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Abstract 

The success of neural network-based systems in areas such as image 
classification, computer vision, pattern recognition, Natural language Processing 
etc. has made its usage also expand in the area of Wireless communication. This 
paper investigates the decoding of two codes widely used in modern 

communication viz, Turbo Codes and Polar Codes using Deep Learning (DL) 
methods. The aim of this study is to explore the feasibility of using DL 
architectures based on Deep Neural Networks (DNN) and Recurrent Neural 
Networks (RNN) for decoding of Polar Codes and Turbo Codes, respectively. 
The decoding performance of DNN based Polar Codes is also investigated based 
on number of neurons in each layer, activation functions and number of layers. 
Simulation is carried out in MATLAB for the communication system 
independently for the above codes over an Additive White Gaussian Noise-

Visible Light Communication Channel employing Colour Intensity Modulation. 
The results compare the performance of the traditional decoding algorithm with 
the proposed DL approach over different Signal to Noise Ratio (SNR) regimes. 
The RNN based Turbo decoder outperforms the conventional Turbo decoder in 
terms of Bit Error Rate performance at lower SNRs and the DNN based Polar 
decoder has a similar performance as of the conventional Polar decoder. 

Keywords: Deep neural networks, Forward error correction, Gated recurrent unit, 
Polar code, Recurrent neural networks, Turbo code, Visible light 

communication. 
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1. Introduction 

Modern day Indoor illumination is revolutionized by solid-state lighting. Light 

Emitting Diodes (LEDs) are replacing incandescent and fluorescent lamps at a 
rapid pace. The advantages of LEDs are that they are extremely high energy 

efficient, greater durability, produce less heat and reproduces colour more 

realistically. LEDs have the capacity of changing to varying light intensities at a 

high rate, which has led to the development of a new technology for communication 

called Visible Light Communication (VLC), where LED sources can be used for 

communication [1]. VLC can be considered as an alternate and a preferred 

communication technology because of the availability of large bandwidth and 

immune towards electromagnetic interference from other electromagnetic sources 

[2]. With the growth and technical development of LED technology, interests on 

VLC systems have increased concurrently. A LED can provide an energy efficient 

illumination, simultaneously providing a very high modulation bandwidth for 
communication. The LEDs are widely used in street lighting, indoor lighting, 

automobiles etc. which can be used as a source of communication. Moreover, the 

development in the area of solid-state lighting has further led to the substitution of 

florescent lamps by LEDs, which inspires the usage of VLC. 

The evolution of 5G communication from 4G requires various factors to be taken 

into consideration such as achieve high data rates, support diverse Quality of Service 

and accurate processing requirements etc., which makes the need for advanced 

communication algorithms [3-5]. Due to these demands, researchers are focussing on 

the use of Deep Learning (DL) methods and have achieved substantial improvements. 

Various DL architectures such as Generative Adversarial Networks (GANs), 

Recurrent Neural Networks (RNNs), Convolutional Neural networks (CNNs), Deep 

Belief Networks (DBNs) are being applied in areas of Drug design, Natural language 

processing, Computer Vision etc. and have obtained good results [6]. 

The application of Artificial Neural Networks (ANNs) in the decoding of 

various Forward Error Correction (FEC) Codes can be found in the literature. The 

initial works can be found in [7-9] where ANNs are applied for decoding Block 

Codes and Hamming Codes. In [10, 11], decoding of Convolutional codes was 

performed using ANNs. Similarly, works on decoding Turbo Code [12], Linear 

Density Parity Check Code [13] and Polar Code [5] using ANNs can be found. 

An approach to decode Turbo Codes based on Feedforward neural network 

structure was given in [14], which reduced the errors during Turbo decoding 

operations. CNNs based Turbo Auto encoder is proposed in [15], achieving good 

performance in low to middle Signal-to-Noise Ratio (SNR) region. A RNN based 
Turbo decoder is proposed in [16] to implement the decoding operations for various 

code rates, obtained a Bit Error Rate (BER) of the order 10−5 to 10−6. A RNN 

based Turbo encoding and decoding operation is carried out for Quadrature Phase 

Shift Keying (QPSK) and Quadrature Amplitude Modulation (QAM) in [17]. The 

proposed method obtained good performance at lower SNRs. A sparse neural 

network based on Belief Propagation (BP) is used for decoding Polar codes in [18]. 

The results showed 60% reduction in complexity, achieved 0.5 dB gain and reduced 

latency over conventional polar decoding. In [19], Deep Neural Network (DNN) is 

used for (64, 32) and (512, 256) polar codes. The proposed method also reduces 

hardware cost and complexity by about 50%. A CNN-BP based Polar decoding 
gave better performance in terms of BER and gain compared to conventional 



2778        A. C. Vaz et al. 

 
 
Journal of Engineering Science and Technology           August 2022, Vol. 17(4) 

 

method [20]. An unsupervised neural network Polar decoder based on Syndrome 

loss is proposed in [21], which gave on par performance as of conventional 

decoding. In [22], BP algorithm and Successive Cancellation (SC) algorithm is 

implemented using neural networks. The simulation showed the same results as of 

conventional decoding performances.  

DL based approaches are finding success in various fields of engineering/non-

engineering domains. Due to the large data handling capabilities of ANNs, an 

approach is attempted to decode two of the most popular FEC codes (Turbo and 

Polar Code) used in the modern 4G/5G communication technology. The training of 

such network architectures may be highly computationally complex. However, the 

field applications can be achieved at a lower complexity for such trained networks. 

Considering the level of Performance and complexity, it can be concluded that the 

deep learning is a competitive decoding method. 

The proposed work investigates the application of DL architecture in the 

decoding of Turbo Code and Polar Code performed at the PHY layer of the 

communication. The Long-Term Evolution (LTE) variant of the Turbo 

Encoder/Decoder is chosen [23]. The decoding procedure is framed as supervised 
learning and the decoding is performed using a RNN architecture. As the size of 

the DNNs increases, the optimization of its weights also becomes more complex 

due to increase in complexity of its architecture. Hence, a simple DNN is chosen. 

A (16, 8) Polar Code is selected, and the decoding is performed using Feed-forward 

DNNs. BER criteria is used to compare the performance over a range of SNR to 

the standard LTE decoder and SC with List decoding [24] for Turbo Code and Polar 

Code, respectively. 

The work is organised as follows: An introduction to the encoding/decoding 

operations of the LTE Turbo Code and (𝑁, 𝐾) Polar Encoder/Decoder is presented 

in Section 2. Section 3 gives the DL approach for Turbo Decoder using RNN. 
Section 4 explains the DL architecture for Polar Code. Section 5 concludes the 

paper with scope for future work. 

2.  Design of Turbo Encoder/Decoder for LTE and (𝑵, 𝑲) Polar 

Encoder/Decoder 

2.1. Turbo Code 

Turbo codes are formed by concatenating two convolutional codes in parallel form 

[25]. Two identical Recursive Systematic Convolutional (RSC) component codes 

are parallel concatenated to get the turbo encoder structure. The inputs given to 

these two RSC encoders are separated by an interleaver. The role of interleaver is 

to permute the data given to it in a predetermined way. Both the RSC encoders 

output their systematic bits and parity bits. The systematic bits of first RSC encoder 

and the parity bits of both the encoders are used to construct the output of the Turbo 

Code. As the systematic bits of second RSC encoder is the permuted version of the 

systematic output bits of first RSC encoder, it is not considered in the final output 

of the Turbo Code. The idea of parallel concatenation leads to the idea of iterative 

feedback decoding which is advantageous over serial concatenation as it improves 
the overall performance of the system. The factors such as number of decoding 

iterations, constraint length of the encoders, interleaver types, decoding algorithms, 

and generator polynomials affect the performance of the Turbo Code. 
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Figure 1 shows the component diagram of a Turbo Code which uses two identical 

RSC component encoders. 𝑋𝑘 and 𝑍𝑘are the systematic and parity bits, respectively 

of the first RSC encoder and 𝑍′𝑘 is the parity bits of second RSC encoder. Therefore, 

for every input bit, the output of the Turbo Code produces three output bits thus 
making its code rate as 1/3. For the same sequence, the two RSC encoders will either 

produce a low weight code word or a high weight code word [26]. 

 

 

Fig. 1. LTE turbo encoder of code rate 1/3. 

Each of the constituent RSC encoder has the transfer function given by Eq. (1) as 

𝐺(𝐷) = [1,
𝑔1(𝐷)

𝑔𝑜(𝐷)
]                             (1) 

where 𝑔𝑜(𝐷) = 1 + 𝐷2 + 𝐷3 and 𝑔1(𝐷) = 1 + 𝐷 + 𝐷3. The state of each encoder 
is 8 having a constraint length of 4 [27]. 

When the transmitted code bits ( 𝑋𝑘 , 𝑍𝑘 and 𝑍′𝑘 ) gets passed via a 

communication channel, they get corrupted and are received at the input of a Turbo 

decoder as 𝑋𝑐𝑘, 𝑍𝑐𝑘and 𝑍′𝑐𝑘 which is shown in Fig. 2. Hence, due to the addition 

of channel noise in the received values, they differ from that of the transmitted 

values. The Turbo decoder estimates the original transmitted information by using 

a decoding algorithm via a number of iterative decoding steps. 

The Turbo decoder is build using two ‘Soft-in-Soft-out’ (SISO) component 

decoders to obtain the iterative decoding. The inputs and outputs of each SISO 

decoders are the a-priori and a-posteriori information, respectively. As seen in Fig. 
2, the decoding strategy is that the information is iteratively exchanged among the 

SISO decoders. The process of exchanging the information is repeated until the 

output converges to a threshold value. Finally, both the SISO decoder outputs are 

combined, and final output is obtained by hard decision [26]. The Log-likelihood 

ratios (LLR’s) are used as the soft values of the output which represents the 

estimated bit as ‘0’ or ‘1’ depending on the LLR to be negative/positive value, 

respectively, and is calculated as given in Eq. (2). 

𝐿𝑅 = 𝑙𝑛 (
𝑃[𝑚𝑘=1|�̂�]

𝑃[𝑚𝑘=0|�̂�
)                 (2) 
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Fig. 2. Iterative turbo decoder. 

2.2. Polar Code 

A Polar code, shown in Fig. 3, falls into a category of a linear block code, 

represented by (𝑁, 𝐾), where 𝑁 denotes the codeword length and 𝐾is the message 

bits. 𝐺𝑁 = 𝐵𝑁 𝐹⨂𝑛 is the generator matrix, where the matrix 𝐵𝑁 represents the bit-

reversal permutation matrix and 𝐹⨂𝑛  is the 𝑛𝑡ℎ  order Kronecker product of 𝐹 , 

given by Eq. (3) as [28], 

𝐹 = [1 0
1 1

].                  (3) 

 
Fig. 3. N=2 Polar encoder. 

Let the output of the encoder is a vector 𝑥1
𝑁 of length 𝑁, computed as 𝑥1

𝑁 =
𝑢1

𝑁𝐺𝑁, where 𝑢1
𝑁 = 𝑢1, … , 𝑢𝑁 is the data sequence. The data sequence can be split 

into two parts i) the ones whose indices corresponds to the information bits and are 

to be transmitted on the reliable channels (Set 𝑈); and ii) the remaining indices 

which corresponds to the frozen bits are to be transmitted on the unreliable channels 

(Set 𝑈𝑐). Hence, we have 𝑥1
𝑁 = 𝑢𝐴𝐺𝑁(𝑈) ⊕ 𝑢𝐴𝑐 𝐺𝑁(𝑈𝑐). The mutual information 

represents the capacities of the reliable channels. The information bits are the ones 

with high capacities and the remaining are the frozen bits whose values are set to 

zero. In the simulation, we have considered N=16, K=8 and Code rate R=1/2.  

The SC decoder proposed by Arikan’s is the fundamental polar decoder which 

achieves capacity with moderate complexity. The decoded sequence �̂�1
𝑁  is 

successively estimated by the SC decoder from the received sequence �̂�1
𝑁 , 

corresponding to the input sequence 𝑢1
𝑁. 𝑁 decisions are taken by the decoder for 

each 𝑢𝑖 [29]. The decoder sets �̂�𝑖 = 0 if 𝑢𝑖 is a frozen bit and if 𝑢𝑖is an information 

bit, the LLR is calculated by estimating all previous bits 𝑢1
𝑖−1 as given in Eq. (4) as, 

𝐿𝑁
𝑖 (𝑦1

𝑁 , �̂�1
𝑖−1) =

𝑊𝑁
𝑖 (𝑦1

𝑁 ,𝑢1
𝑖−1|0)

𝑊𝑁
𝑖 (𝑦1

𝑁 ,𝑢1
𝑖−1|1)

                (4) 
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3.  DL design for LTE Turbo Code 

The design and analysis of ANN based turbo decoder using DL is investigated. The 

LTE variant of Turbo encoder and Turbo decoder are used. The encoding is done 
via rate 1/3 Turbo encoder and decoding is carried as a supervised learning 

operation. RNN architecture is proposed to decode the data and the BER 

performance is compared with the standard LTE turbo decoding block. 

A particular task ‘T’ is executed by a DL algorithm based on its learning 

experience ‘E’ by optimising a particular performance metric ‘M’. They can be 

categorised depending on the labelling of input dataset samples as Supervised and 

Unsupervised. These algorithms belonging to ANNs class where a number of 

hidden stacked layers with arbitrary number of neurons are present. The weighted 

inputs add a neuron along with its biases and passed through a nonlinear activation 

function and the result passes into the successive layers. Mapping is performed at 

each layer 𝑖, with  𝑛𝑖 inputs and 𝑚𝑖 outputs as 𝑓(𝑖): 𝑅𝑛𝑖 → 𝑅𝑚𝑖. By taking the input 

of the ANN as 𝑟𝑖 and 𝑟𝑜 as output, the mapping of input-output data can be defined 

by successive nonlinear activations based on their weights and biases (𝜃) as given 

in Eq. (5) 

𝑟𝑜 = 𝑓(𝑟𝑖; 𝜃) = 𝑓(𝐿−1) (𝑓(𝐿−2) (… (𝑓(0)(𝑟𝑖))))              (5) 

where 𝐿 represents the number of ANN layers.  

During the training process of ANN, in order to obtain optimal weights a 

particular loss function is defined which needs to be optimised. Usually, the loss 

function is an error function which needs to be minimised over the training set in 

order to obtain the final weights by means of backpropagation algorithm and 

gradient descent optimization methods. The activation function considered is a 

sigmoid function given by 
1

1+𝑒−𝑥. Adaptive Moment Estimation optimizer is used, 

and the Cost function ‘C’ considered is given in Eq. (6), 

𝐶 =  −(𝑦𝑙𝑜𝑔(𝑝)) + (1 − 𝑦)log (1 − 𝑝)               (6)  

Out of many available RNNs, Gated Recurrent Unit (GRU) is selected which uses 

reset gates and update gates. There is no memory unit present in GRU and exposures 

the concealed contents without any control. The reason of using GRU units is because 

of low computational complexity and good performance. Due to all these advantages, 

GRUs is selected as the core units for the RNN structure proposed. 

The RNN chosen is a bidirectional GRU having activation given in Eq. (7) as 

ℎ𝑡 = 𝑧𝑡ℎ̃𝑡 + (1 − 𝑧𝑡)ℎ𝑡−1                           (7) 

where ℎ̃𝑡 is the target activation, ℎ𝑡−1 is the previous activation and the update gate 

and reset gates (𝑟𝑡 ) are given in Eqs. (8) and (9), respectively [17]. 

𝑧𝑡 = tanh(𝑊𝑥𝑡 + U(𝑟𝑡 ⊙ ℎ𝑡−1 ))𝑗                          (8) 

𝑟𝑡 = σ(𝑊𝑟𝑥𝑡 + 𝑈𝑟ℎ𝑡−1 )𝑗                              (9) 

A data stream of 10000 packets, each of 64 bits is encoded using an LTE turbo 

encoder to get the encoded data output of 100000 packets, each of 204 bits, including 

the tail bits to ensure trellis termination. The RNN model considered for this work is 
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similar to that of given in [30]. There are 2 layers of bidirectional GRUs. A batch 

normalization layer follows each GRU layers. The output is a single neuron unit 

having sigmoid activation. The model is trained for 30 epochs on the training dataset. 

The performance of GRU based RNN for the decoding of turbo codes is investigated. 

The modulation considered is Colour Intensity Modulation (CIM) [31] and the 
communication channel is Additive White Gaussian Noise (AWGN) Channel. The 

communication system toolbox in MATLAB is used to generate the data in order to 

train the model and the operation sequence is highlighted in Fig. 4. 

 

Fig. 4. Simulation of GRU based turbo code decoding. 

The BER performance of the proposed system for a range of SNRs between [-

2, 2] is shown in Fig. 5. From the simulation results, the performance obtained 
using RNN performs better than the LTE Turbo decoder for SNRs less than 0.4 db. 

The major disadvantage of the proposed decoder structure is that at higher SNRs, 

the BER performance decreases linearly, whereas for conventional decoder, it 

decreases exponentially. Hence, it can be inferred that by using a hybrid approach 

of the proposed RNN Turbo decoder at lower SNRs and conventional Turbo 

decoder at higher SNRs, good performance enhancements can be achieved in 

modern communication systems. 

 

Fig. 5. Decoding performance of the RNN based LTE Turbo decoder. 
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4. DL design for (16, 8) Polar Code 

A feed forward DNN for channel decoding of Polar codes is illustrated in Fig. 6. The 

performance of the proposed feed forward DNN decoder is compared with the regular 
SC list decoder. ‘K’-bit input information is encoded using standard Polar coder to 

obtain a ‘N’-bit codeword. The codeword is then passed through a CIM modulator 

[31] over an AWGN channel. The corrupted modulated signal because of noise is 

passed through a feed forward DNN consisting of 𝐿  hidden layers. There are 𝑁𝑙 

number of nodes in the 𝑙-th layer having 𝑤𝑖𝑗
(𝑙)

 as the weights connecting the feed-

forward networks,𝑖 ∈ [1, 𝑁𝑙−1], 𝑗 ∈ [1, 𝑁𝑙], and nonlinear activation function Φ(. ). 

 
Fig. 6. Polar decoder based on DNN and list decoding. 

The performance of the proposed DNN decoder for polar codes by varying the 

activation functions, size of the neurons in the hidden layer and hidden layer’s size 

is simulated. The decoding performance of the proposed feed forward DNN 

decoder architecture with Linear, Sigmoid and ReLu activation functions is 

compared with conventional list decoding as shown in Fig. 7. A (16,8) polar code 

is chosen for simulation purpose with three hidden layers having nodes 128-64-32. 

The trial-and-error method incurs that the increase in the number of hidden layers 

will improve the decoding BER performance. But this brings increased complexity 

of training, as the data set used for training and optimizing the connection weights 

increases. Hence it is required to carefully select the size of hidden layers as to 

compromise between the training complexity and the BER performance. 

The BER performance of the DNN decoder with respect to the number of 

hidden layers is investigated. Figure 8 shows the BER performance of a two, three, 

and four hidden layer DNNs, respectively ((64-64), (64-64-64), and (64-64-64-

64)), with two list decoding SC algorithms. The results shows that the performance 

of SC with L=8 is comparable with the four-layer DNN over the entire SNR range. 

It is found that increasing the number of layers didn't vary much the BER 

performance. Hence, it is concluded that a four-layer DNN is optimum structure 

for decoding the polar code. A good performance is also shown by the two layer 

and three-layer DNNs in low SNR regime. 
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Fig. 7. Comparison of BER performances  

of polar decoding with different activation functions. 

 

Fig. 8. Effect of different number of hidden layers on BER performance. 

The performance of fixed layer DNNs by varying the number of neurons is 

simulated and the results are analysed. A two-layer DNN with the number of nodes 
as 16-16, 32-32, 64-64, 128-128 and 256-256 is simulated and the results are shown 

in Fig. 9. The BER performance shows the SC decoder with list size L=8 yields 

approximately similar results as that of 128-128 and 256-256 DNN. The 16-16 and 

32-32 DNN shows linear BER performance. A good performance is showed by the 

64-64 DNN for lower SNR region. 



Decoding of Turbo Code and Polar Code using Deep Learning for Visible . . . . 2785 

 
 
Journal of Engineering Science and Technology           August 2022, Vol. 17(4) 

 

 

Fig. 9. Effect of different number of nodes on BER performance. 

5. Conclusions 

This paper gives an approach to decode two well-known FEC codes used in 4G/5G 
communication technology, namely Turbo Code and Polar Code using DL 

approach. This paper compares the performance of the proposed RNN based Turbo 

decoder with the conventional Turbo decoder and DNN based Polar decoder with 

the SC based Polar decoder. Simulations are carried out in MATLAB environment 

for training and testing the networks. The results obtained shows the reliability of 

the proposed architectures for decoding operation. The RNN based on GRUs 

showed good performance for decoding of Turbo Code at lower SNRs (less than 

0.4 dB), whereas at high SNRs the performance reduces linearly as compared to 

exponential reduction in conventional Turbo decoder. For the Feed-forward DNN 

of Polar Codes, the architecture when the activation function is ReLU has the best 

performance. Also, it is seen that, increasing the number of neurons in the hidden 
layers and the number of hidden layers, improves the performance of the proposed 

Polar decoder. The Feed-forward DNN showed on par performance when 

compared to SC based list decoding of Polar Code. The future work of this research 

could be the application of modern and efficient RNNs such as Neural Turing 

Machines, Memristive Networks etc. for Turbo decoding operations and 

implementing the proposed DNN based Polar decoder for higher order Polar codes. 
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