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Abstract 
Data reduction and mathematical analysis are always an important part of heat 
transfer related studies. Regression curve (RCF) and Artificial Neural Network 
(ANN) fitting methods are used extensively and regarded as reliable tools for this 
purpose. ANN and RCF approaches are used to predict the Nusselt number (Nu), 
and Darcy friction factor (f) based upon a single input, namely, the Reynolds 
number (Re) varying from 2.3×103 to 52×103. Experimental results from a 
previous comprehensive study on forced thermal convection through a hexagonal 
duct was used to develop models and test the efficacy of the methods. Several 
ANN architectures, hyperparameter values and RCF functions were tested. 
Normalized and non-normalized datasets were considered. Models were 
compared with each other by means of statistical indicators. Therefore, this work 
is distinguished from the literature by its experimental data driven assessment 
and comparison between RCFs and ANNs. Additionally, single input and double 
output design is very scarce in the literature. The results show that the regression 
schemes based upon RCF are sufficient and accurate for predicting Nu and f, and 
the trend associated with the variation to Re is captured. The best single output 
ANN yields better accuracy; but the best double output ANN is unable to capture 
the expected trend between Re and the targeted responses. In terms of correlation 
coefficients, 0.98-0.99 is possible for RCFs and 0.99 for ANNs when 
normalization is done. Normalization becomes prominent as neuron number 
increases. As a conclusion, regression is preferred over ANN for a single input 
relationship between Nu and f to Re for hexagonal duct flow and heat transfer. 
An ANN’s worth will only potentially be seen if more inputs; e.g., geometrical 
factors such as the aspect ratio, surface roughness, ambient temperature, duct 
material and relative wall thickness, among others, are included. 

Keywords: ANN, Forced thermal convection, Hexagonal duct, Normalization, 
Pressure drop.  
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1.  Introduction 
Duct flow is characterized by boundary layer formation. The boundary layer 
formation that is affected by several factors such as gravity, hydraulic diameter, 
thermo-physical properties and especially duct geometry. In terms of geometry, 
ducts and channels can be divided into two primary categories as with and without 
corners. The presence of corners indicates that the duct has planar surfaces. 
Boundary layers on these planar surfaces interact with other boundary layers at the 
intersecting edges of the planar surfaces. The interacting boundary layers impact 
both the pressure drops and heat transfer due to mixing of the merging boundary 
layers. Mass, momentum, and thermal diffusion increase. The mixing phenomenon, 
turbulence generation and shear due to momentum transfer to channel walls 
increase pressure drop and thus pumping power. 

A hexagonal cross-sectional duct geometry offers compactness. Synthetic 
honeycombs are exemplars of this fact. Therefore, hexagonal ducts are preferable 
where compact bundles are needed. Aside their structural and production 
advantages, hexagonal cross-sectional ducts, channels, and passages have become 
quite prominent in heat exchangers. Such ducts and channels are especially relevant 
to nuclear reactors. Hexagonal duct flow is characterized by complex interactions 
between the boundary layers formed on the six planar surfaces and corners. Prior 
research has sought to better understand and characterize the impact of these 
interactions on heat and mass transfer and flow loss. The most prominent study to 
date is associated with Turgut and Sarı [1]. Authors experimentally and numerically 
investigated the pressure drop and heat transfer for turbulent flow in the Reynolds 
number (Re) range of 2.3×103 ≤Re≤ 52×103. Tabulated coefficient values for 
correlating Re with Nusselt number (Nu) and Darcy friction factor (f) were given. 

In another study, laminar flow in hexagonal duct for two typical thermal 
boundary conditions, i.e., constant temperature and constant heat flux, was 
investigated numerically by Turgut [2]. Hexagonal duct inner angles were also 
considered as a variable. Correlations for Nu, f, and the entrance lengths were 
developed as a function of inner angles. The percentage deviation of the 
correlations relative to experimental results was reported to be about 1 percent. 
Iwaniszyn et al. [3] focused on laminar flow in short hexagonal ducts. Their study 
included both experimental and numerical simulations [3]. Results showed that the 
conjugate heat transfer which occurs as a result of having finite thickness steel 
channel walls causes deviation relative to results for zero wall thickness. Ismail et 
al. [4] used volume based finite elements method to investigate hexagonal channels 
in plate fins of a heat sink for electronic cooling. It was concluded that both thermal 
and hydrodynamic performances of circular and hexagonal cross-sections are close 
to each other.  

Chen et al. [5] investigated twisted hexagonal tubes as a heat exchanging 
medium. It was concluded that heat transfer enhancement factor for the hexagonal 
twisted tube relative to square and elliptical twisted tubes with equal cross-sectional 
areas was documented to be about two times higher. Yadav et al. [6] experimentally 
investigated the effect of applying twisted tapes to the surfaces of hexagonal, 
circular and rectangular channels. The authors concluded that increasing the edge 
length of the tape improves thermal performance while reducing hydrodynamical 
resistance. The effect of twisting the duct on heat transfer performance was 
numerically analysed by Cheng et al. [7]. The results of the analysis showed that 
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twisted tubes yield better thermal performance in comparison to plain tubes. 
Mahato et al. [8] employed Computational Fluid Dynamics (CFD) to study twisted 
hexagonal duct flow. The authors concluded that hexagonal ducts are preferred 
over square ducts for laminar flow and square ducts are preferred for turbulent flow. 

Hexagonal channels enable construction of very compact structures such as 
honeycombs. Such structures can be used for adsorbent beds as stated in the study 
of Zhang [9]. The author considered conjugate heat transfer due to thick walls of 
hexagonal tubes for simultaneously developing flow. Results showed a 10% 
increase in Nu and Sherwood numbers for thick wall channels when compared to 
channels with zero wall thickness. Tasnim et al. [10] investigated theoretically and 
experimentally wave propagation in hexagonal channels that are denominated 
porous. Hou et al. [11] conducted an analytical thermal and hydrodynamic 
investigation on hexagonal and re-entrant honeycomb structures. The authors 
concluded that re-entrant type honeycomb is better than other types of honeycombs 
in terms of thermal and structural performance. Another honeycomb heat transfer 
investigation was reported by Subasi et al. [12]. 

A number of recent studies have investigated hexagonal micro-channels. For 
example, Alfaryjat et al.’s study [13] compared hexagonal micro-channels to 
circular and rhombus cross-section micro-channels in terms of heat transfer and 
pressure drop. Hexagonal micro channels with a greater number of channels for a 
fixed width yielded both higher f and Nu. 

Artificial Neural Networks (ANN) is now a common tool for scientific works. 
A specific case for ANN is in heat transfer studies, where the heat transfer 
performance is affected by numerous parameters. Mohanraj et al. [14] reviewed 
refrigeration, air conditioning and heat pump systems in respect of ANN. Energy 
and exergy results were mainly the outputs of the reviewed ANN systems. A 
specific work that used ANN for data interpolation in heat transfer through channels 
can be viewed from the work of Beigzadeh and Rahimi [15]. Nine hidden layers 
were used for predicting Nu and twelve were used for predicting f, which 
emphasizes the difference between the two parameters. Cong et al. [16] provided 
an extensive review of the use of ANN in nuclear engineering heat transfer 
problems. A wide error interval was observed by the authors. An interesting 
instance was reported by Chelang et al. [17] using an adaptive neuro-fuzzy interface 
with 5 input parameters and one output parameter. They compared their results with 
a multi-layered neural network approach. Azizi and Ahmadloo [18] collected 440 
data points (observations) from literature for condensation heat transfer coefficient 
of a refrigerant in order to model the heat transfer coefficient with ANN for 4 
inputs. They found a 0.995 correlation coefficient value after some trial-and-error 
process to improve the ANN hyperparameters to yield the best result. 

After reviewing literature, it is seen that ANN modeling of heat transfer and 
pressure drop through hexagonal channels is not common. There are very few and 
limited studies. Therefore, starting from simplistic cases and growing towards 
complex schemes are necessary. Hexagonal channels lead to better trade-off 
between heat transfer and pressure drop compared to other non-circular ducts as 
suggested by the literature, where hexagonal ducts also provide compactness [8, 
19, 20]. This is due to the fact that a positive change in heat transfer can be achieved 
by changing channel cross-section and channel configuration, as it is indicated in 
the related literature [21]. Edges emerging from the hexagon geometry modify flow 
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within the tubes and change thermal and hydrodynamic performance. Although 
ANNs have been used to tackle thermo-hydraulic problems since the 1990s and 
they have been used intensively to predict flow regimes and heat transfer [16], 
deciding which approach better is still a case particular issue. There are numerous 
reports stating that ANNs are better in performance compared to the common 
statistical models [17, 18, 22]. However, it is hard to say, if not impossible, that 
conventional regression is out of date, since the above literature survey reveals very 
close results between ANN and conventional regression, especially where the 
number of input parameters are relatively small. 

In this work, several ANN network setups and Regression Curve Fitting (RCF) 
methods are presented in order to model heat transfer performance of a hexagonal 
duct using Re as the input, and the Nu and f as outputs. This type of single input 
and double output curve fitting is a unique feature of the work. Experimental data 
of a previous work [1] was used to train, test, and validate the ANNs and RCFs. 
Statistical indicators for checking preferable representation are given and compared 
to ones that emerge from conventional regression schemes. A comprehensive 
layout and method indicators distinguish the work from literature. This effort is due 
to the search for optimal designs in heat transfer mediums via various methods and 
approaches as stated in the literature. Prior literature reveals that there is an effort 
towards better heat transfer with lower pumping costs [14, 23-25]. This work 
mainly focuses on comparison of conventional regression with ANN when a single 
dimensionless input is used for two dimensionless outputs. Also, effect of 
normalization for ANNs is presented. 

2. Method  
One of the major problems associated with heat transfer literature is vast amount 
of data relating to various design parameters. RCF had been the leading method for 
data reduction after tabulated data presentation of the past. Today, machine learning 
and advance statistics are tried to be implemented in the field for fast decision 
making. Most of machine learning approaches or data-driven approaches focus on 
the collected data in order to create links between input parameters, their values 
and outputs [26]. One may prefer simple tools such as basic linear regression or 
decision trees, and others may prefer selecting more advanced tools such as ANNs 
for establishing links between input and output. Although it is always possible to 
improve the predictive capability for the simplified models, this can not necessarily 
guarantee capture of the complex relationship between the variables. James et al. 
[27] provided a distinction between model flexibility and interpretability and 
showed the reasons for selecting each method. A reliable tool can be introduced as 
ANNs. This work focuses on comparison of ANN with conventional RCFs since it 
is desired to show its applicability on heat transfer by a specific case that can be 
encountered in industry. 

The ANNs are enlivened by the human cerebrum's simultaneous structure and 
depend on the principles of organic cellular structures [28]. They involve the 
development of numerical processes which are similar to organic processes such as 
learning and memory. Normal neurons transmit information through neuro-
transmitters located on the dendrites; the equivalent of this is artificial neurons [29]. 
In an ANN, there can be multiple layers of interconnecting neurons (nodes). Each 
neuron has a matrix of weights (w) and bias (b) for the inputs and a vector of outputs 
[18]. In a biological system, when the receiving indications are adequate (perform 
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a particular quantity), the neuron is implemented and discharges a prompt through 
the axon, and the signal can be sent to another neuro-transmitter and can energize 
distinct neurons [30]. When neurons receive signal information from the inputs, 
they transmit output information to the next layer. There are three types of layers; 
namely input layer, hidden layer, and output layer, and typically the signals 
transferred from input to output as shown in Fig. 1. The number of nodes within 
the input and output layers is dictated by the nature of the problem to be solved and 
the number of input and output variables needed to define the problem [31, 32]. For 
example, if there is only one variable predicted, the output layer has only one 
neuron. The optimal number of hidden layers and nodes in each hidden layer 
needed to realize the lowest error between the predicted and actual outputs is 
generally decided through a trial-and-error process. 

 
Fig. 1. Schematic model of a neuron. 

A damped least-squares method has been used to solve the problem of fitting 
the nonlinear least-squares curve to predict the measured or simulated average Nu 
and average f estimation objectives. This technique is also regarded as the 
Levenberg–Marquardt algorithm, which was initially suggested by Levenberg in 
1944 [33] and subsequently reclaimed by Marquardt [34]. This optimization 
method incorporates Gauss-Newton and steep descent methods to converge to an 
ideal alternative. It is undoubtedly one of the efficient learning algorithms for feed-
forward neural networks [35]. It also operates progressively as a gradient-descent 
approach when the parameters are a long way from their desired location and works 
increasingly like the Gauss-Newton method when the parameters are close to their 
optimal solution avoiding the downsides of both methods [36]. Levenberg–
Marquardt equation is given as: 
[𝐽𝐽𝑇𝑇𝑊𝑊𝑊𝑊 + 𝜆𝜆𝜆𝜆]ℎ𝑙𝑙𝑙𝑙 = 𝐽𝐽𝑇𝑇𝑊𝑊(𝑦𝑦 − 𝑦𝑦�) (1) 

where small amounts of the damping parameter λ lead to overview of Gauss-
Newton and consequently higher values of λ lead to overview of the gradient curve. 

 The damping parameter λ is initialized to be large so that the first changes are small 
measures in the steepest descent path. In Marquardt’s updated relationship is [37]: 
[𝐽𝐽𝑇𝑇𝑊𝑊𝑊𝑊 + 𝜆𝜆𝜆𝜆𝜆𝜆𝜆𝜆𝜆𝜆(𝐽𝐽𝑇𝑇𝑊𝑊𝑊𝑊)]ℎ𝑙𝑙𝑙𝑙 = 𝐽𝐽𝑇𝑇𝑊𝑊(𝑦𝑦 − 𝑦𝑦�) (2) 

The λ values are normalized with the JTWJ values [38]. The update of the ANN 
weights can occur in Levenberg-Marquardt as shown below: 
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𝛥𝛥𝛥𝛥 = �𝜇𝜇𝜇𝜇 +�𝐽𝐽𝑝𝑝(𝑤𝑤)𝑇𝑇
𝑝𝑝

𝑝𝑝=1

𝐽𝐽𝑝𝑝(𝑤𝑤)�

−1

𝛻𝛻𝐸𝐸(𝑤𝑤) (3) 

where Jp(w) is the Jacobian matrix of the error vector ep(w) evaluated in w, I is the 
identity matrix, and the vector error ep(w) is the error of the network for pattern p, 
i.e. ep(w)=tp−op(w) [39]. The algorithm for Levenberg-Marquardt calculates the 
network output, the error vectors, and the Jacobian matrix. It then calculates Δw 
and recalculates the error as network weights using w+Δw. Once the error has 
decreased, μ is degraded by β, new weights are retained, and the process starts once 
again; else, μ is multiplied by β and ∆w is newly calculated, and it is again repeated 
[40]. MATLAB software was used for ANN fit of the data. The dataset for RCF 
and ANN fitting tasks is given in Table 1. The data set consists of 51 observations 
and those observations consist of dimensionless numbers. Inputs are Re values 
while outputs are Nu and f. However, in order to see the effect of parameter 
normalization, 0-1 normalization of all values are also given, which are done by 
their respected intervals. The mathematical expression of the normalization is 
shown in Eq. (4). In Eq. (4), ϕ represents any parameter in the dataset. Test numbers 
will be used in the following part of the paper to introduce training, test, and 
validation steps. In Fig. 2, three-dimensional line plot of dataset according to Re, 
Nu and f is given in order to provide more insight of the dataset. 

𝜙𝜙𝑖𝑖,𝑁𝑁 =
(𝜙𝜙𝑖𝑖 − 𝜙𝜙𝑚𝑚𝑚𝑚𝑚𝑚())

(𝜙𝜙𝜙𝜙𝜙𝜙𝜙𝜙𝑚𝑚𝑚𝑚𝑚𝑚)  (4) 

Table 1. Dimensionless numbers in the dataset and their normalized values. 
Exp. 
No. Re Nu f ReN NuN fN 

1 2322 8.9 0.0556 0 0 1 
2 2634 9.42 0.0521 0.006273 0.005508 0.90085 
3 2670 9.75 0.0519 0.006997 0.009004 0.895184 
4 2761 10.86 0.0516 0.008827 0.020763 0.886686 
5 3609 12.04 0.047 0.025877 0.033263 0.756374 
6 3759 12.4 0.044 0.028893 0.037076 0.671388 
7 4112 12.88 0.0428 0.03599 0.042161 0.637394 
8 4114 13.1 0.0422 0.03603 0.044492 0.620397 
9 4337 13.58 0.0417 0.040514 0.049576 0.606232 
10 4482 13.87 0.04 0.043429 0.052648 0.558074 
11 4533 14.16 0.0408 0.044455 0.05572 0.580737 
12 4751 14.51 0.0404 0.048838 0.059428 0.569405 
13 4940 15.1 0.0394 0.052638 0.065678 0.541076 
14 5567 16.34 0.0393 0.065244 0.078814 0.538244 
15 5648 17.93 0.038 0.066873 0.095657 0.501416 
16 6347 18.96 0.0365 0.080927 0.106568 0.458924 
17 7737 20.42 0.0342 0.108875 0.122034 0.393768 
18 7794 20.66 0.0334 0.110021 0.124576 0.371105 
19 8463 23.46 0.033 0.123472 0.154237 0.359773 
20 8980 24 0.0324 0.133867 0.159958 0.342776 
21 11000 30.4 0.0314 0.174481 0.227754 0.314448 
22 11047 31.8 0.0308 0.175426 0.242585 0.29745 
23 12591 36.9 0.029 0.20647 0.29661 0.246459 
24 14644 40.4 0.0294 0.247748 0.333686 0.25779 
25 14731 40.2 0.0291 0.249497 0.331568 0.249292 
26 16597 43.3 0.029 0.287015 0.364407 0.246459 
27 16624 44.2 0.0283 0.287558 0.373941 0.226629 
28 16879 45.6 0.0281 0.292685 0.388771 0.220963 
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29 17122 45.9 0.0279 0.297571 0.391949 0.215297 
30 17302 45.4 0.0276 0.30119 0.386653 0.206799 
31 17375 48.8 0.0274 0.302658 0.422669 0.201133 
32 20424 55.4 0.0271 0.363962 0.492585 0.192635 
33 20471 55.8 0.0269 0.364907 0.496822 0.186969 
34 24677 58.1 0.0267 0.449473 0.521186 0.181303 
35 27025 62.4 0.0252 0.496682 0.566737 0.13881 
36 27159 63.2 0.0249 0.499377 0.575212 0.130312 
37 30232 70.3 0.0248 0.561163 0.650424 0.127479 
38 30363 70.96 0.0247 0.563797 0.657415 0.124646 
39 30645 72.9 0.0246 0.569467 0.677966 0.121813 
40 31220 73.2 0.0239 0.581028 0.681144 0.101983 
41 32061 74.6 0.0233 0.597937 0.695975 0.084986 
42 32388 75.32 0.023 0.604512 0.703602 0.076487 
43 34376 75.2 0.0225 0.644483 0.702331 0.062323 
44 35824 78.8 0.0224 0.673597 0.740466 0.05949 
45 38386 81.4 0.025 0.725109 0.768008 0.133144 
46 42336 88.1 0.0214 0.804528 0.838983 0.031161 
47 42951 89.1 0.0213 0.816893 0.849576 0.028329 
48 47394 96.9 0.021 0.906225 0.932203 0.01983 
49 51203 100.2 0.0203 0.982809 0.967161 0 
50 51483 101.4 0.0205 0.988439 0.979873 0.005666 
51 52058 103.3 0.0203 1 1 0 

 
Fig. 2. Three-dimensional line plot of the parameters. 

The dataset given in Table 1 and shown in Fig. 2 belongs to the experimental 
work of Turgut and Sarı [1]. A schematic diagram of the experimental setup and 
the cross-section of the hexagonal channel in that work is shown in Fig. 3. In Fig. 
3(a), dimensions are in millimetre. Measurements were carried out at steady state 
conditions under constant temperature boundary condition. Experimental 
uncertainties are ignored in the present work and data are assumed absolute for 
comparing conventional RCF and ANN fitting. Definitions of Re, Nu and f are 
given with below sequence. The characteristic length in dimensionless numbers 
was chosen as hydraulic diameter (Dh). The cross-sectional area is denoted with Ac 
and perimeter of the hexagonal cross-section is denoted with Pc. The average inlet 
velocity, uavg¸is used in Eqs. (6) and (8). All thermo-physical properties were 
evaluated at the bulk temperature of the flow. Viscosity is indicated by µ; density 
is shown by ρ, and thermal conductivity is symbolized by k. The convection heat 
transfer coefficient, h, was calculated from measurements, and pressure difference 
ΔP was calculated from the measured inlet and outlet static pressures. The length 
of the test section, L, is predetermined. 
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4h c cD A P=  (5) 

𝑅𝑅𝑅𝑅 =
𝐷𝐷ℎ𝑢𝑢𝑎𝑎𝑎𝑎𝑎𝑎𝜌𝜌

𝜇𝜇  (6) 

Nu =
ℎ𝐷𝐷ℎ

𝑘𝑘  (7) 

𝑓𝑓 =
𝛥𝛥𝛥𝛥

� 𝐿𝐿𝐷𝐷ℎ

𝜌𝜌𝑢𝑢𝑎𝑎𝑎𝑎𝑎𝑎2

2 �
 

(8) 

 
Fig. 3. Schematic diagram of the experimental set-up.  

(a) Cross-section of the channel, (b) Layout and dimensions. 

In order to realize the ANN for the dataset of experimental flow and heat 
transfer characteristics, the available data set from the experimental work was 
divided randomly into training, testing and validation sets by 70%, 15% and 15%, 
respectively. Selected data for training, testing, and validating are shown in Table 
2 by test numbers in Table 1. An ANN's efficiency is influenced by the network's 
characteristics such as the number of hidden layers and the number of nodes in each 
hidden layer. Two different hidden layer neuron numbers were tried for single 
output ANNs, and three different hidden layer neuron numbers were tried for 
double outputs ANNs. Figure 4 shows schematic illustrations of the ANN 
structures in this work. The ANN labels in this figure are used in Table 2 and rest 
of the paper including results section graphics and tables. Similar ANN visual 
definitions are common in literature [41, 42]. Both normalized and non-normalized 
data were tried with the ANNs. The indicators in Table 2, i.e., “Tr”, “Tt” and “V” 
are “Training”, “Testing” and “Validation” respectively. 
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a – 1_3_1 

 
b – 1_10_1 

 

 
c – 1_3_2 

 

 
d – 1_10_2 

 

 
e – 1_100_2 

Fig. 4. Schematic illustrations of the ANNs in the present work; a- single 
output three hidden layer ANN; b- single output ten hidden layer ANN; c- 
double output three hidden layer ANN; d- double output ten hidden layer 

ANN; and e- double output one hundred hidden layer ANN. 

Table 2. Test numbers that indicate used  
data in training, testing and validation tasks of ANNs. 
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32   28   27   27   31   30   33   27   27   25   28   25   27   31   
33   29   30   28   32   31   34   28   28   26   30   27   28   32   
34   30   31   29   33   32   35   30   29   27   31   28   29   33   
35   32   32   31   35   33   38   32   33   28   33   29   30   34   
36   36   33   32   37   37   39   34   34   29   34   30   31   35   
37   37   35   33   38   38   40   35   35   31   36   32   33   36   
39   38   37   34   40   39   41   36   37   35   38   33   34   40   
40   40   38   35   41   43   42   38   39   36   39   37   35   41   
41   42   39   37   42   44   43   42   40   37   40   43   38   42   
43   43   41   38   43   45   44   43   43   39   41   44   39   43   
44   44   44   40   46   46   45   44   46   41   42   45   41   44   
45   45   45   44   47   47   46   46   47   42   43   46   42   46   
48   47   46   45   48   48   47   48   48   43   44   47   44   47   
49   48   47   46   49   49   48   49   49   48   45   49   45   48   
50   49   48   48   50   50   49   50   50   50   49   50   47   50   
51   51   49   50   51   51   51   51   51   51   51   51   48   51   
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Both RCF and ANN fittings are examined with statistical measures. The 
evaluation metrics used to compare the ANN structures in addition to the goodness 
of the fit and to evaluate regression approaches are: The Mean Absolute Errors 
(MAE), Mean Squared Error (MSE), Root Mean Square Error (RMSE), Mean 
Absolute Percentage Error (MAPE), and Coefficient of Determination (R2) 
described as follows, respectively: 

MAE =
1
𝑛𝑛
�|𝑦𝑦𝑖𝑖 − 𝑦𝑦�𝑖𝑖|
𝑛𝑛

𝑖𝑖=1

 (9)s 

MSE =
1
𝑛𝑛
�(𝑦𝑦𝑖𝑖 − 𝑦𝑦�𝑖𝑖)2
𝑛𝑛

𝑖𝑖=1

 (10) 

RMSE = �
1
𝑛𝑛
�(𝑦𝑦𝑖𝑖 − 𝑦𝑦�𝑖𝑖)2
𝑛𝑛

𝑖𝑖=1

 (11) 

MAPE = �
1
𝑛𝑛
��

𝑦𝑦𝑖𝑖 − 𝑦𝑦�𝑖𝑖
𝑦𝑦𝑖𝑖

�
𝑛𝑛

𝑖𝑖=1

�× 100 (12) 

𝑅𝑅2 ≡ 1− �
∑ (𝑦𝑦𝑖𝑖 − 𝑦𝑦�𝑖𝑖)2𝑛𝑛
𝑖𝑖=1
∑ (𝑦𝑦𝑖𝑖 − 𝑦̄𝑦)2𝑛𝑛
𝑖𝑖=1

� (13) 

where yi is the actual values, ŷi is the predicted or interpolated output values, ӯ is 
the average and n are the total number of data points. 

The ANN fitting process with its indicators for 14 ANNs is presented below. 
As it is known, ANN fitting in MATLAB uses limits to end the ANN training, 
validation, and test process. The limits are epoch number (1000), time (is not 
needed for this work since elapsed time is too small), performance (0), gradient 
(1×10-7), mu value (1×1010), and validation checks (6). Among them, performance, 
gradient, and validation checks are more prone to reach the limit value. After one 
of the limit values is reached, the epoch that gives the limit value first is used for 
later predictions. Gradient shows the variability in the error rate, mu is the threshold 
value of each iteration that is updated for each iteration, and the validation control 
states whether the iteration currently completed has minimized the error compared 
with the preceding iterations. 

The epoch number versus MSE plots during training, validation and testing show 
whether the ANNs fit is truly converged. Figure 5 shows those plots for both different 
Re and Nu and ANN architectures. In Fig. 5, bottom right figure denotes the curve 
denominations and axes. From the figure, single input and single output Re-Nu ANNs 
show that normalization gives much smaller MSE values with increasing epoch 
number. Since the process time is undetectably small, normalization seems 
favourable in terms of the MSE of the training phase. Also, three hidden layers seems 
more proper. However, these figures are not enough to make the ultimate evaluation. 
Surprisingly, normalization does not seem to have a significant impact on single input 
single output Re-f ANNs by viewing Fig. 5(f) to 5(h). Nevertheless, both 10 neurons 
in the hidden layer and normalization cured relatively high MSE of three neuron 
single input single output Re-f ANN. Use of 10 neurons in the hidden layer of non-
normalized ANN seems favourable in terms of MSE. In case of single input and 
double output ANNs, increasing neuron numbers of hidden layer clearly and 
significantly increases the lowest MSE of the validation results. It is also apparent 
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that normalization decreases the best MSE values greatly. Figure 5 shows that 3 
neurons for hidden layer is favourable in general for the present case. On the other 
hand, if the best epoch is smaller than the last epoch with 6 units, than it means that 
validation limit stopped the process; if not, it means that gradient limit stopped the 
process. Except two ANNs, all processes were stopped by validation limits. Similar 
ANN evaluations are given in the literature based on below visual types [41, 42]. The 
evidenced negative slope of the validation error with increased epoch number shows 
that no overfitting exists. It should be noted that when the number of neurons in the 
hidden layer is increased to 100, the validation error slope at the neuron limit is flat, 
indicating overfitting. 

 
(a) Re&Nu 1_3_1 – 0.21 at 13 

 
(b) Re&Nu 1_10_1 – 2.78 at 5 

 
(c) ReN&NuN 1_3_1– 10-4 at 16 

 
(d) ReN&NuN 1_10_1- 10-4 at 24 

 
(e) Re&f 1_3_1 – 1.31 at 7 

 
(f) Re&f 1_10_1 – 10-7 at 6 

 
(g) ReN&fN 1_3_1 - 10-4 at 4 

 
(h) ReN&fN 1_10_1 - 10-3 at 2 

 
(i) Re&Nu-f 1_3_2 – 1.31 at 7 

 
(j) Re&Nu-f 1_10_2 – 4.09 at 36 

 
(k) Re&Nu-f 1_100_2–7541 at 1 

 
(l) ReN&NuN-fN 1_3_2-10-4 at 42 

 
m–ReN&NuN-fN1_10_2–0.003at2 

 
n–ReN&NuN-fN 1_100_2-0.14 at 2 

 

Fig. 5. MSE versus epoch numbers for different ANNs of the present work. 
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Error bins are shown in Fig. 6 and ANN fitting curves are given in Fig. 7, in a 
similar manner to Fig. 5. The zero error is displayed with an orange line. Increasing 
the hidden layer neuron number increases the minimum error and increases the 
interval of error. Normalization reduces the error associated with prediction of Nu, 
but does not significantly change the prediction of f. For double output ANNs, 
increasing the hidden layer neuron number increases the interval of error values; 
therefore, a big portion of the errors accumulate in the central bin. 

It is seen from Fig. 7 that increasing neuron number in hidden layer makes the 
curve to approach exact shape of the experimental curve. However, this is not a 
desired behavior in case of hexagonal duct heat transfer since the main desire is to 
have a trend of data, filtering out the exceptions arising from uncertainties or 
experimental events. Normalization, on the other hand, somehow contributes to the 
mentioned phenomenon. In case of double output, fit curve is only given for Nu. 
Later the best correlation for f will be provided. For now, the Nu fit curve is enough. 
Similar to the results shown in Fig. 2, it is seen that double output fit curve exhibits 
occasional deviations at some test observations. Examination of the results shown 
in Fig. 7(j) and 7(k) and Fig. 7(m) and 7(n) supports a conclusion that three neurons 
in hidden layer is the best for ANN fitting with and without normalization. Also, 
100 neurons in the hidden layer deteriorates the ability of ANN. 

 
(a) Re&Nu 1_3_1 – 12 (-2.9, 2.4) 

 
(b) Re&Nu 1_10_1 – 15 (-2, 5.4) 

 
(c) ReN&NuN 1_3_1 – 14  

(-0.02, 0.02) 

 
(d) ReN&NuN 1_10_1 – 15  

(-0.02, 0.02) 

 
(e) Re&f 1_3_1 – 9  

(-10-3,10-3) 
 

(f) Re&f 1_10_1 – 20 (-10-3, 10-3) 

 
(g) ReN&fN 1_3_1 – 12  

(-0.02, 0.2) 

 
(h) ReN&fN 1_10_1 – 14  

(-0.05, 0.06) 

 
(i) Re&Nu-f 1_3_2 – 50  

(-2.6, 2.3) 

 
(j) Re&Nu-f 1_10_2 – 70 

(-41, 3.5) 

 
(k)  Re&Nu-f 1_100_2 – 100  

(-313, 112) 

 
(l) ReN&NuN-fN 1_3_2 – 20  

(-0.03, 0.06) 
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(m) ReN&NuN-fN 1_10_2 – 30  

(-0.16, 0.15) 

 
(n) ReN&NuN-fN 1_100_2 – 80  

(-1.8, 1.1)  

Fig. 6. Error histogram with 20 bins  
of ANNs training, validation, and testing. 

 
(a) Re&Nu 1_3_1 

 
(b) Re&Nu 1_10_1 

 
(c) ReN&NuN 1_3_1 

 
(d) ReN&NuN 1_10_1 

 
(e) Re&f 1_3_1 

 
(f) Re&f 1_10_1 

 
(g) ReN&fN 1_3_1 

 
(h) ReN&fN 1_10_1 

 
(i) Re&Nu-f 1_3_2 

 
(j) Re&Nu-f 1_10_2 

 
(k) Re&Nu-f 1_100_2 

 
(l) ReN&NuN-fN 1_3_2 

 
(m) ReN&NuN-fN 1_10_2 

 
(n) ReN&NuN-fN 1_100_2 

 

Fig. 7. Plot of ANNs fit curves. 

Conventional RCFs are compared with ANNs as a basis for comparison to the 
best ANN results. The utilized RCF equations are given below while the 
coefficients are presented in Table 3. 

(Nu or 𝑓𝑓) = 𝑎𝑎 𝑅𝑅𝑅𝑅+𝑏𝑏 (14) 

(Nu or 𝑓𝑓) = 𝑎𝑎 𝑅𝑅𝑅𝑅2 +𝑏𝑏 𝑅𝑅𝑅𝑅+ 𝑐𝑐 (15) 

(Nu or 𝑓𝑓) = 𝑎𝑎 𝑅𝑅𝑅𝑅𝑏𝑏 + 𝑐𝑐 (16) 

(Nu or 𝑓𝑓) = 𝑎𝑎𝑒𝑒𝑏𝑏𝑏𝑏𝑏𝑏  (17) 

(Nu or 𝑓𝑓) = 𝑎𝑎 𝑙𝑙𝑙𝑙(𝑅𝑅𝑅𝑅()) (18) 



Data-Driven Assessment of Artificial Neural Network and Regression . . . . 3299 

 
 
Journal of Engineering Science and Technology          October 2022, Vol. 17(5) 

 

Table 3. Coefficients of RCF equations between Eqs. (14)-(18). 

RCF Function Re-Nu Re-f ReN-NuN ReN-fN 

a b c a b c a b c a b c 
Linear 0.001956 8 - -5.331×10-7 0.04197 - 1.031 0.03858 - -0.7511 0.5787 - 

Polynomial -1.702×10-8 0.002786 2.152 1.972×10-11 -1.407×10-6 0.04812 -0.446 1.426 -0.003925 1.255 -1.864 0.6983 
Power 0.02315 0.7753 - 0.5646 -0.3081 - 1.018* 0.8195* - NA NA NA 

Exponential 22.18 3.207×10-5 - 0.04519 -2.1×10-5 - 0.1817 1.852 - 0.8027 -4.96 - 
Logarithmic 30.26 -241.5 - -0.009707 0.1238 - NA NA NA -0.1262* 0.08859* - 

* Normally not available due to normalization that caused zero value related singularity. A very small 
   number such as 1×10-7 was added to have the coefficients. NA – Not available. 

Statistical indicators and one-to-one plots between predicted and measured 
values are given in results section. However, RCF plots and residual plots are 
shown in Fig. 8 for non-normalized parameters in order to give an idea about the 
RCFs. Trends are same for normalized and non-normalized parameters since 
normalization only changes coefficients as seen in Table 3. Some RCFs in Fig. 8 
indicate that Re-Nu change is mostly linear and can also be represented by second 
order polynomial. Normalization only increases values of constants which is a 
benefit for users for future users of the expressions. In terms of f, power and 
logarithmic RCFs seem proper. 

 
(a) Linear RCF of Re vs Nu 

 
(b) Linear RCF of Re vs f 

 
(c) Polynomial RCF of Re vs Nu 

 
(d) Polynomial RCF of Re vs f 

 
(e) Exponential RCF of Re vs Nu 

 
(f) Exponential RCF of Re vs f 

 
(g) Power RCF of Re vs Nu 

 
(h) Power RCF of Re vs f 

 
(i) Logarithmic RCF of Re vs Nu 

 
(j) Logarithmic RCF of Re vs Nu 

Fig. 8. RCF and residual plots for non-normalized parameters. 



3300       A. H. Abdulkarim et al. 

 
 
Journal of Engineering Science and Technology          October 2022, Vol. 17(5) 

 

3. Results and Discussion 
Statistical indicators defined in Eqs. (9)-(13) are used to compare and evaluate the 
developed ANN and RCF models. Table 4 shows the statistical evaluations for all 
cases considered. Also, two-dimensional line plots are given for comparison of 
experimental results and predicted results in Figs. 9-12 for Nu and f. Figures 9 and 
11 are for RCFs and Figs. 10 and 12 are for ANNs. RCFs and ANNs with and 
without normalization are also compared. 

RCFs results for Re-Nu couple show that Nu dependence on Re does not give 
a complex curve. The change curve is not completely linear, but it can be 
represented with a linear curve within acceptable error. Therefore, linear, second 
order polynomial and power curves are conveniently fitted to the data. The 
exponential and logarithmic functions are not proper for accounting the change in 
Nu relative to Re in the case of turbulent heat transfer in the hexagonal channel. 
Normalization of Re and Nu makes expression coefficient of RCFs to approach 
about unity as can be seen from Table 3 and, therefore, provide an application ease. 
However, exponential and logarithmic expressions have problem with the zero-
value emerging from the normalization. When a very small number, such as 1×10-

7 is added to normalized Re values in order to have a result from the exponential 
and logarithmic expressions, exponential expression gives result with relatively 
high error. The logarithmic expression gives enormous error and interestingly this 
error increases as the added small number magnitude decreases. 

In case of the friction factor, RCFs show that the change depending on change 
of Re is more complex than the change of Nu. Table 4 gives the error values and 
values of determination coefficient for different RCFs in case of f-Re change. The 
best function seems to be the power curve. The logarithmic curve, on the other 
hand, gives accurate results. However, it is very clear that the linear regression is 
not sufficient. Also, second order polynomial expression is not sufficient for curve 
fitting of Re-f change. The exponential function is again not proper. Further, it is 
clear that normalization has more impact on f data than Nu data. The most accurate 
regression expression, i.e., power curve, cannot be used with normalized f data. 
Also, logarithmic regression performance becomes worse for the normalized data. 

In contrast, the exponential function statistical performance improves with 
normalization. Nevertheless, in terms of accuracy, ease, and applicability of RCF for 
non-normalized values seems favourable. On the other hand, as seen from Table 3, 
normalization again bring the coefficients in the RCF expressions about unity. By 
comparison, ANNs perform well for single outputs when predicting Nu from Re, as 
seen in Table 4. Error values are very close and small for the 1_3_1 and 1_10_1 ANNs. 
On the other hand, the 3 neurons in the hidden layer of double output ANN led to 
relatively close values to single output ANNs. However, increasing number of neurons 
in the hidden layer of double output ANNs increases error values and reduces 
determination coefficient values. The problem here is associated with the small 
fluctuations of the experimental data, which are then amplified with the increasing 
number of neurons in the hidden layer. This amplifying effect is similar to overtraining 
phenomenon of ANNs. Nevertheless, with up to ten neurons in the hidden layer of 
double output ANN, the determination coefficient is above 0.9 value.  

Normalization, on the other hand, greatly improves the performance of double output 
ANNs. Normalization reduces the error values and increases the value of determination 
coefficient. Still, it is seen that increasing hidden layer neuron numbers after a certain number 
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deteriorates results due to aforementioned amplification phenomenon. Table 4 also shows 
the error values and values of determination coefficient for ANNs of Re-f changes. Single 
output ANNs are very successful in prediction and interpolation of the friction factor data. 
Absolute error values are very small even for small number values of the inputs. Also, ten 
neurons in the hidden layer of single output ANN seems to perform better comparing to the 
three-neuron single output ANN. However, double output ANNs are very problematic in 
terms of predicting f. Since normalization gives a range between one and zero for the friction 
factor, which is same for Nu during ANN training, validation and testing of the normalized 
parameters, normalization greatly increases double output ANNs’ performance. However, 
increasing hidden layer neuron numbers to a hundred increases error values both for non-
normalized and normalized parameters. Although error magnitudes and values of 
determination coefficient in Table 4 give an idea about RCFs and ANNs in the study, the 
distribution of one-to-one data of predicted values versus experimental ones is important to 
view. By viewing those graphics, trends and biases can be observed. As mentioned earlier, 
those graphics are grouped in Figs. 9-12 for Nu and f predictions. 

Table 4. Statistical measures of RCFs and ANNs. 
   MAE MSE RMSE MAPE R2 

Re-Nu 

R
C

Fs
 

Linear 3.35 14.37 3.79 11.73 0.98 
Polynomial 1.12 2.22 1.49 3.04 0.99 

Power 1.71 4.16 2.09 5.94 0.99 
Exponential 9.43 104.55 10.22 40.91 0.88 
Logarithmic 6.24 58.31 7.63 25.27 0.93 

ReN-
NuN 

Linear 3.34 14.36 3.79 11.73 0.98 
Polynomial 1.12 2.22 1.49 3.03 0.99 

Power 1.84 4.9 2.21 6.87 0.99 
Exponential 10.42 127.86 11.3 46.56 0.85 
Logarithmic NA NA NA NA NA 

Re-Nu 

A
N

N
s 

1_3_1 0.94 1.49 1.22 2.4 0.99 
1_10_1 0.62 0.73 0.85 2.73 0.99 
1_3_2 1.17 1.84 1.35 4.16 0.99 

1_10_2 2.59 74.96 8.65 5 0.91 
1_100_2 19.2 3168 56.28 42.63 0.42 

ReN-
NuN 

1_3_1 1.45 2.07 1.44 4.78 0.99 
1_10_1 0.48 0.72 0.85 1.46 0.99 
1_3_2 0.96 1.67 1.29 2.68 0.99 

1_10_2 1.56 4.77 2.18 5.64 0.99 
1_100_2 13.48 1397 37.38 30.05 0.47 

Re-f 

R
C

Fs
 

Linear 0.0039 2.47×10-5 0.0049 12.39 0.71 
Polynomial 0.0028 1.42×10-5 0.0037 9.22 0.83 

Power 0.001 1.84×10-6 0.0013 3.09 0.98 
Exponential 0.0032 1.75×10-5 0.0041 10.17 0.8 
Logarithmic 0.0017 4.96×10-6 0.0022 5.24 0.94 

ReN- 
fN 

Linear 0.0039 2.47×10-5 0.0049 12.39 0.71 
Polynomial 0.0026 1.12×10-5 0.0033 8.16 0.86 

Power NA NA NA NA NA 
Exponential 0.0019 5.55×10-6 0.0023 6.02 0.93 
Logarithmic 0.003 3.92×10-5 0.0062 8.37 0.6 

Re- f 

A
N

N
s 

1_3_1 0.0004 4.67×10-7 0.0006 1.55 0.99 
1_10_1 0.0002 2.16×10-7 0.0004 0.82 0.99 
1_3_2 0.015 0.0002 0.016 48.24 0.87 

1_10_2 0.003 2.15×10-5 0.0046 11.3 0.76 
1_100_2 0.023 0.0009 0.031 83.31 0.47 

ReN- 
fN 

1_3_1 0.001 3.23×10-6 0.0017 2.78 0.97 
1_10_1 0.0005 5.18×10-7 0.0007 1.81 0.99 
1_3_2 0.0004 4.33×10-7 0.0006 1.57 0.99 

1_10_2 0.0013 3.6×10-6 0.0018 4.08 0.96 
1_100_2 0.0028 3.71×10-5 0.006 10.34 0.63 
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In Fig. 9, predicted Nu values versus experimental Nu values are given. The 
predictions in which normalization is utilized are given on the right column. Of 
course, Fig. 9 is for RCFs of Nu according to Re. It is seen that normalization has 
almost no effect in case of Nu prediction with RCFs. Also, as stated according to 
Table 4, polynomial, power, and linear expressions have high accuracies as seen in 
Fig. 9. Their extrapolation potential also seems good looking to the change of 
distribution. However, both the interpolation and extrapolation abilities of 
exponential and logarithmic expressions are evaluated as inconvenient in terms of 
Nu. In Fig. 10 for f, it should be stressed that same performance of RCFs cannot be 
mentioned in terms of f.  

By viewing Fig. 10, only interpolation of data is recommended. The most 
convenient expression is power formula for non-normalized f values. However, 
when normalization is applied, power formulation cannot be used. Therefore, only 
option left seems to be exponential expression in terms of RCFs according to Fig. 
10. Figure 11 presents ANNs for prediction, interpolation, and extrapolation of Nu. 
Comparatively, the distribution of data is favourable than RCFs. Only 100 neurons 
double output ANNs have problems by only looking to the Fig. 11. Therefore, it 
can be said that interpolation with ANNs is superior to RCFs in terms of accuracy. 
However, effect of normalization cannot be observed in Fig. 11. On the other hand, 
Fig. 12 shows ANNs for prediction of f. Especially, effects of normalization are 
clearly seen in Fig. 12. Normalization cures result of ANNs for f. Also, ten neurons 
in hidden layer for prediction of f both for single and double output ANNs give a 
more favourable data point distribution as seen in Fig. 12. 
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Not Available 

Fig. 9. Consistency of the predicted Nu with experimental Nu by RCFs. 

  

  

 

Not Available 

  



3304       A. H. Abdulkarim et al. 

 
 
Journal of Engineering Science and Technology          October 2022, Vol. 17(5) 

 

  
Fig. 10. Consistency of the predicted f with experimental f by RCFs. 

  

  

  

  

  
Fig. 11. Consistency of the predicted Nu with experimental Nu by ANNs. 
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Fig. 12. Consistency of the predicted f with experimental f by ANNs. 

4. Conclusion  
Experimental data of heat transfer and fluid flow in a hexagonal channel for 
turbulent flow are used for comparison of several RCFs and ANNs. The 
experimental data consist of Re of the flow as the independent input parameter, and 
two other dependent parameters of Nu and f. Re was fed to RCFs and ANNs in 
order to have the Nu and f values. Those predicted values are compared with the 
dataset values in the paper. The evaluation and assessment on how the predictions 
fit with dataset inform about RCFs and ANNs. Also, normalized and non-
normalized data were used during utilizations of RCFs and ANNs for showing 
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effects of normalization on the data fitting process. A comprehensible literature 
survey was conducted on heat transfer and pressure drop in hexagonal ducts and 
channels, heat transfer and pressure drop in non-circular conduits, ANNs and some 
other machine learning and statistical approaches in heat transfer and pressure drop 
research. Details of the methods as well as some metrics for method evaluation are 
provided. Dataset is given in tabular and graphical forms. The work is distinguished 
from the literature with its unique single input and double output design. 
Comprehensive method indicators and comparison of RCF versus ANN stress the 
offered value. Nonnormalized dataset is used in order to show effectiveness of the 
normalized data in ANNs. 

Main conclusions from the work are; RCFs clearly show the main trends and 
functional expressions of the dependent parameters. Applying and using RCF are 
easier comparing to ANNs. Normalization has no significant effect on RCF 
considering statistical error measures and some RCFs cannot deal with zero edge 
of the data interval. Normalization greatly increases effectiveness and accuracy of 
the ANNs for increased neuron numbers. Power RCF gives good approximation 
and interpolation for both Nu and f. In case of Nu, polynomial regression 
expression, and in case of f, logarithmic regression expression are the other RCFs 
that give accurate results. ANNs have higher determination coefficient values and 
lower error indicators comparing to RCFs. There is an overtraining risk of ANNs. 
For cases similar to the present one, RCFs are recommended by the authors. ANNs 
may be considered for more input parameter numbers. It is inferred from the results 
that an interference is needed to the ANN code in order to group hidden layer 
numbers into the number of outputs. After a number of hidden layer neurons, 
increasing neuron numbers amplifies the fluctuations in the dataset. 
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