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Abstract 

Nowadays, many solutions have been suggested to reduce the beam deflections 
and failure rates due to the load applied in these beams. One of the introduced 
solutions was to provide effective controllers (robust controllers) that are capable 

of suppressing the vibration. The main contribution of this study is to derive the 
mathematical model for a simply supported curved beam that can be solved 
analytically and to be compatible with the optimal controller to minimize the 
beam deflections. A simply supported, in-plane, and curved beam structure with 
adopting different subtended angles is studied. A variable horizontal moving load 
and a variable vertical fluctuated load were applied to generate the vibrations. 
Based on the Lagrangian mechanics, the mathematical model was derived and 
solved analytically. Then a compatible controller was designed, and the design 

procedure required two stages. The Nonlinear Neural Proportional Integral 
Derivative (NLNPID) controller was proposed as the first stage to depress the 
induced vibration. In the second stage, the NLNPID parameters were tuned 
optimally by adopting the Particle Swarm Optimization (PSO) technique to 
reduce the deflections as much as possible. The controlled system was examined 
when the assembly was subjected to different ranges of load velocities, 
frequencies, and subtended angles. The results of the critical beam resonance 
frequency, as well as the uncertainties, were also considered. The deflections' 

values at the midpoint for the curved beam system with and without controlling 
were compared. The results show that the deflections of the curved beam were 
improved up to 97.7% in the case of using the NLNPID controller and up to 56.4 
% in the case of using the classical PID controller. The simulation results 
demonstrated the significant ability of the proposed controller to dampen the 
beam's deflections at various subtended angles and load conditions. 

Keywords: Curved beam, Dynamic load, Optimal PID, PSO, Robust nonlinear 
neural network   
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1.  Introduction 

It is becoming increasingly difficult to ignore the structural issues that are subject 

to dynamic loads and changes with time. Engineering designers of this field became 
so worried about these issues because these loads generate vibrations that might be 

unexpected in the structure, especially with the increasing life of the structures, 

where some of their properties might change or cracks might appear leading to 

changes in their resonance frequencies. The dynamic loads greatly affect and 

accelerate crack spreading, which means shortening the life of the structure. Many 

research works in the literature deal with modelling and solving different physical 

and engineering applications using numerical approaches, such as finite elements. 

On the other hand, there were massive studies that deal with analytical 

modelling based on analytical solutions such as Newtonian and Lagrangian 

mechanics to solve the same applications [1-6]. Hence, the interest in the analytical 

studies of the dynamic loads' effect on the behaviour of the structure is crucial and 
trying to develop techniques to control these vibrations to reduce the bad effect is 

important as well. Generally, the curved beam has many applications in various 

engineering fields, such as cranes, turbine blades, thin-wall cylinders, bridge 

design, and pipes. In the current interesting studies, the main applications of curved 

beam structures are concerning bridge design and transporting pipes of fluid [7-10]. 

A considerable amount of works in the literature on the development of a plane 

and a curved beam element exists and continues to grow [11-16]. Some of them 

focused on nature shape function and the vibrations induced. Others focused on 

proposed controllers of displacement reductions. Some of these research works are 

given herein. Shanmugam et al. [17] examined the failure mode in a steel beam 

curved in a plane when the mid-span was loaded by concentrating loads. The study 

examined two groups of horizontally curved girders. Izzet and Mohammed [18] 
conducted an experimental program to analyse the flexural response of a composite 

curve beam with I-girder decks. The experiment consisted of testing five models 

by subjecting loads according to the Iraqi Standard Bridge live. The main obtained 

results showed that when the curvature increases, the deflection and the 

longitudinal girder strains increase, while the girder spacing exerted only a very 

small influence. Boğa and Onur [19] performed analytical and numerical axial 

stress analysis for a functionally graded beam (FGB) under thermal loading. The 

properties of FGBs were varied. The effect of these variations was investigated. 

Yanze et al. [20] studied theoretical and experimental analysis of curved beams 

related to a thin-walled structure. The normal finite element analysis was used as 

the static analytical method. The results were verified by an experimental method 

based on the one-dimensional deformation theory. 

 Additionally, controlling of the beams' structures is still the main subject of 

many research works, where Khot et al. [21] adopted the cantilever beam in a 

reduced model representation to apply an optimal controller. The study proposed 

the Linear Quadratic Regulator (LQR) algorithm based on the state feedback 

control law. Khot et al. [22] studied the extraction of the full and reduced 

mathematical models of a cantilever beam from its finite element (FE) model using 

MATLAB. For this model, a design of a proportional-integral-derivative (PID) 

controller with the output feedback theory was proposed.  

Abdelhafez and Nassar [23] investigated the effects of the loop delays in the 

feedback controller that was used in the forced and self-excited nonlinear beam 
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structure. The study used the multiple timescales perturbation techniques to obtain a 

first-order approximate solution. Then, the time delay for such a controller was 

studied. For validation purposes, the analytical and numerical results were compared 

in the study. Moreover, Abiduan et al. [24] presented the design and implementation 

of a PID controller for the dynamic behaviour of a fixed-fixed beam. The beam was 
subjected to a dynamic load and rested on a nonlinear vibration isolator at the middle 

point. Based on the pole placement technique, optimal gains were obtained providing 

a significant reduction in the beam deflection.  

More recently, Zhang and Li [25] used a decoupling technique based on 

adaptive control for modal vibrations of a smart flexible beam with two 

piezoelectric patches. A multivariable minimum variance self-tuning control was 

used for designing the proposed control law. The theoretical and experimental 

results showed efficient overturning vibrations for a smart flexible beam. 

Moreover, Singh et al. [26] adopted the poling tuned piezoelectric actuator method 

as an active vibration control of a smart cantilever beam. The vibrating response of 

the piezo-laminated cantilever beam was modelled using a lumped parameter 

approach. The fuzzy logic controller was then used to control the vibration, where 

49 rules have been established to develop the controller.  

Based on the previously mentioned studies, most reported works demonstrated 

a lack of a deeply detailed technique to merge the deflection responses with the 

control law analytically for the beam structure problems and the studies focused 

only on numerical results. Therefore, the main contribution of this work is to 

present simplified analytical modelling and a solution strategy that can be used as 

an initial stage in designing a controller for beam structures, in which the 

parameters of the controller are specified to identify the actual actuator power 

ability. Later on, this power of actuation can be adopted in the designed controller 

for the curved beam system as real and reliable power.  

It is worth noticing that in other numerical modelling analyses of the curved 

beams in the literature, such as the finite element method, it is very difficult to 

design a controller for the beam model. In addition, long-time executing processes 

and very fast computers are required. However, the current strategy is characterized 

by presenting a solvable model for the curved beam problem when subjected to a 

moving load with fluctuated amplitude values in a simplified and easy-to-handle 

approach. Therefore, the problem of the curved beam in this study is not only 

simplified to the second ordinary differential equation (2nd ODE) but also the 

ability to design a trouble-free controller is gained by directly connecting the beam 

governing equation with the control law of the controller. In other words, the 

simulation process of such a model is facile handled, fast, and does not require high 

computer processing levels.  

This study aims at modelling and analysing a curved beam subjected to different 

dynamic loads. Furthermore, the beam deflection is minimized by proposing an optimal 

PID controller that can be tuned by the PSO algorithm to provide optimal gains through 

which the beam deflections are minimized along the whole beam length. Besides, a 

robust controller is also considered to overcome parameter uncertainties. 

The paper has been organized in the following way. In Section 2, the derivation of 

the mathematical model for the curved beam is presented by introducing all the 

assumptions and the important boundary conditions. The proposed nonlinear controller 

and the optimal procedure for selecting the optimum controller gains are given in 
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Section 3. In addition, the section discusses the design of the controller based on the 

particle swarm optimization (PSO) algorithm. In Section 4, the simulation results of the 

controlled system are presented and discussed. Finally, the paper is closed by pointing 

out the main conclusions and suggestions for future works in Section 5. 

2.  Modelling of the Curved Beam 

In this study, the simply supported vertical curved beam is considered, as shown in 

Fig. 1, in which (𝜃) denotes the subtended angle, (R) is the radius of curvature, and 

(L) is the length of the beam. The coordinate system adopted is right-handed, where 

the x-axis is tangent to the centroidal axis of the beam, and the y and z axes coincide 

with the principal axis of the cross-section. The model of the curved beam has two 

dependent variables; displacement in the x-axis u(x, t) and displacement in the z-

axis w(x, t), where the x-axis is tangent to the centroidal axis of the beam. 

Moreover, the following assumptions were considered to formulate and 

simplify the interesting case study [15]; 

• For the possibility of using linear theory, all the deformations are assumed 

small, and the materials are elastic. 

• The curved beam has a constant material density. 

• The curved beam's cross-sections and its second moment of area are constant. 

• The warping resistance was ignored.  

 

Fig. 1. A schematic diagram of the curved  

beam subjected to a harmonic moving load. 

In addition, a moving and fluctuating load is assumed as the applied load on the 
curved beam. A spring damper system is used as a vibration isolator in the middle 

of the curved beam. Based on the differences between kinetic and potential 

energies, which denote the Lagrange concept, the equation of motion for the 

interesting study was derived [4]. Specifically, the Lagrange concept with applying 

the assumed-mode method is adopted as follows:  

The kinetic energy (𝐾𝐸) of the beam can be written as [27]: 

𝐾𝐸 =
1

2
𝜌𝐴∫ �̇�(𝑥, 𝑡)2

𝐿

0
𝑑𝑥 +

1

2
𝜌𝐴∫ �̇�(𝑥, 𝑡)2

𝐿

0
𝑑𝑥              (1) 

The potential energy (PE) of the system and the damping energy (DE) can be 

written as follows: 
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𝑃𝐸 =
1

2
𝐸𝐴∫ [𝑢′ +

𝑤

𝑅
]2

𝐿

0
𝑑𝑥 +

1

2
𝐸𝐼 ∫ [𝑤" +

𝑤

𝑅2
]2

𝐿

0
𝑑𝑥 +

1

2
𝑘𝑤(

𝐿

2
, 𝑡)2                      (2) 

𝐷𝐸 =
1

2
𝑐�̇�(

𝐿

2
, 𝑡)2                                (3) 

The displacements of the curved bean can be assumed to be of the form: 

𝑤(𝑥, 𝑡) = ∑ 𝜓𝑖(𝑥)𝑞𝑖
∞
1 (𝑡),  

𝑢(𝑥, 𝑡) = ∑ 𝜙𝑖(𝑥)𝑝𝑖(𝑡)
∞
1 ,                      (4) 

where (𝑞𝑖) and (𝑝𝑖) are generalized coordinates, and (𝜓𝑖) and (𝜙𝑖) are the admissible 

curved beam functions that satisfy the present beam boundary conditions and are 

defined as follows [13]: 

𝜓𝑖(𝑥) = sin (
𝑖𝜋𝑥

𝐿
)                     

𝜙𝑖 =
1

𝑅
(
𝐿

𝑖𝜋
) {1 − cos(

𝑖𝜋𝑥

𝐿
) − [1 − (−1)𝑖]

𝑥

𝐿
}                             (5) 

Equation (5) has a different form based on the boundary conditions assumed. 

For this reason, new assumptions are required for other boundary conditions. In this 

paper, the first modes of each admissible function are taken for displacements of 

the curved beam, i.e.:  

𝑤(𝑥, 𝑡) = sin(
𝜋𝑥

𝐿
)𝑞(𝑡)  

𝑢(𝑥, 𝑡) =
1

𝑅
(
𝐿

𝜋
) {1 − cos (

𝑖𝜋𝑥

𝐿
) − [2]

𝑥

𝐿
} 𝑝(𝑡)                            (6) 

Substituting Eq. (6) into Eqs. (1), (2), and (3) and applying Lagrange's equation, 

the differential equation of motion for the curved beam is obtained: 

𝑚11�̈� + 𝑘11𝑝 + 𝑘12𝑞 = 0 

𝑚22�̈� + 𝐶�̇�+𝑘21𝑝 + (𝑘22 + 𝐾)𝑞 = 𝑄𝑠𝑖𝑛(𝜔𝑓𝑡) + 𝑢                     (7) 

where 

𝑘11 = 𝐸𝐴 [∫
1

𝑅
(
𝐿

𝜋
) {

𝜋

𝐿
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𝜋𝑥

𝐿
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1

𝐿
}

𝐿

0
]
2
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𝐿

𝜋
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1

𝐿
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𝐿

0
] sin (

𝜋𝑥

𝐿
)𝑑𝑥  

𝑘22 = 𝐴1 +𝐴2 +𝐴3 + 𝐴4  

𝐴1 = 𝐸𝐴∫ sin (
𝜋𝑥

𝐿
)
2

𝑑𝑥
𝐿

0
  

𝐴2 = 𝐸𝐼 ∫ [(
𝜋

𝐿
)
2

𝑠𝑖𝑛 (
𝜋𝑥

𝐿
)]

2
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0
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𝐸𝐼
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∫ −(

𝜋
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2

𝑠𝑖𝑛 (
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𝐸𝐼

𝑅4
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𝜋𝑥

𝐿
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)𝑑𝑥
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0
  

𝑄 = 𝐹𝑜sin(
𝜋𝑋𝑓

𝐿
)  

where (𝑄) is a generalized force, (𝑋𝑓) is the position of the moving load (𝐹𝑜) along 

the (x) direction of the curved beam, and (u) is the control action. Table 1 illustrates 

the main physical parameters' values that are employed in the current calculations. 
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The beam physical properties are considered to be similar to those of Ref. [28] with 

proposing a different load amplitude, Fo. 

Table 1. The parameters' values [28]. 

Parameter Value Parameter Value 

A 16×10-4 m2 L 10 m 

E 2×1014 N/m2  8000 kg/m3 

Iy 2.133×10-7 m4 First natural frequency 23.9 rad/s 

Fo 500 N   

To verify the validity of the proposed model in this study, the value of the first 

mode frequency is calculated. The calculation shows that the first mode frequency 

is (114.6 rad/s) when the frequency source is (115.4 rad/s) [29]. This result is 

significant at the beam values of that source.  

3. Nonlinear Neural PID Controller Design 

3.1. Optimal PID controller 

In this study, a nonlinear neural PID controller (NLNPID) is proposed. Figure 2 

illustrates the schematic assembly diagram of the NLNPID controller. The PID 

controller structure consists of three gains, Kp, Ki, and Kd representing the 

proportional gain, the integral gain, and the derivative gain, respectively.  

The particle swarm optimization (PSO) algorithm is adopted as a tuneable part 

for the traditional PID gains to achieve optimal gain values. Figure 3 presents the 

structure of the combination of the PID and PSO. In this structure, the controller 
consists of two parts; the first part is the direct closed-loop control for controlling 

the curved beam deflection at the middle position and the second part is the 

dynamic gains that are tuneable by the PSO algorithm to obtain optimal PID gains 

according to the operating conditions [30, 31].  

 
Fig. 2. The nonlinear neural PID controller architecture [30]. 

 
Fig. 3. The proposed controlling scheme. 
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The suggested control effort of the feedback flow rate NLNPID controller is 

expressed as: 

𝑢(𝑚) = (𝑢(𝑚 − 1) + 𝐻(𝑛𝑒𝑡)) × 𝐹                                   (8) 

The calculation of the weighting sum of the inputs is the first computation inside 

the neuron as follows [32]; 

𝑛𝑒𝑡 = 𝐾𝑝[𝑒(𝑚)− 𝑒(𝑚 − 1)] + 𝐾𝑖𝑒(𝑚)+ 𝐾𝑑[𝑒(𝑚)− 2𝑒(𝑚 − 1) + 𝑒(𝑚 − 2)]             (9) 

In the second step, the neuron output is computed according to the Polywog 

wavelet function as the net equation, as follows [32]: 

ℎ𝑛 = 𝐻(𝑛𝑒𝑡)               (10) 

𝐻(𝑛𝑒𝑡) = (3(𝑛𝑒𝑡)2 − (𝑛𝑒𝑡)4)𝑒−0∙5(𝑛𝑒𝑡)
2
                                                        (11) 

The input vector of the PID controller is tuned automatically and online. The 

vector consists of e(m), e(m-1), e(m-2) and u(m-1), where e(m) denotes the input 

error signals and u(m) denotes the output of the PID controller. In the current study, 

the control action, u, represents the force that acts at the middle position of the 

curved beam, while F represents the scaled factor. Figure 4 shows the nonlinear 

Polywog wavelet activation function [32], which was adopted in the construction 

of the currently proposed controller.  

 

Fig. 4. The response of a nonlinear Polywog wavelet activation function [32]. 

3.2. Learning algorithm  

The main aim of this study is to control the deflection of the curved beam by 

implementing the PSO algorithm for optimal online auto-tuning of the NLNPID 

controller. The PSO algorithm starts with an initial population of particles with 
random positions and velocities. The path towards the best solution (fitness) that is 

achieved so far is adjusted by each particle. This value is denoted as pbest. The path 

towards the best previous position attained by any member of its neighbourhood is 

also modified by each particle. This value is denoted as gbest. By an adaptive 

velocity, each particle moves in the search space [33]. 

To examine the optimal solution, the fitness function was used to evaluate the 

particles [34, 35]. 

𝑉𝑟,𝑛
𝑚+1 = 𝑤𝑉𝑟,𝑛

𝑚 + 𝑐1𝑟𝑎𝑛𝑑1(𝑝𝑏𝑒𝑠𝑡𝑟,𝑛
𝑚 − 𝑥𝑟,𝑛

𝑚 ) + 𝑐2𝑟𝑎𝑛𝑑2(𝑔𝑏𝑒𝑠𝑡𝑛
𝑚 − 𝑥𝑟,𝑛

𝑚 )          (12) 

𝑥𝑟,𝑛
𝑚+1 = 𝑥𝑟,𝑛

𝑚 +𝑉𝑟,𝑛
𝑚+1               (13) 
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where 
m

nrV , is the velocity of the rth particle at mth iteration,
m

nrx ,
is the position of 

the rth particle at mth iteration, r is the number of particles, n is the dimension of a 

particle, c1 and c2 are the acceleration constants with positive values, w is an inertial 

weight, rand1 and rand2 are random numbers between 0 and 1, 
rpbest is the best 

previous weight of the rth particle, and
ngbest is the best particle among all the 

particles in the population. 

In the current analysis, 1

,

1 ++ = m

nr

m

n VK , 
m

nr

m

n VK ,=  and 
m

nr

m

n xK ,=  , where K 

represents the parameters 𝐾𝑝, 𝐾𝑖  and 𝐾𝑑 of the NLNPID controller. The mean 

square error function is chosen as a criterion for estimating the model performance, 

as given in Eq. (14): 

𝐸 =
1

𝑁𝑝
∑ (𝑑𝑖𝑠𝑝𝑑𝑒𝑠𝑖𝑟𝑒𝑑(𝑚 + 1)𝑗 − 𝑑𝑖𝑠𝑝𝑎𝑐𝑡𝑢𝑎𝑙(𝑚 + 1)𝑗)2
𝑁𝑝
𝑗=1 ,            (14) 

where 𝑁𝑝 is the number of samples. 

According to the basis of the PSO algorithm, a significant output response can be 

obtained when the value of w is from 0 to 1 and c1+c2 < 4 [36]. Table 2 presents the 

values of the controller's parameters that are adopted in executing the control algorithm. 

Table 2. Controller's parameters. 

Parameter value 

c1 1.25 
c2 1.25 
w 0.75 
Number of particles 30 
Number of iterations 50 

4. Simulation Results 

The closed-loop response given in Eq. (7) was adopted to calculate the robust 

controller effort with the PSO technique that was given in Eqs. (8)-(11). The 

evaluation was conducted through three different parameter values, which are: 

velocity of moving load, frequency of moving load, and subtended angle.  

At the first step, the deflection of the curved beam was calculated by moving a 

constant force upon it. Figure 5 demonstrates the responses of the curved beam 

under three different speeds (V = 1, 10, 30, and 50 m/s). 

Figure 6 presents the response of the mid-point of the beam when the beam 

angle was changed as  )𝜃 = 10𝑜 , 20𝑜 , 30𝑜 , and40𝑜) with a constant force speed of 

(V = 10 m/s    ( and an angular frequency of (𝜔𝑓 = 15rad s⁄ ). It is apparent that the 

beam deflection decreases when the angle is reduced due to the high beam stiffness 

when its curvature increases. When the system is controlled under the same 

conditions, the controller is capable of depressing the maximum deflection value at 

 )𝜃 = 10𝑜 ) by a rate of 98 %. Figure 7 illustrates the deflection value of the 

controlled system, which is equal to 0.7 mm, and it is a significantly low value 

compared to the uncontrolled value. 

Figure 8 shows the deflection responses of the curved beam under direct load 

versus the load positions when the following conditions are assumed, (𝜃 =
10𝑜 , 20𝑜 , 30𝑜 , and40𝑜), a constant speed of load  )𝑉 = 10m s⁄ ), and an angular 
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excited frequency of  )𝜔𝑓 = 15rad s⁄ (. In this figure, a clear trend of decreasing 

the beam deflection at the load position when the curvature angle decreases, is 

strong evidence of increasing the beam stiffness. Accordingly, for the same applied 

conditions with the controller, it is interesting to note that the controller can reduce 
the deflection beam values as well as change the response configuration to a similar 

shape at both sides of the beam, as shown in Fig. 9.  

 

Fig. 5. Deflection at the midpoint versus  

normalized time (𝜽 = 𝟑𝟎𝒐, 𝑭𝒐 = 𝟓𝟎𝟎𝐍) 

  

Fig. 6. Deflection at mid curved 

beam without controller. 

(𝑽 = 𝟏𝟎𝐦 𝐬⁄ ,𝛚𝒇 = 𝟏𝟓 𝐫𝐚𝐝 𝐬⁄ ) 

Fig. 7. Deflection at the mid  

curved beam with controller. 

(𝑽 = 𝟏𝟎𝐦 𝐬⁄ ,𝛚𝒇 = 𝟏𝟓𝐫𝐚𝐝 𝐬⁄ ). 

 
 

Fig. 8. Deflection of the curved beam 

under moving load without controller. 

(𝑽 = 𝟏𝟎𝐦 𝐬⁄ ,𝛚𝒇 = 𝟏𝟓 𝐫𝐚𝐝 𝐬⁄ ). 

Fig. 9. Deflection of the curved beam 

under moving load with controller. 

(𝑽 = 𝟏𝟎𝒎 𝐬⁄ ,𝛚𝒇 = 𝟏𝟓 𝐫𝐚𝐝 𝐬⁄ ). 
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Figure10 presents the deflection responses of the curved beam at the midpoint 

versus normalized time when the following conditions are assumed; (𝜃 = 30𝑜), a 

different speed of the load  )𝑉 = 5, 15, 30m s⁄ ), and an angular excited frequency 

of  )𝜔𝑓 = 15rad s⁄ (. It can be noted that the deflections at the mid beam are 

affected by the interfacing that occurs between the deflections provided by the 

moving load and the fluctuating load as well. Accordingly, when applying the same 

conditions for the controlled system, it is interesting to notice that the controller 

can reduce the beam's deflection values significantly. This occurs at maximum 

deflection which is obtained when the load speed is (V =15 m/s). The deflection 

rate of this case reached up to 97.8%, as shown in Fig. 11. 

Figure 12 shows the deflection responses of the curved beam versus load 

positions when the following conditions are assumed, (𝜃 = 30𝑜), a different speed 

of the load  )𝑉 = 5,15,30m s⁄ ), and an angular excited frequency of 

)𝜔𝑓 = 15rad s⁄ (.  

Like the uncurved beam case, the deflections of the curved beam in the current 

study change continuously with increasing load speed at the load position. In 

addition, the deflection amplitude tends to move to the right end of the beam when 

the load speed increases. However, by applying the controller using the same 

conditions above, the deflection amplitudes are depressed effectively along the 

beam, as depicted in Fig. 13. 

  

Fig. 10. Deflection at mid  

curved beam without controller.             

(𝜽 = 𝟑𝟎𝒐, 𝛚𝒇 = 𝟏𝟓𝐫𝐚𝐝 𝐬⁄ ). 

Fig. 11. Deflection at the mid 

curved beam with controller.  

(𝜽 = 𝟑𝟎𝒐, 𝛚𝒇 = 𝟏𝟓𝐫𝐚𝐝 𝐬⁄ ). 

 

  

Fig. 12. Deflection of the  

curved beam under  moving  

load  without controller.                                      

(𝜽 = 𝟑𝟎𝒐, 𝛚𝒇 = 𝟏𝟓𝐫𝐚𝐝 𝐬⁄ ). 

Fig. 13. Deflection of the  

curved beam under moving  

load  with controller.                                       

(𝜽 = 𝟑𝟎𝒐, 𝛚𝒇 = 𝟏𝟓𝐫𝐚𝐝 𝐬⁄ ). 
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The responses of the curved beam were tested under different exciting 

frequencies of  )ω𝑓= 5,15,23 ∙ 9,30rad s⁄ (, with a beam curvature angle of (𝜃 =

30𝑜 ) and a load speed of (V=10 m/s). Figure 14 depicts the effect of these 
frequencies on the beam deflection at the mid. It is clear that when the frequency is 

(23.9 rad/s), the beam deflection starts to depress as the frequency decreases from 

that value. What is interesting in using the proposed controller is that the amplitude 

of the beam vibration was reduced even at the resonant frequency of (f = 23.9 

rad/s) with an excellent deflection rate reduction that reached 99.2 %, as shown in 

Fig. 15. Figures 16 and 17 show the beam deflection responses versus load 

positions under the same conditions given above without and with the controller, 

respectively. A clear benefit of the proposed controller is in the preventing and 

limiting of the beam deflection that could be identified despite a resonance case. 

  

Fig. 14. Deflection at mid  

curved beam without controller.                 

(𝜽 = 𝟑𝟎𝒐, 𝐕 = 𝟏𝟎𝐦 𝐬⁄ ). 

Fig. 15. Deflection at the  

mid curved beam with controller.  

(𝜽 = 𝟑𝟎𝒐, 𝐕 = 𝟏𝟎𝐦 𝐬⁄ ). 

  

Fig. 16. Deflection of the  

curved beam under moving  

load  without controller.                                         

(𝜽 = 𝟑𝟎𝒐, 𝐕 = 𝟏𝟎𝐦 𝐬⁄ ). 

Fig. 17. Deflection of the  

curved beam under moving  

load  with controller.                                     

(𝜽 = 𝟑𝟎𝒐, 𝐕 = 𝟏𝟎𝐦 𝐬⁄ ). 

Table 3 summarizes the deflections measurements values at the midpoint for 
the curved beam system and the performances of the PID and the NLNPID schemes 

that are subjected to different load cases for the normalized duration, in comparison 

with the values obtained from the non-controlled system. The findings indicate that 

both schemes have significant results compared to findings of the non-controlled 

system. It is clear that in the comparison of performances between PID and 
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NLNPID, the performance on the beam deflection is much less for the NLNPID 

compared to the PID. Moreover, it can be noticed that the proposed NLNPID 

controller was able to suppress vibration up to 99 % at the resonance, while the PID 

controller suppresses vibration up to 44 % only. This shows the high performance 

of the NLNPID controller. It is interesting to note that the results support the main 
goal of this study, which is to achieve the depressing of the beam's deflection as 

much as possible. 

Table 3. The midpoint deflections result  

of the curved beam with and without control. 

Different load 

cases 
Without 

control 

m 

PID 

controller 

m 

Reduction 

rate % 

NLNPID 

Controller 

m 

Reduction 

rate % ωf  

𝐫𝐚𝐝/𝐬 

V 

𝐦/𝐬 
θ˚ 

5 10 30 0.0121 0.0045 63.1 3.217e-4 97.3 

15 10 30 0.0301 0.013 54.5 6.866e-4 98 

23.9 10  30 0.1 0.058 41.1 7.73e-4 99.2 

30 10 30 0.042 0.018 56.3 7.89e-4 98.1 

15 5 30 0.0241 0.0096 60.1 6.94e-4 97.1 

15 15 30 0.0316 0.011 64.5 6.86e-4 97.8 

15 30 30 0.0273 0.0112 58.7 5.3e-4 98 

15 10 10 0.1075 0.049 53.7 7.15e-4 99.3 

15 10 20 0.145 0.061 54.1 7e-4 99.5 

15 10 40 0.0096 0.0037 61.3 6.6e-4 93.1 

Average Deflection 

reduction 
  56.4  97.7 

To realistically prove the controller's action, Fig. 18 shows the response of the 

control input represented by an actuator force on the beam. The actuation force did not 

exceed (500 N), which is the maximum amplitude of the moving force on the beam . 

It is recognized that when modelling any mechanical system, and whatever the 

accuracy of that modelling was, uncertainties must be taken into consideration. 

Therefore, a robust design of the proposed controller is recommended that is capable 

of dealing with different cases that might be encountered in mechanical systems. In 

this study, uncertainties are introduced by varying the values of the elastic modulus 

and the density of the material, where the variation is taken about ± 10% from the 

mean value, which gives more flexibility to the beam and exposes it to violent 
vibrations that might be unexpected. The performance of the proposed controller is 

examined according to these uncertainties. Significant results of the response of the 

beam deflection at the middle point are obtained. Figure 19 displays the response of 

the beam's deflection corresponding to reducing the elastic modulus and the density 

of the material of -10%. The figure shows the effectiveness of the proposed controller 

by depressing the vibration to 94% against the non-controlled beam. 

In this work, the controlled system is considered by the emerging actuator force 

parallel to the passive components (the damper-spring system). Experimentally, the 

deflections of the curved beam under different operating conditions are consciously 

recorded by sensors. Based on the signals obtained by the sensors and the 

prescribed control strategy, the force in the actuator is modified to attain significant 
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vibration depressing performance. The functionality of the actuator's action can be 

produced by many systems such as hydraulic, pneumatic, or electric systems. 

  

Fig. 18. The control  

force response with time. 

Fig. 19. The control robustness. 

5.  Conclusions 

In this study, the simple mathematical model and the equation of motion for an in-

plane curved beam were derived analytically. The derivation was based on simply 

supported boundary conditions and by adopting the Lagrangian mechanic's theory. 

The NLNPID controller was proposed for the first stage. Then, the controller was 

optimized based on the PSO technique. Unlike numerical methods for analysis and 

modelling, the developed model is easy and compatible with the proposed controller. 

The closed-loop system was examined by applying three different parameters' values 

which are: velocity of moving load, frequency of moving load, and subtended angle. 

According to the simulation results, the following conclusions are obtained;  

• The approach has enhanced deflection reduction up to 97.7 % in the case of the 

adopted NLPID controller for controlling the curved beam system and up to 

56.4 % in the case of the PID controller. 

• The deflection depressing rate reaches up to 99.2 % for critical conditions 
(resonance case), which is very hard to obtain for different analyses and 

control methods. 

• Despite the existed uncertainties that were considered in this study, the control 

system showed a significant rate of reduction of up to 94 %. This is a 

confirmation of the robustness and stability of the proposed approach. 

• The system showed very efficient effort for minimizing the vibrations when 

subtended angles and load conditions were varied. In addition, it provided 

smooth and acceptable force action without sharp spikes. 

• The study provides insights into practical solutions to curved beam systems. 

In conclusion, this analysis is expected to show great potentials in 

engineering applications. 

This work has provided promising avenues for future research in the study of 

the curved beam system, as follows:  

• The proposed control objectives and strategies should be applied to other 

different boundary conditions.  
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• The effectiveness of the proposed method should be verified by an 

experimental work for investigation under the proposed control approaches for 

future works. 

• It is suggested that a similar approach can be adopted by taking into 

consideration the actuator's model and the effects of the time delay. 
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