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Abstract 

Pneumonia is a bacterial, fungal, or viral infection of the lungs that leads the 
lungs' air sacs to clogged with pus or fluids that are generally diagnosed using 
chest X-rays (CXR) cost-effective, fast, and non-invasive. However, this 

diagnosis is complicated by high inter-observer and intra-observer variation 
among radiologists as it mainly depends on radiologist proficiency. Hence, there 
is a higher demand for automated, rapid pneumonia detection tools to curb the 
lack of specialised radiologists, especially in rural areas. Thus, this paper 
presented a fine-grained deep learning-based automated pneumonia detection 
system using several well-establish pre-trained Convolutional Neural Network 
(CNN) models (AlexNet, SqueezeNet, GoogleNet, ResNet-18, and ResNet-50) 
form CXR images that can be utilised for early diagnosis. The results revealed 
that all models succeed in detecting pneumonia at an accuracy of over 80%. 

SquuezeNet outperformed among the other models with an accuracy of 81.62% 
within a speed of 64.6 minutes. 

Keywords: Convolutional neural network, Deep learning, Diagnostic radiography, 
Medical image processing, Pneumonia detection. 
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1.  Introduction 

Pneumonia is the predominant cause of death among children in the growing 

country [1]. World Health Organization (WHO) predicted that one out of three 
new-born infant death caused by pneumonia [2]. It is also known as an epidemic 

and chronic disease that costs thousands of lives clearly in this era of the COVID-

19 pandemic [3]. It is lung inflammation caused by an infection of bacteria, fungi, 

or viruses. The inflammation causes the lungs to fill with fluid and affect the 

pulmonary alveoli, leading to breathing difficulties due to a lack of oxygen 

circulation throughout the body [4]. The typical pneumonia symptoms are 

breathing problems, chest pain, fever and chills, confusion, headache, muscle pain, 

and fatigue [5]. Children, the elderly, and people with weakened immune systems 

are at the highest risk of suffering pneumonia.  

There are several traditional methods employed to diagnose pneumonia through 

a blood test, pulse oximetry test, sputum culture, and gram stain test, serology, urine 
antigen test, ultrasound, and chest X-Ray (CXR), CT scan, and MRI. Among these 

approaches, CXR is widely used to detect pneumonia. However, the interpretation 

and analysis of these CXR images depend on the radiologist, who is restricted by 

speed, experience, and fatigue and may be prone to human error [6]. An expert and 

qualified radiologist costs a substantial financial burden for training, and lower-

cost countries lack such radiologists [7]. A fallacious or procrastinated diagnosis 

may result in casualty [8]. Therefore, an automated Artificial Intelligence (AI) 

system is essential for rapid pneumonia detection.  

With the availability of huge medical imaging data and breakthroughs in 

current technology, especially in big data and AI, it allows the emergence of deep 

learning in medical image processing and clinical diagnosis [9]. The deep 

learning concept has been effectively implemented in numerous health sector 
applications as automated detection for initial screening processes [10]. Some of 

these applications are skin cancer classification [11, 12], brain disorder 

classification [13], arrhythmia identification [14-16], lung segmentation [17, 18],  

and fundus image segmentation [19]. Hence, these medical breakthroughs from 

utilising AI technology of deep learning models have inspired developing an 

automated pneumonia detection system considering the sophisticated, precise, 

and instant discovery of lung disease. 

This paper's main contribution is to propose a fine-grained automated and 

efficient pneumonia detection system by focusing on dense analysis of comparing 

well-established pre-trained CNN models which are AlexNet, SqueezeNet, 

GoogleNet, ResNet-18, and ResNet-50 and their total execution time in classifying 
between bacterial, viral pneumonia, and normal lung conditions. This CNN 

algorithm automatically outperforms learning features from input data through a 

feature learning approach without any human expert feature engineering. The rest 

of this paper is organised as below in section 2, emphasising literature review; 

section 3 focuses on methodology, section 4 presents results and discussion, and 

finally, section 5 conclusion and future direction. 

2. Background Review 

In this section, existing approach for pneumonia detection, in a traditional way as 

well as deep learning based detection briefed.  
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2.1.  Existing approach for pneumonia detection 

Traditionally, there are three main methods for pneumonia diagnosis performed by 

physicians which are physical examination, laboratory tests, and CXR analysis. 
Table 1 compares these three methods thoroughly. Additionally, as reported by the 

World Health Organization (WHO), among these approaches, CXR has been the 

best preference for pneumonia diagnosis [20]. It is a fast and painless imaging test 

using electromagnetic waves to create images and spot abnormalities of the 

airways, blood vessels, organs, tissues, and bones. Yet, analysing CXR images for 

pneumonia detection is a challenging task as it requires expert clinicians in every 

hospital, which are limited. Thus, there is a substantial need for an automated, rapid 

pneumonia detection technique. 

Table 1. Existing traditional pneumonia detection approach.  

Method Descriptions / Limitation 

P
h

y
si
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l 

E
x
a
m

in
a
ti

o
n

 Pulse Oximeter [21] Low oxygen levels in the blood may mean the person has pneumonia. The 
presence of pneumonia prevents the lungs from supplying enough oxygen 
into the bloodstream. / It cannot locate the infected area in the lung. 

Stethoscope Reduced wheezing or crackling sounds in the lungs could be the result of 
pneumonia./ It cannot locate the infected area in the lung. 

L
a
b

o
ra

to
ry

 T
es

ts
 

 

Blood Count Test Use the blood sample to confirm the infection and identify the type of 
organism that causes the disease./ Hard to distinguish pneumonia 

Serum Procalcitonin 
test [22] 

The serum is a substance produced by cells in the body, often responding to 
bacterial infections tissue injury. Its level of interest elevated in patients with 
bacterial pneumonia and septic shock./ Time-consuming and does not 
classify what type of microorganism is present. 

Sputum Culture and 
Gram Stain Test 
[23] 

A sample of fluid from the lungs (sputum) is taken after a deep cough and 
analysed to pinpoint the cause of the infection./ Challenging, time-
consuming, difficult to grow certain bacteria, such as Streptococcus 
pneumoniae, and culture can produce false-negative results. 

Urine Antigen Tests 
[24] 

More accurate than gram stain and sputum culture test./ Urine antigen tests 
in milder cases of pneumonia are less accurate, and high possibility of 
misclassification. 

Serology [25] IgM (Immunoglobulin M) antibodies indicate a new infection, while IgG 

(Immunoglobulin G) antibodies generally indicate that they were infected in 
the past./ They are challenging to evaluate when sometimes IgM antibodies 
have been transformed into IgG antibodies. 

Polymerase Chain 
Reaction Test 

An alternative to serology screening for typical bacteria. PCR is a test 
screening for the presence of specific viral or bacterial DNA in the sample./ 
Results are often available in 1 to 6 hours. It cannot locate the infected area 
in the lung. 

Enzyme 

Immunoassays Test 
[26] 

These immune tests use antibodies to detect specific viral antigens and can 

simultaneously screen for multiple viruses. Results can be obtained within 
15 minutes to an hour./ Cannot locate the infected area in the lung 

Pleural Fluid Culture 
[27] 

A fluid sample is taken by putting a needle between the ribs from the pleural 
area and analysed to determine the type of infection./ Time-consuming and 
a higher risk of getting adverse side effects 

M
ed

ic
a
l 

Im
a
g
in

g
 

Ultrasound Use high-frequency sound waves to look at organs and structures inside the 

body. It is a fast imaging procedure that has no radiation exposure and more 
straightforward than other imaging techniques./ The procedure is not 
standardised for pneumonia detection in the non-peripheral lung. 
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Chest X-Ray It can determine the extent and location of the infection./ It cannot determine 
what kind of germ is causing pneumonia and distinguish the bacterial and 
viral infections. 

Computed 
Tomography (CT) 
Scan [28] 

Recommended if pneumonia is not clearing as quickly as expected. To obtain 
a more detailed image of the lungs. More accurate than a chest X-Ray./  Not 
always available in all levels hospital and has limitations of high cost and 
high doses of radiation 

Magnetic Resonance 

Imaging (MRI) 

Uses powerful magnets and radio waves to make detailed pictures inside the 

body. It is not generally used to evaluate pneumonia but may look at the 
heart, chest vessels, and wall structures. If the lungs are abnormal because of 
excess fluid, infection, or tumor, MRI may provide additional information 
about these abnormalities' cause or extent. MRI has no radiation exposure./ 
Rarely used for the evaluation of pulmonary parenchyma because of the low 
proton content of the lungs. 

Bronchoscopy [29] The thin camera is guided down into the lungs through the nose or mouth. 
The doctor can thus visualise the inside of the lungs directly. Where 
necessary, cultures and biopsies can be taken./  Time-consuming and a higher 

risk of getting adverse side effects. 

2.2. Deep learning approach for pneumonia detection 

There is a growing trend for deep learning-based detection approach in the medical 

imaging domain due to the advancement of big data and AI technology [30]. More 

particularly, CNN yielded promising results in image classification and object 

detection in various applications, including medical image recognition and analysis 

[31]. It learns and extracts discriminative features directly from raw input images 

without any explicit human engineering [31]. CNN has proven to be an effective 

model class for understanding image content, providing state-of-the-art results on 

image recognition, segmentation, detection, and retrieval [32]. When trained with 

adequate regularisation, CNN achieves superior visual object recognition. This 

network's efficacy in recognising image is one of the main reasons why the world 

has developed a growing interest in implementing deep learning. Some application 
of CNN in medical imaging includes diabetic retinopathy disease detection [33], 

breast cancer detection from ultrasound images [34] and mammographic images 

[35] and Parkinson's disease early detection from Magnetic Resonance Image 

(MRI) [36-38]. And lastly, not forgetting its tremendous achievement in pneumonia 

detection from CXR images. The recent studies on the deep learning-based 

pneumonia detection model are presented in Table 2. From the literature, it is clear 

that most of the previous studies on the pneumonia detection model were only 

focusing on binary classification between normal vs pneumonia infections.  

Table 2. Deep learning-based pneumonia detection approach.  

Ref, Year Descriptions 

[3], 2020 Presented binary classification using Deep CNN and succeeded in 
achieving accuracy of more than 90%. 

[39], 2019 Proposed ensemble of two CNNs, (RetinaNet and Mask R-CNN) for 
pneumonia detection and localisation and achieve a recall of 0.793.  

[40], 2019 Formulate an 18-layer novel deep sequential CNN based model and 
attain an accuracy of 0.9439 in classifying normal vs. pneumonia.  

[41], 2019 Designed Xception and Vgg16 based binary classification model 
network and achieved an accuracy of 0.87% and 0.82%, respectively 

using 624 frontal chest X-ray images. 
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[42], 2018 Used attention guided two-branch CNN using the ChestX-ray14 dataset 
for thorax disease classification. The system uses attention heat maps to 
mask the disease-affected regions used to train the network's local 
branch. The model achieves an AUC of 0.776.     

[43], 2018  Develop a pre-trained Inception v3 model to classify chest X-rays of 
binary classification for normal and pneumonia lungs. The model 
achieved accuracy, sensitivity, specificity of 92.8%, 93.2%, and 90.1%, 
respectively.  

[44], 2017 Construct a localisation algorithm using 112,120 frontal chests X-rays 
from the ChestX-ray14 dataset to detect thorax disease and reported to 
gain area AUC of 0.633. 

[45], 2017 Developed a DenseNet-121 layer with a transfer learning method for 
binary classification of pneumonia and non-pneumonia classes and 
achieved 0.60 % AUC value. 

[46], 2017  Established a 121-layer CNN based on DenseNet and named as 
CheXNet.  The network was trained with 10,000 frontal view chest X-
ray images with 14 different diseases and achieved AUC of 0.768 and 
an F1 score of 0.435 (95% CI 0.387, 0.481), higher than the radiologist 
average of 0.387 (95% CI 0.330, 0.442). 

Besides, the authors in [47], proposed computer aided diagnosis (CAD) system 

to identify bacterial and viral pneumonia in CXR through lung region identification 

and pneumonia category classification. AUC value of 0.8234 ±  0.0014 was 

achieved by ensemble AlexNet features with several handcrafted features which 

are grey level co-concurrence matric features (GLCM) features, Haar wavelet 

transform features and histogram of oriented gradient (HOG) features. However, 

the authors only consider AlexNet as pretrained model for one of the classification 

feature extractions and the classification model seems to be complex where they 

utilised segmentation with pretrained CNN model as well as several handcrafted 

features. Moreover, in [48], authors designed pneumonia types of detection model 

including novel corona virus disease (COVID-19) by only implementing pretrained 

AlexNet model. Thus, this paper contributes to designing models that classify 

normal, bacterial, and virus lung infections through dense analysis of comparing 

several pretrained model (AlexNet, SqueezeNet, GoogleNet, ResNet-18, and 

ResNet-50) including total execution time for each pretrained models.  

3. Methods 

3.1. Project workflow 

The flow process of the proposed automated pneumonia detection model is 

demonstrated in Fig. 1. The methodology starts with dataset selection from CXR 

Images that can be obtained from Kaggle Datasets, followed by pre-processing of 

the datasets, development of CNN models using pre-trained CNN, and finally, 

performance evaluation of the proposed model. 

 

Fig. 1. Proposed method. 
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3.2. Dataset selection 

In this study, Chest X-Ray (CXR) datasets were obtained from publicly available 

Kaggle Datasets [49]. These CXR images were selected from paediatric patients of 
one to five years old from Guangzhou Women and Children's Medical Center, 

Guangzhou. The CXR images were graded and evaluated by expert physicians before 

they can be used for training the AI system. A total of 5,856 CXR images were 

utilised in this study. CXR images' datasets consist of two main categories: normal 

and pneumonia, and two subcategories of pneumonia, which are bacterial pneumonia 

and viral pneumonia. The proposed model was designed to detect these three normal 

categories, bacterial pneumonia and viral pneumonia. These CXR image datasets 

were then split into training, validation, and testing datasets for training and 

evaluating the proposed model. Figure 2 shows samples of CXR images. 

 

 
Fig. 2. Sample of CXR Image datasets [49]. 

3.3. Data pre-processing 

The chest X-ray (CXR) image datasets from Kaggle Datasets are in grayscale. 

However, in order to perform transfer learning from pretrained model, the pre-

trained CNN network requires input of RGB structure. Hence, to achieve this goal, 

CXR grayscale image datasets need to mimic RGB structure. So, each one channel 

grayscale image was replicated to produce three channel RGB structure as desired 

by input shape of pretrained CNN model [50].  

3.4. Transfer learning using pretrained model 

The pneumonia detection model was developed using five different pre-trained CNN 

models that include AlexNet [51], SqueezeNet [52], GoogleNet [53], ResNet-18 [54], 

and ResNet-50 [55] to study its performance level in detecting pneumonia. This pre-

trained CNN models' architecture is distinct from one another in terms of depth, size, 

and image input size. The input size of CNN model was chosen as predefined by each 

pretrained model. The properties of the CNN model are tabulated in Table 3. The 

architectures of these five pretrained CNN model are presented below. 

Table 3. Properties of CNN model [56]. 

Model Network Depth Size (MB) Input Size 

1 AlexNet 8 227 227×227 
2 SqueezeNet 18 4.6 227×227 
3 GoogleNet 22 27 224×224 

4 ResNet-18 18 44 224×224 
5 ResNet-50 50 96 224×224 
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3.4.1. AlexNet 

AlexNet pretrained CNN model is similar to LeNet, yet deeper. To incorporate non-

linear properties, it has Rectifies Linear Unit (ReLU) as a replacement of Tanh function 
in LeNet. It has dropouts layer for regularization to overcome overfitting issues. To 

reduce the size of the network, overlapping pooling was utilised. It has five 

convolutional layers and pooling layers, and it takes and input shape of 227×227×3. 

The last fc3 fully connected layer and softmax layer were fine-tuned with CXR datasets. 

3.4.2. SqeezeNet 

SqeezeNet CNN model architecture have several refinements in order to reduce the 

number of parameters yet achieve high accuracy [57]. It replaces 3×3 convolutional 

filters with 1×1 filters. It decreases the number of input channel to 3×3. It 

encompasses large activation maps with delayed downsampling implementation. It 
has several fire modules where a squeeze convolutional layer with 1×1 filters 

passing into an expand layer that contains a mixture of 1×1 and 3×3 convolution 

filters.  In short, it has 2 convolutional layers, 8 fire module, 4 pooling layers. In 

takes input image size of 227×227×3. And the last two dense layer of SqeezeNet 

(convolutional and softmax layer) were fine-tuned with CXR datasets.  

3.4.3. GoogleNet 

The architecture of GoogleNet  is 22 layers deep, 27 with pooling layers include 

[58]. It mainly constructed from 9 inception modules. This model has 3 

convolutional layers, 4 maximum pooling layers, an average pooling layer. It has 
parallel convolution instead of fully connected layers. To reduce the number of 

inputs the module has 1×1 convolutional layers at the bottom. The last two dense 

layers were fine-tuned for CXR datasets. 

3.4.4. ResNet-18 

ResNet-18 model has residual learning framework of 18-layers deep. Residual 

framework means skipping of convolutional layers by using shortcut connections. 

It has 16 convolutional layers, two downsampling layers and one fully connected 

layer [59]. It takes inputs in a size of 224×224. The last two dense layer of ResNet-

18 was fine-tuned for CXR datasets. 

3.4.5. ResNet-50 

Similar to ResNet-18, ResNet-50 also has residual learning framework. It is 50 

layers deep. It has 48 convolutional layers, a max pooling layer, an average pooling 

layer and a fully connected layer [60]. It takes inputs in a shape of 224×224. And 

the last two dense layers of ResNet-50 was fine-tuned for CXR datasets. 

3.5. Proposed pneumonia detection model 

As aforementioned, a total of 5,856 CXR images were used in this study. The 
dataset was first split into 90% of training datasets and 10% testing datasets from 

these images. Then from 90% of the training datasets, it's further subdivided into 

30% validation datasets, which means 90% of datasets were subdivided into 70% 

training datasets and 30% validation datasets training and validation process. The 
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datasets were resized into each CNN model's required input shape before passing 

them into the model. AlexNet and SqueezeNet input size were set to 227×227×3 

while GoogleNet, ResNet-50 and ResNet-18 were specified to 224×224×3. 

The pneumonia detection model developed using a transfer learning approach 

where only the last two dense layers had fine-tuned with the CXR datasets. From 
the input datasets, these CNN models extract global-level image features from 

the normal, bacterial pneumonia, and viral pneumonia of CXR datasets by 

learning low-level features to high-level features through spatial relationships 

from the first layers to the deep last layers, including edge, corner, shape, colour 

and textural attributes.  

The output obtained from the highest probability of the CNN model's final 

softmax layer detected the normal or pneumonia lung.  The CXR datasets were 

trained using training datasets and validated using validation datasets using five 

different CNN models. Figure 3 shows proposed pneumonia detection model using 

one of the pretrained CNN model (SqueezeNet). 

The training process was repeated for five-time, and the average score for 

accuracy was obtained. Throughout these experiments, the batch size set to 10, the 
epoch set to 6, and the learning rate set to 3e-4. After training, the fine-tuned models 

were evaluated using test datasets. The performance of the models' accuracy was 

presented in terms of the confusion matrix. From the obtained accuracy, the 

performance of these five pre-trained models was evaluated. This entire study was 

implemented using MATLAB 2018b software. 

 
Fig. 3. Pneumonia detection model using pretrained SqueezeNet. 

3.6. Model performance evaluation 

Model performance was evaluated using test dataset. Pneumonia detection model 
was repeated five times for each pretrained model to obtained average accuracy. 

Accuracy defined as the ratio of correctly classified images over the total images. 

And the average accuracy is calculated by dividing the obtained 5 accuracies by 5. 

The model performance also was evaluated through time taken to complete each 

testing. Since the experiment is repeated five time for each pretrained model, the 

time taken to complete each execution also averaged. The average accuracy and 

average time taken to complete each execution is presented in Table 4. Besides, 

model’s performance also displayed in terms of confusion matrix for clearer 

understanding which is based on true positive (TP), true negative (TN), false 

positive (FP), and false negative (FN).  
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Table 4. Model performance of proposed pre-trained CNN models. 

No. Model 
Accuracy 

(%) 

Average 

(%) 

Duration 

(Minutes) 

Average 

(Minutes) 

1 AlexNet 80.15 

80.80 

62 

72.2 

81.00 61 

80.66 89 

81.42 74 

80.78 75 

2 SqueezeNet 81.48 

81.62 

56 

64.6 

80.15 64 

83.06 68 

81.23 65 

82.17 70 

3 GoogleNet 79.9 

81.37 

100 

106.6 

82.05 90 

81.42 114 

81.42 115 

82.05 114 

4 ResNet-18 80.58 

80.47 

84 

102.4 

79.46 108 

81.23 109 

81.04 107 

80.03 104 

5 ResNet-50 82.49 

80.60 

223 

262.0 

79.60 228 

78.40 250 

80.34 299 

82.17 310 

To present the performance of models in view of confusion matrix, the highest 

accuracy among five repetitions were chosen and the accuracy matrix which are 

precision, recall, F1-score that represented by confusion matrix also presented in Table 

5. Precision is the proportionality of correctly predicted positive image classes to the 

total predicted positive image classes. Recall is the proportionality of correctly predicted 

positive image classes to all image classes in actual classes. And F1 score is the 

weighted average of recall and precision. Since f1 score takes both precision and recall 

into account, the f1 score is used as parameter for model accuracy evaluation. 

Table 5. Accuracy matrix of proposed pre-trained CNN models. 

Model Class Precision Recall F1-Score Accuracy 

1 Normal 0.943 0.930 0.936 

81.4%  B.Pneumonia 0.825 0.838 0.831 

 V.Pneumonia 0.656 0.648 0.652 

2 Normal 0.874 0.960 0.915 

83.1%  B.Pneumonia 0.855 0.858 0.856 

 V.Pneumonia 0.721 0.643 0.680 

3 Normal 0.962 0.937 0.949 

82.0%  B.Pneumonia 0.791 0.889 0.837 

 V.Pneumonia 0.713 0.568 0.632 

4 Normal 0.961 0.914 0.937 

81.2%  B.Pneumonia 0.777 0.893 0.831 

 V.Pneumonia 0.717 0.553 0.624 

5 Normal 0.928 0.963 0.945 

82.5%  B.Pneumonia 0.834 0.844 0.839 

 V.Pneumonia 0.685 0.643 0.663 
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4. Results and Analysis 

As aforementioned, this study was conducted to detect pneumonia in the chest by 

developing a model to classify normal, bacterial, and viral pneumonia lung from CXR 
datasets attained from free publicly available Kaggle Datasets. This experiment was 

performed using five different pre-trained CNN models to identify the best pre-trained 

pneumonia detection, model. Only the last two dense layers from the CNN model were 

fine-tuned and retrained with the CXR datasets. And from the five repetition results 

from these five pretrained CNN models, the model with highest accuracy were 

presented in the form of a confusion matrix in Fig. 4. The precision, recall, and F1 score 

are tabulated in Table 5. Besides, the average accuracy of each model after five 

repetitions together with total time of execution is shown in Table 4. 

 
(a) 

 
(b) 
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(c) 

 
(d) 

 
(e) 

Fig. 4. The confusion matrix of five different models of  

(a) AlexNet, (b) SqueezeNet (c)GoogleNet, (d)ResNet-18 and (e)ResNet-50. 
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Table 5 illustrates that all the five models outperformed in pneumonia detection 

as their accuracy above 80%, from Fig. 4. Among these five models, SqeezeNet 

model accuracy was the highest, 81.6%, followed by GoggleNet, AlexNet, ResNet-

50, and ResNet-18. These models' accuracies indicate that model accuracy is not 

merely dependent on model depth itself.  

In terms of classification or pneumonia detection accuracy, from Fig. 4. and f1 

score of Table 5 reveals that all the models can accurately be distinguished from 

normal or healthy lung with pneumonia lung conditions. The f1-score of each 

pretrained model to identify healthy lung (normal lung condition) was the highest 

in which all achieve accuracy above 90% where AlexNet (93.6%) , SqueezeNet 

(91.5%), GoogleNet (94.9%), ResNet-18 (93.7%) and ResNet-50 (94.5%).  

In recognizing bacterial pneumonia lung condition, these models’ accuracies 

were in fairly acceptable range where all models achieve f1-score more than 80%;  

AlexNet (83.1%), SqueezeNet (85.6%), GoogleNet (83.7%), ResNet-18 (83.2%) 

and ResNet-50 (83.9%). However, in categorizing viral pneumonia lung 

conditions, the performance of these models dropped where f1-score of these 

models were in range of 60% above. AlexNet (65.2%), SqueezeNet (68.0%), 

GoogleNet (63.2%), ResNet-18 (62.4%) and ResNet-50 (66.3%). There are some 

confusions between both viral and bacterial pneumonia as both images shared 

almost similar features that have cloudiness in the lung area. The region of the 

normal healthy lung is non-cloudy, and the edges are to be seen compared to 

unhealthy pneumonia lung, which is covered with haze.  

The model efficiency was measured using time taken to complete each 

pretrained model execution (average time for five repetition) as presented in Table 
4. Among these five pretrained model SqueezeNet achieve fastest execution time 

where it takes only around 64.6 minutes to complete followed by AlexNet (72.2 

minutes), ResNet-18 (102.4 minutes), GoogleNet (106.6 minutes) and ResNet-50 

(262.0 minutes).  

As these proposed models outperformed in distinguishing between healthy 

lungs and pneumonia infected lungs with highest accuracy of more 90% at fastest 

rate hence, these models can be utilised for early, rapid detection between normal 

and abnormal lung conditions indicating pneumonia. Patients diagnosed with 

pneumonia can immediately be sent for further treatment without any delay to 

prevent any mishap. However, in determining between bacterial pneumonia with 

viral pneumonia these models are quite imprecise, as the models slightly mixed up 

although it achieves fairly acceptable accuracy of more than 80% in recognizing 

bacterial pneumonia. 

5. Conclusions 

In this study, fine-grained deep learning-based transfer learning CNN models were 

proposed on pneumonia detection in CXR images. The proposed automated system 

can recognise normal, bacterial pneumonia, and viral pneumonia from the CXR 

images with comparable accuracy. Although in this current COVID-19 pandemic, 

there are quite a number of papers were extended their study to COVID-19 detection, 

yet COVID-19 detection is not within the scope of this paper. These results provide 

compelling evidence that this system facilitated faster pneumonia detection. The 
results were encouraging, and future studies should be validated on various ages, 
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including adults and the elderly. Future work should also focus on COVID-19 

recognition and develop a hybrid model to enhance feature extraction and improve 

the model's performance by enhancing each class accuracy higher than 95.0%. 
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