shown in Fig. 3.  

 
Fig. 3. Example of time-series Doppler signal of each of the hand gestures. 

2.2. Signal filtering and amplitude normalisation 
Filtering was performed to ensure that the extraction of TD features is robust 
against unwanted noises in the Doppler signal. Filtering is required for three main 
reasons. Firstly, the recording equipment, including the signal amplification in the 
ST100 board is not perfect thus, it may introduce a DC component on the 
waveform. This bias is removed using the following function [19]: 

𝑥𝑥′(𝑛𝑛) = 𝑥𝑥(𝑛𝑛) − 1
𝑛𝑛
∑ 𝑥𝑥(𝑛𝑛)𝑁𝑁
𝑛𝑛=0                                                                                   (1) 

where x(n) is the Doppler signal and x’(n) is the Doppler signal with no DC offset. 
Secondly, high frequency “flicker” introduced by the surrounding environment 
may exist on the waveform. This noise appears on the waveform as local maxima 
or minima which may distort the true shape of the signal. We eliminated this noise 
using a 1 kHz third-order Butterworth Low Pass Filter (LPF). Most of the Doppler 
signal power resides in the frequency range between 10 to 600 Hz thus, the cut-off 
frequency at 1 kHz is considered suitable. Thirdly, it is difficult to guarantee the 
gesturing distance between hand and radar is kept perfectly between 20- and 30-
centimeters during the duration of the data collection process. Gesturing at 
significantly different lengths (>20 centimetres) causes amplitude variance 
between the same type of hand gesture. Our attempt to reduce the variance was 
normalised with zero mean and unit variance across the repetitions data.  
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2.3. Time-domain features 
Various TD features have been investigated in the past for recognition problems 
such as in machine fault classification [20], brain-computer communications [21], 
and epileptic signal classification [22]. The majority of these features are 
computationally inexpensive and efficient because they are measured straight from 
the waveform amplitudes and require no signal transformation.  

In line with the theme of a low-cost hand gesture recognition system, we selected 
eight TD features found in the literature. This work aims to investigate the potentials 
of these TD features and highlight their potential. The following are the names: 1) 
mean absolute value, 2) variance, 3) root-mean-square, 4) logarithmic mean, 5) zero-
crossing, 6) slope sign change, 7) temporal moment, and 8) waveform length. 
Subsequently, the following briefly defines each of these features. 

a) Absolute mean value 
Abbreviated AMV. This feature measures the absolute mean of signal x of a Doppler 
signal length N, and it is given by Phinyomark et al. [23]: 

𝑀𝑀𝑀𝑀𝑀𝑀 = 1
𝑁𝑁
∑ 𝑥𝑥(𝑛𝑛)𝑁𝑁
𝑛𝑛=0                                                                                                  (2) 

b) Variance 
Abbreviated VAR. This feature computes the Doppler signal's power, and it's given 
by [23]: 

𝑀𝑀𝑀𝑀𝑉𝑉 = 1
𝑁𝑁−1

∑ |𝑥𝑥(𝑛𝑛)|𝑁𝑁
𝑛𝑛=0

2                                                                                                 (3) 

c) Waveform length  
Abbreviated WL. This feature measures the cumulative length of the Doppler signal 
over the length N. WL is defined by [23]:  
𝑊𝑊𝑊𝑊 = ∑ 𝑥𝑥(𝑛𝑛 + 1)− 𝑥𝑥(𝑛𝑛)𝑁𝑁

𝑛𝑛=0                                                                                                  (4) 

d) Slope sign change 
Abbreviated SSC. This feature counts how many times the sign of slope in the 
Doppler changes its sign within window length N. Additionally, a threshold is 
employed in the SSC to minimise the effect of flicker noise on the Doppler signal. 
The SSC is defined by [23]: 

𝑆𝑆𝑆𝑆𝑆𝑆 =
1
𝑁𝑁
��𝑓𝑓[(𝑥𝑥(𝑛𝑛) − 𝑥𝑥(𝑛𝑛 − 1)) ⋅ (𝑥𝑥(𝑛𝑛)− 𝑥𝑥(𝑛𝑛 + 1))]�
𝑁𝑁

𝑛𝑛=0

 

𝑠𝑠𝑠𝑠𝑛𝑛( 𝑥𝑥) = �1 𝑖𝑖𝑓𝑓𝑥𝑥 ≥ 𝑇𝑇ℎ2
0 otherwise                                                                                              (5) 

 

where Th2 is the threshold. In this work, the threshold was 40 mV, equivalent to 3 
standard deviations of flicker noise.   

e) Zero-crossing 
Abbreviated ZC. This feature finds the dominant frequency within a second. ZC is 
calculated by counting the number of sign changes of amplitude, either from 
positive amplitude to negative amplitude or vice versa. Additionally, to make the 
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measurement robust, a threshold condition is employed to remove low amplitude 
noise. The ZC is given by [23]: 

𝑍𝑍𝑆𝑆 =
1
𝑁𝑁
�𝑠𝑠𝑠𝑠𝑛𝑛(𝑥𝑥(𝑛𝑛) ⋅ 𝑥𝑥(𝑛𝑛 + 1) ∩ |𝑥𝑥(𝑛𝑛) ⋅ 𝑥𝑥(𝑛𝑛 + 1)| ≥ 𝑇𝑇ℎ1)
𝑁𝑁

𝑛𝑛=0

 

𝑠𝑠𝑠𝑠𝑛𝑛( 𝑥𝑥) = �1 𝑖𝑖𝑓𝑓𝑥𝑥 ≥ 𝑇𝑇ℎ1
0 otherwise

                                                                                              (6) 

where Th1 is the threshold. In this work, we used threshold = 60 mV.   

f) f) Root-mean-square  
Abbreviated RMS. This feature computes the magnitude of the AC waveform in the 
Doppler signal. It is defined by [23]: 

𝑉𝑉𝑀𝑀𝑆𝑆 = �1
𝑁𝑁
∑ |𝑥𝑥(𝑛𝑛)|𝑁𝑁
𝑛𝑛=0

2                                                                                              (7) 

g) Temporal moment  
Abbreviated TM. This feature measures the characteristics shape of the Doppler 
signal. TM is defined by [23]: 

𝑇𝑇𝑀𝑀 = 1
𝑁𝑁
∑ 𝑥𝑥4(𝑛𝑛)𝑁𝑁
𝑛𝑛=0                                                                                               (8) 

Using the moment order, M = 4, we estimated the kurtosis of the Doppler signal.  

h) Logarithmic difference absolute mean value  
Abbreviated LOG. This feature calculates the logarithmic non-linear characteristics 
of the Doppler signal, which can be defined by Phinyomark et al. [24]:  

𝑊𝑊𝐿𝐿𝐿𝐿 = 𝑙𝑙𝑙𝑙𝑠𝑠 �1
𝑁𝑁
∑ |𝑥𝑥(𝑛𝑛 + 1)− 𝑥𝑥(𝑛𝑛)|𝑁𝑁
𝑛𝑛=0 �                                                                                  (9) 

The features from (a) to (h) were extracted from the dataset, and their values were 
arranged into a single matrix. Successively, labels to the values were given 
according to their intent gesture to form a hand gesture dataset.  

2.4. Classification and testing  
Performing classification on the different hand gestures can be achieved either 
via supervised learning techniques or unsupervised learning techniques. In the 
supervised learning method, the algorithm is feed with teaching data, and on this 
basis, the algorithms generate a model according to the desired output. On the 
other hand, unsupervised machine learning works in the way that it does not need 
teaching data but rather finds statistical properties of the data that can be used to 
train the algorithm [25]. While the unsupervised learning techniques is less 
complex because data label is not needed, the algorithm requires a large amount 
of data.  

We employed 4 common supervised machine learning algorithms to evaluate 
the quality of the features. They are 1) decision tree, 2) Naïve Bayes, 3) k-nearest 
neighbour (kNN), and 4) support vector machine (SVM). Accordingly, the 
configuration used related to each classifier is presented in Table 1.  
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Table 1. The hyperparamters employed by each classifier. 
Classifier  Configuration 
Decision Tree Algorithm: ID3 
Naïve Bayes Distribution type: Gaussian 
kNN k = 3 

Distance method: Euclidean   
SVM Kernel: Radial basis function (RBF) 

The portioning of the dataset for training and testing was prepared based on the 
k-fold cross-validation procedure. Since the dataset containing 1200 values is large, 
k = 10 was chosen. For k = 10, the dataset is portioned into 10 groups, of which 9 
groups are used to train the classifiers, and one is used for testing. These data were 
fed to the classifiers, which learn the hand gestures patterns according to the 
labelled dataset.  

Percentage accuracy was chosen as the performance metric to evaluate the 
ability of the TD features in combination with the classifier algorithm. The 
accuracy in recognising a type of hand gesture is given by: 

𝑀𝑀𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 = Noofcorrectclassification
Totalclassifiednumber

× 100%                                                                         (10) 

Many studies in classification problems practice a combination of two or more 
features to increase classification accuracy. For this reason, we also investigated 
the capability of the features as a set of combined features.  

All classification and testing were performed using MATLAB machine 
learning toolbox and some in-house built MATLAB programs on a portable 
computer with the following specifications: Intel i5-5300U 2.3 GHz CPU and 8 
gigabytes of RAM.  

3. Results 
Figure 4 shows the comparison of classification accuracy of each TD feature in 
terms of different classifiers. The horizontal bars in the figure are sorted in 
ascending order according to their average classification accuracy. Apart from that, 
Table 2 presents the average classification accuracy of each feature as an indicator 
of their general ability. 

Based on the results, the use of ZC yielded the highest classification accuracy 
(80%), followed by SSC (63%). Meanwhile, the use of RMS, VAR, MVA, and TM 
produced the poorest accuracy. The maximum standard deviation of the 
classification accuracy for all eight features was 12%. This measure indicates that 
the features show robust properties in the context that their accuracy does not 
change so much when tested with different classification algorithms.  

Next, we evaluated the performance of the features in combination. We 
considered the top 50% of features in Table 2 to create a new set of multiple 
features. The new features were configurated as follows: 1) ZC + SSC, 2) ZC + 
SSC + WL, and 3) ZC + SSC + LOG. Their performance in classifying hand 
gestures is presented in Fig. 5. For comparison purposes, the performance of ZC, 
SSC, and all-eight-feature combined are also added in the same figure to compare 
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the accuracy from the smallest to the biggest feature. Additionally, Table 3 is 
presented to show the average accuracy as a function of feature combination. 

Results show that the multiple features set increases the classification accuracy 
between 83% to 91% compared to the single features. The highest accuracy was 
achieved with all features combined. In the case of the lower number of feature 
combinations, the best feature is ZC + SSC + LOG because it provides the highest 
accuracy boost (11%) from the single feature ZC. Moreover, the multiple features 
show consistent performance between classifiers, indicating that they are stable.  

 
Fig. 4. The comparison of classification accuracy  

using four types of classifiers with eight TD features. 
 

Table 2. Average classification accuracy across 4 classifiers. 

 TD 
feature 

Avg. 
accuracy  TD 

feature 
Avg. 

accuracy 
1 ZC 80% 5 RMS 44% 
2 SSC 63% 6 VAR 42% 
3 WL 61% 7 MVA 30% 
4 LOG 55% 8 TM 29% 
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Fig. 5. The comparison classification accuracy  

of four classifiers with six feature configurations. 

Table 3. Average classification accuracy across 4 classifiers. 

 TD 
feature 

Average 
accuracy  TD feature Average 

accuracy 
1 SSC 63% 4 ZC + SSC + WL 83% 
2 ZC 80% 5 ZC + SSC + LOG 90% 
3 ZC+ SSC 83% 6 ALL 91% 

Subsequently, we computed two confusion matrices to show the influence of 
feature selection on the inter-dependency among hand gestures classification 
accuracy. We arbitrarily choose naïve bayes as the classifier for this demonstration. 
Figure 6 shows two confusion matrices. In Fig 6(a), the classification is based on 
ZC + SSC, and in Fig 6(b) is based on ZC + SSC + LOG. The total data per hand 
gesture was set to 75 and the percentage instances in shown in each box. As can be 
seen from both confusion matrices, hand gestures show results near 100%. 
However, even employing multiple features set on the data, the error between 
classifying hand gesture 1 (HG1) and 4 (HG4) cannot be resolved easily. This is 
expected since both of the gesture is closely similar.  
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Fig. 6. Confusion matrix for classification  

based on (a) ZC and (b) ZC + SSC + LOG. 

4. Discussion 
Practical use of time-domain features for radar-based hand gesture recognition 
systems requires that the features be insensitive to noise and the performance 
remains consistent across the usage period. Thus, these requirement raise the need 
to recognise the effects of the disturbances in typical hand gestures signal to the 
selected features.  

Our work achieved the aim to analyse best eight TD feature which could inform 
designers in developing a low-cost and robust recognition system. We quantified 
the performance of the time-domain feature using actual hand gesture signals and 
test them on popular classifiers. Since the ability of the features is tested based on 
their classification accuracy, the outcome of this study may benefit the new design 
of the hand gesture recognition system by selecting the best time-domain features. 
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Compared to the work in [15-16] which evaluated time-domain features, the 
achieved level of accuracy here is lower between 10% to 20%. This may be due to 
the different types of gestures were used, different experimental setups, and 
different methods of validation. Nonetheless, all studies, including in this paper, 
indicate that ZC is a robust time-domain feature.  

One of the obvious trends in our result is the performance of ZC and SSC 
features. Both features show higher accuracy and stability compared to MVA, 
RMS, and VAR. The probable reason for good accuracy for ZC and SSC is because 
these features are related to the frequency of the signal [26], on the other hand, the 
MVA, RMS, and VAR are estimates of magnitude properties of the signal. Our 
further investigation found that the magnitude variability of signals within the same 
hand gesture label was considerably large. It is worth noting that, a hand has a very 
small radar cross-section which directly affects the energy contours of Doppler 
signals [27].  

To summarise in the context of actual implementation perspective, the proposed 
TD features are able to classify hand gesture signals with sufficiently high accuracy 
(80%). When feature set are adopted, a relatively higher classification accuracy can 
be obtained. Furthermore, higher computational efficiency can be obtained with 
longer data length. 

5. Conclusions 
In this paper, the use of time-domain features namely AMV, VAR, WL, SSC, ZC, 
RMS, LOG, and TM were investigated for hand gesture classification based on 
Doppler radar technology. The collected hand gesture signals were filtered and 
normalised before classification.  

Next, the eight features were extracted from the conditioned signal, and then we 
formed a time-domain feature dataset. Four popular classifiers namely SVM, naïve 
bayes, kNN, and decision tree were used, and they are trained and validated according 
to the 10-fold cross-validation approach.  

The examination was performed to determine the capability of each time-domain 
feature in classifying different hand gestures. In the first analysis, the features were 
evaluated as independent features and, in the second analysis, they are evaluated as a 
set of multiple feature combinations.  

Results from both analyses showed the promising potential of time-domain-based 
features in hand gesture classification. We found that the zero-crossing features 
provide the highest accuracy, achieving 80% on their own and 90% in the multi-
feature configuration (ZC + SSC + LOG). Accordingly, features related to frequency 
estimation show higher classification accuracy. The features also show stable 
performance with little variation across the analysis.  

The findings in this paper can be used in the development of a low-cost hand 
gesture system based on Doppler radar.  

For future work, we aimed to investigate hand gesture signals that are 
“orthogonal” to each other. For example, finding hand gesture signals that are so 
different between them, so that the classification accuracy can be further improved 
by using the time-domain features investigated here.  
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Nomenclatures 
 
k Neighbour value for the nearest neighbour algorithm 
n The nth sample of Doppler signal 
TH1 A threshold value for noise removal in the ZC algorithm, V 
TH2 A threshold value for noise removal in SSC algorithm, V 
x Discrete sample of time-domain Doppler signal, V 
 
Abbreviations 

ADC Analogue to digital converter 
AMV Absolute mean value 
CPU Central processing unit 
DC Direct current 
HCI Human-computer interaction 
HG Hand gesture 
I/Q In phase and quadrature signal 
kNN k-nearest neighbour 
LOG Logarithmic difference absolute mean value 
LPF Low pass filter 
RAM Random-access memory 
RGB Red, green, and blue 
RMS Root mean square 
SSC Slope sign change 
SVM Support vector machine 
TD Time-domain 
TFD Time-frequency domain 
TM Temporal moment 
USB Universal serial bus 
VAR Variance 
WL Waveform length 
ZC Zero crossing 
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