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Abstract 

Rapid development in detection and recognition of human activity (HAR) based on 
wearable sensor data has been witnessed in the recent past and it has become one 
of the significant research fields because of its advanced applications in domains 
such as healthcare, athletics, assistance, and rehabilitation. In recent years, activity 
recognition has been accomplished using wearable sensors like accelerometers, 
gyroscopes, magnetometers, etc. In traditional approaches, feature engineering has 

to be performed by applying some heuristic methods in order to determine the type 
of activity. The process of feature engineering requires domain experts to extract 
efficient and distinct features from the sensor data. Recognition of complex 
activities, accuracy, and efficiency of the model relies upon the features extracted 
during the feature engineering process. Critical analysis of this whole process 
showed that the process of extraction of handcrafted features is very involved and 
time-consuming when complex recognition problems are handled. In addition, it is 
quite inefficient and inaccurate. In addition, it is quite inefficient and inaccurate. A 

novel Customized 1D-CNN (C1DCNN) is proposed in this work in order to remove 
the tedious process of handcrafted feature extraction and to improve the recognition 
efficiency and accuracy. Automatic feature extraction is accomplished by 
Convolutional Neural Networks (CNN). In the proposed scheme C1DCNN, the 
recognition of human physical activities is accomplished using deep learning 
techniques it has been evaluated on five datasets namely UCI-HAR, Opportunity, 
PAMP2, Daphnet Gait, and Sphere datasets. This work proposes a C1DCNN and 
employs deep learning algorithms like Deep Neural Networks (DNN) and Bi-
Directional Long Short-Term Memory (BD-LSTM). The performance of these 

deep learning approaches is analysed using various activation functions, hidden 
layers, optimizer techniques, and learning rates. The performance evaluation is 
based on Precision, Recall, F1 score macro, F1 score micro, and weighted F1 score 
metrics. The experimental study conducted as a part of this work demonstrates the 
C1DCNN outperforms DNN and BD-LSTM-RNN for Opportunity, PAMAP2, 
Daphnet Gait, UCI-HAR, and SPHERE datasets with an f1-score 0.8912, 0.9444, 
0.8876, 0.9637, and 0.8863 respectively. 

Keywords: 1 Dimensional convolutional neural network (1D-CNN), Activation 

functions, Bi-directional long short-term memory (BD-LSTM), Deep 
learning (DL), Deep neural network (DNN), F1 score metrics, Human 
activity recognition. 
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1. Introduction 

Human Activity Recognition (HAR) is one of the most challenging tasks and has 

attracted a lot of interest in the recent past. HAR is the key requirement in many 
important applications like health care [1], daily activity routines, providing care to 

senior citizens, etc. The data required to perform the tasks associated with HAR can 

be acquired using visual and non-visual sensors. Techniques employed for Computer 

Vision processing can be employed for HAR using the data collected from the visual 

sensors. Gathering data using visual sensors like cameras have their own challenges 

like a drastic change in light intensity, changes in camera angle and position, presence 

of obstacles and also issues of invasion of privacy, and these challenges limit their 

utility in real-life applications [2]. These limitations are overcome to a large extent 

by using non-visual sensors for HAR processes (NVHAR). NVHAR can be 

accomplished by using body-worn sensors, smart devices like smartwatches, mobile 

devices, object sensors, and environmental sensors.  

In this perspective, sensors can be categorized into external sensors and 

wearable sensors. External sensors are placed in the immediate vicinity of the target 

while the wearable sensors are either carried or worn by the user. To recognize the 

activities, the user has to interact with those objects or has to be present in a certain 

location while performing the activity of interest. Then, the recorded sequence of 

sensor events is used to determine the activities that were performed. Recognition 

of simple activities like movements and postures can be accomplished by analysing 

the data collected by the sensors which are worn by the user. This approach cannot 

be adopted for the recognition of complex activities which involve various types of 

interaction with the environment. Hence, detecting these activities requires 

environmental data along with the data on the movement of various aspects of the 

body of the user. Smartphone-based HAR is also considered under the ambit of the 

wearable sensor-based approach.  

Research in the recognition of physical activities with a wearable device 

approach has left some of the issues unaddressed. Some of such issues that are not 

adequately addressed are the decision of the users as to how the wearable device 

will be carried, significant differences in the movement patterns of persons based 

on their mood and also between different persons. In addition, it might be difficult 

to gather data from elderly and physically challenged persons. To address the 

aforementioned issues, most of the investigators maintained smartphones/wearable 

devices in immobile positions such as trouser pockets or on the waist of the user, 

or elsewhere on the human body. However, these wearables tend to hamper the 

freedom of movement of the user.  

Overcoming these challenges and making the detection position and user-

independent has attracted the attention of many researchers. Researchers have 

addressed this problem by extracting handcrafted features which are invariant or 

less influenced by the position of the smartphone and also by normalizing the data 

based on the position of the sensor. To achieve a reliable smartphone-based HAR, 

the performance of the existing approaches needs to be improved significantly.  

The research on HAR is immensely benefited by conventional machine learning 

(ML) approaches like Random Forest [1, 2], KNN, SVM, MLP, Logistic Linear 

Regression [2], and Ensemble Neural Network [3] to infer human activities. In spite 

of their widespread use, Machine Learning (ML) - based approaches have major 

drawbacks, i.e., ML approaches completely rely on handcrafted features which 
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require a high degree of expertise in the domain to successfully build the HAR 

system. This limitation is overcome by adopting deep learning (DL) models for HAR. 

The research on HAR is a significant element of Activity Recognition Systems 

(ARS) which help in Ambient Assisted Living [4]. These systems help in 

maintaining the quality of lifestyle of elders and the physically challenged. An 
enormous number of datasets of non-visual sensor-based HAR has been captured 

and shared by many investigators. As the success of HAR is strongly dependent on 

the environment it is essential to determine the relevant dataset for this evaluation 

process. This work provides a systematic methodology to evaluate deep learning 

algorithms on various HAR datasets. The contributions of this work are as follows: 

• Proposed Customized 1D-CNN (C1DCNN) for recognition of human activities.  

• Adopted DL models like DNN, and BD-LSTM for processing the HAR dataset. 

• Fine-tuning of DL models to improve recognition accuracy. 

• Exploring the ReLu based various activation functions on 1D-CNN. 

• Evaluation of above DL models across HAR benchmark datasets like UCI-

HAR, Opportunity, PAMP2, Daphnet Gait, and Sphere. 

• Comparative performance analysis of DL models based on accuracy. 

The rest of this article is arranged as follows: Section 2 Literature survey: It 

briefs about the state of art Deep Learning techniques employed to accomplish 

HAR and publicly available datasets to evaluate HAR models. Section 3 Methods 

and Material: It describes various deep learning models for HAR, and benchmark 

datasets used in this work. Section 4 Evaluation Metrics and Discussion: It 

describes performance evaluation metrics used in the present work to evaluate the 

performance of HAR models. Section 5 Experimental Results and Analysis: This 

section provides experimental results of the aforementioned deep learning models 

on various benchmark datasets.  

2. Literature Survey 

Upon the systematic study on the literature of the HAR, it has been observed that 

some reviews of the literature analyse very specific approaches from the technology 

point of view. Some reviews emphasize the systematic evaluation of various 

classification techniques' effectiveness for recognition of daily living activities 

from the datasets [5, 6]. Other reviews emphasize the systematic study on position-

independent [7, 8] and user-independent [9] HAR. The further subsections of this 

section provide brief information about the aforementioned studies. Section 2.1 

provides information concerning the traditional feature extraction and machine 

learning adopted for HAR, Section 2.2 reviews various deep learning approaches 

adopted for sensor-based HAR, and section 2.3 provides information about 

available benchmark datasets for sensor-based HAR.  

2.1. Handcrafted features and machine learning models for sensor-

based HAR 

Damaševičius et al. [5] proposed the random projection-based approach for 

feature dimensionality reduction and low dimensionality features were trained 

using binary classifiers. In this work, researchers accomplished two HAR tasks 

namely, activity recognition and subject identification, with 95.52 percent 
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accuracy for within-person categorization and 94.75 percent accuracy for 

interpersonal identification respectively.  

De Leonardis et al. [6] evaluated the five classification techniques in terms of 

HAR accuracy. For this evaluation, input signals were acquired using the MTx 

miniature magnetic and inertial measurement unit (MIMU) sensor manufactured 
by Xsens Technologies. A 5-s sliding window with no overlap was used to segment 

the input signal. Researchers extracted 21-time domain, 3 frequency domain, and 

14 time-frequency domain features for each window. The evaluation showed that 

the result of the k-Nearest Neighbours (KNN) method had an accuracy of 97% this 

outperformed feedforward Neural Network (FNN) (95.8%), Support Vector 

Machine (SVM) (96.6%), Naive Bayes (NB) (96.5%), and Decision Tree (DT) 

(91%) for classification of 8 activities. 

In smartphone-based HAR, smartphones were usually used in fixed positions like 

trouser pockets or on specific parts of the user’s body. These constrain the user’s 

behavior. To overcome this, Yang and Wang [7] proposed a method called PCAP 

(Parameters Adjustment Corresponding to smartphone Position). The calibration 

parameters of the accelerometer which is part of the smartphone are adjusted based 
on the position and orientation of the smartphone. To accomplish position-

independent recognition, the SVM model was trained by using these features and 

obtained 91% accuracy for HAR. Saha et al. [8] evaluated shallow neural networks 

for position independent activity recognition of 7 different classes and achieved an 

accuracy of 75%. Table 1 provides the summary of HAR work carried out by various 

researchers using handcrafted features and machine learning classifiers.  

Table 1. Summary of feature extraction and classifiers used for HAR. 

Ref. Input Dataset Feature Extraction Classifiers & Accuracy  

[3] UCAmI Cup 
Dataset  

31 Features - one for each binary 
sensor 

Ensemble NN- 80.39% 
KNN- 70.95% 
SVM - 76.54% 

[9] Constructed using 
Smartphone 

21 features were extracted from 
magnitude acceleration sequences 

Quadratic discriminant analysis- 95.4% 
kNN- 94.5% 

[10] Opportunity 

Dataset 

Frequent temporal patterns 

(Apriori Principle) 

SVM- 93% 

NB- 97% 
kNN- 91% 

[11] PAMAP Dataset Time and frequency domain 
features and extracted mean and 
gradient from heart rate data 

C4.5 - 98% 
Boosted C4.5 DT- 99% 

Bagging C4.5 DT- 98% 
NB - 93% 
kNN- 99% 

[12] UCI-HAR dataset Enveloped power spectrum (EPS) Linear Discriminant Analysis (LDA) - Multi-

Class Support Vector Machine (MC-SVM)- 
98.67% 

[12] DU-MD dataset Enveloped power spectrum (EPS) LDA - MC SVM- 100% 

[13] Constructed using 
TRIGNO EMG-

acceleration 

Wavelet energy spectrum features 
and ensemble-based filter feature 

selection 

−  
SVM-81.7% 

[14] UCI-HAR  Time and frequency domain 
statistical features  

MC-SVM- 96.81% 
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Siirtola and Röning [15] proposed a personalized Human Activity Recognition 

system using incremental learning approaches. In this work, data labelling was 

done using supervised, unsupervised, and semi-supervised techniques. An 

ensemble approach, Learn++ is adopted as a base classifier to train the labelled 

data. This study compares the results with 3 more base classifiers: linear 
discriminant analysis (LDA), classification and regression tree (CART), and 

quadratic discriminant analysis (QDA). These classifiers are evaluated using a 

publicly available dataset discussed by Siirtola and Röning [16]. Garcia-Gonzalez 

et al. [17] obtained 89.1% using the non-supervised personalization approach, 

94.0% using the semi-supervised personalization approach, and 96.5% using the 

supervised personalization approach.  

2.2. Deep learning (DL) models for sensor-based HAR 

Due to the automatic feature extraction characteristic of DL, these algorithms are 

widely used in sensor-based HAR. In recent years, many researchers have utilized 
various deep learning algorithms to extract different types of information. The 

extraction of local translation-invariant features over a particular region or time can 

be accomplished by using a Convolutional Neural Network (CNN) [18]. Recurrent 

Neural Networks (RNN) is a neural network architecture that is appropriate for 

learning the temporal dynamics of sequential data. Murad and Pyun [19] 

established LSTM based 3 deep recursive neural network structures to recognize 

the activities by taking the time domain features of input sequences and achieved 

more accurate recognition. This network has the limitation of exploding and also 

displays an endangered gradient. To overcome this limitation, Ordóñez and Roggen 

[20] and Pienaar and Malekian [21 proposed the hybrid approach by combining the 

convolutional and LSTM recurrent neural network to perform the HAR using the 

data received from multimodal wearable sensors.  

To accomplish wearable sensor-based HAR, Qian et al. [22] proposed a novel 

distributed neural network which can extract statistical features along with temporal 

and spatial information. Usually, DL algorithms involve plenty of operations, which 

makes them computationally expensive, hence it is not appropriate for real-time 

sensor-based HAR. Cheng et al. [23] proposed a computationally proficient CNN 

with conditionally parameterized convolution which maintains the balance of the 

trade-off between accuracy and high computational cost. Deep neural networks 

require high memory requirements when they are trained with global loss. This high 

memory requirement is reduced by training the networks with local loss. This concept 

is proposed by the investigators of [24] and accomplished for the usage of the HAR 

task using layer-wise CNN with local loss. To ameliorate the performance of HAR, 
features extracted from deep learning algorithms are combined with handcrafted 

features by considering regular dynamics of human conduct, and these features are 

trained using a maximum full a posterior (MFAP) scheme [25]. The sensor-based 

deep HAR system has been implemented on medium-range smartphone class 

hardware and extensive experiment have been carried out to analyse memory and 

execution time requirements [26]. Sensor-based HAR is employed to assist senior 

citizens and unwell people admitted to a hospital [27]. The zero-shot learning is 

applied to predict the “unobserved” activities which were not present in the training 

set [28] and evaluation is carried on the CASAS dataset and achieved high 

performance in recognizing hither to unseen (new) activities. 
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2.3. Benchmark dataset for sensor-based HAR 

All advanced approaches of DL algorithms are evaluated using publicly available 

datasets and some of the researchers have created dataset in specific sensor-based 
environments. This section provides a few such datasets, considering the various 

characteristics such as number of activities, occupancy, context, number of 

participants, and type of sensors, with the subsequent abbreviations being used. O-

Object Sensor, G-Gyroscope, M-Magnetometer, A- Accelerometer, E- 

Environmental Sensor. S- Single Occupancy, M-Multi Occupancy, NS- Not 

Specified (Table 2). 

Table 2. Summary of publicly available datasets for sensor-based HAR. 

Dataset # 

Activ

ities 

Occupancy Context Type 

of 

Sensor 

# 

Individu

al 

van Kasteren et 

al. [29]  

8 S House E 2 

CASAS Multi 

resident [30]  

8 M Smart Apartment  E 2  

CASAS Aruba 

[31]  

11 M Smart Workplace E 1 

CASAS Kyoto 

[32]  

11 S Smart Workplace E 20 

PAMAP2 [33]  18 M Chest, Wrist and 
Ankle 

A,G,M 9 

Opportunity [34] 16 M A room simulating 

studio flat 

O,A 4 

mHealth [35]  12 M Chest, Wrist and 

Ankle 

A,G 10 

Daphnet Gait 

[36]  

2 NS Lab with emphasis 

on generating many 

freeze events. 

A 10 

WISDM [37]  6 M Smart Phone and 

Smart Watch 

A,G 29 

SPHERE [38] 20 M House E, A 12 

3. Methods and Material  

This section consists of 4 sub-sections. Section 3.1 discusses the datasets used for 

the evaluation of DL algorithms. The architecture of DL algorithms is discussed in 

3.2. The proposed work aims to assess the DL algorithms for sensor-based HAR 

using various benchmark datasets. Some of the DL work included in this work are 

DNN, CNN, and the Bi-directional LSTM RNN algorithm.  

3.1. Datasets 

In this study, we have employed publicly available datasets to build and evaluate 

DL algorithms. The datasets and their source links are listed in Table 3. Table 4 

provides the information of the datasets employed in this work. 
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The objective of this study is to assess the DL algorithms for typical activities 

performed by humans in their daily life. Figure 1 describes the activities included in 

the above datasets. Except for the Daphnet Gait dataset, all datasets shown in Fig.1 

consist of typical physical activities performed daily including static and dynamic 

activities. Daphnet Gait dataset includes only 3 activities namely, freeze, no freeze, 
and other. Labelling of activities in the SPHERE dataset has been done uniquely 

compared to the other datasets. Activities in the SPHERE dataset are prefixed with 

a_, p_, and t_, where ‘a_’ represents ambulatory activity (i.e., an activity involving 

ongoing movement), ‘p_’ represents static positions and ‘t_’ represents the transition 

from one posture to another posture. 

Table 3. Summary of publicly available datasets for sensor-based HAR. 

Dataset  Source link 

UCI HAR https://archive.ics.uci.edu/ml/datasets/human+activity+recognition+using+smart
phones#) 

Opportunity 

Dataset 

https://archive.ics.uci.edu/ml/datasets/OPPORTUNITY+Activity+Recognition#:

~:text=Abstract%3A%20The%20OPPORTUNITY%20Dataset%20for,%2C%20

feature%20extraction%2C%20etc 

PAMAP2 https://archive.ics.uci.edu/ml/datasets/PAMAP2+Physical+Activity+Monitoring 

Daphnet Gait https://archive.ics.uci.edu/ml/datasets/Daphnet+Freezing+of+Gait 

Sphere https://github.com/IRC-SPHERE/sphere-challenge 

Table 4. Summary of Datasets used in proposed work. 

Dataset 

 
# of 

Classes 

# of 

Subjects 

Sampling 

Rate 

Training 

Window 

Length 

# of 

Training 

Examples 

# of Testing 

Examples 

UCI-HAR  6 30 50Hz 128 11,988 2997 

Opportunity  18 14 30 Hz 24 55,576 13,894 

PAMAP2  18 9 100 Hz 25 255481 63871 

Daphnet FOG  2 10 64 Hz 32 57,012 14,253 

SPHERE  20 12 20 Hz 30   

Fig. 1. Activities considered in the publicly available dataset 

3.2. Deep learning approaches for HAR 

3.2.1. Deep neural network  

The deep feed-forward neural network for HAR has been implemented with four 

hidden layers accompanied by the output layer with softmax activation to classify 

the activities. The given input signal is segmented into equal width samples and 

each segmented data is considered as a feature. The input data is subjected to the 

sequence of non-linear transformations. Each hidden layer comprises an identical 

number of units and conforms to a linear transformation and a rectified linear 

https://archive.ics.uci.edu/ml/datasets/human+activity+recognition+using+smartphones
https://archive.ics.uci.edu/ml/datasets/human+activity+recognition+using+smartphones
https://archive.ics.uci.edu/ml/datasets/OPPORTUNITY+Activity+Recognition#:~:text=Abstract%3A%20The%20OPPORTUNITY%20Dataset%20for,%2C%20feature%20extraction%2C%20etc
https://archive.ics.uci.edu/ml/datasets/OPPORTUNITY+Activity+Recognition#:~:text=Abstract%3A%20The%20OPPORTUNITY%20Dataset%20for,%2C%20feature%20extraction%2C%20etc
https://archive.ics.uci.edu/ml/datasets/OPPORTUNITY+Activity+Recognition#:~:text=Abstract%3A%20The%20OPPORTUNITY%20Dataset%20for,%2C%20feature%20extraction%2C%20etc
https://archive.ics.uci.edu/ml/datasets/PAMAP2+Physical+Activity+Monitoring
https://archive.ics.uci.edu/ml/datasets/Daphnet+Freezing+of+Gait
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(ReLu) activation function [39]. The architecture of DNN employed in this work is 

shown in Fig. 2. The DNN network has been trained by varying the 

hyperparameters like learning rate, training epochs, and batch size. The network 

has been optimized by using Adam and Gradient Descent optimizers.  

 

Fig. 2. The architecture 

of DNN for HAR. 

 
Fig. 3. The architecture  

of CNN for HAR. 
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3.2.2.  Customized convolutional neural network (C1DCNN) 

The CNN architecture mainly consists of three blocks namely, the Convolutional 

layer, Activation Layer, and Pooling layer. Figure 3 above depicts the architecture 
of the customized CNN designed for HAR. The functionality of each layer of the 

CNN is discussed in the subsequent part of this section.  

The purpose of using the CNN algorithm for HAR is to obtain the translation-

invariant features concerning the precise time of occurrence. Each convolutional 

layer extracts the features which are subjected to the Activation function followed 

by the dropout and Max Pooling layers. In this work, 1-dimensional sensor data is 

used as input hence one-dimensional kernel is employed to perform convolution 

for feature extraction. The convolution layer performs convolution on the input 

sequence using ‘n’ number of different kernels with a specific width ‘w’. Figure 4 

depicts steps involved in the feature extraction process. From Fig. 4, the input data 

sequence d1, d2,…..,dn is segmented into “n” number of segments of equal length. 
Consider the convolutional kernel with kernel size 3 where w1, w2, and w3 represent 

the weight coefficient of the kernel. Feature extraction is accomplished by 

performing the convolution on input data with respect to the kernel coefficient. The 

predefined operation will be performed on the data covered under the kernel 

coefficients. For example, from Fig. 4 the feature f2 can be computed by taking the 

linear sum of the product of the weight coefficients and input data, for instance, f2= 

w1*d1+w2*d2+w3*d3.  

The next building block of CNN is the activation function. Each convolutional 

layer in CNN performs a simple linear transformation of the input data. In absence 

of a nonlinear activation function after each layer, the entire network behaves as a 

simple linear transformation, which limits the accuracy of detection while 

performing complex tasks. To train the network for a complex task, a nonlinear 
activation function is used after each convolution layer. ReLu is one such nonlinear 

activation function with specific kernel width looking for introducing non-linearity 

into the convolution features by replacing the negative values with zero. The main 

drawback of the ReLu activation function is, it creates dead neurons those never 

get activated. To overcome this limitation, the C1DCNN employed Leaky ReLu, 

ELU, SeLu and sigmoid activation functions to introduce the non-linearity into the 

features extracted by the convolutions layers. 

 

Fig. 4. Feature extraction in CNN. 



2324        S. Ankalaki and M. N. Thippeswamy 

 
 
Journal of Engineering Science and Technology           August 2022, Vol. 17(4) 

 

The subsequent building block of the CNN is the pooling layer also called 

down-sampling. The Pooling layer is added after dropout in the CNN architecture 

as shown in Fig. 3. Pooling layers perform a reduction in the size of the activation 

maps. These layers are utilized after several steps of other layers (i.e., convolutional 

and non-linearity layers) to minimize the computational requirements progressively 
through the network as well as minimizing the likelihood of overfitting. The 

pooling layer has two hyperparameters: the size of the window and the stride. The 

size of the window and stride are defined well in advance. The pooling layer reduces 

the data within the window to a single value. After each iteration, the window is 

moved by the number of positions as defined by stride. This reduction is repeated at 

every position of the window until the whole activation volume is spatially reduced. 

Pooling performs the reduction by using two methods namely: max pooling and 

average pooling [40]. Max-pooling is performed with a specific kernel size, which 

determines the maximum value (max_value) within the region of the kernel of width 

(w), and the entire data of the window is represented max_value. 

Similarly, the average pooling performs the reduction by reducing the data of the 

window to a single value by computing the average of the values of all the elements 
in the window. The subsequent fully connected neural networks effectively resemble 

a DNN and the architecture of the same is shown in Fig. 3. 

3.2.3.  Bi-directional long short-term memory (BD-LSTM) 

In real life, human activity is continuous in nature. To predict the human dynamics 

of the human activities one should know the former and current states of the body. 

This can be accomplished by using baseline LSTM. Baseline LSTM depends 

solitarily on the information about the former state to predict the present status of the 

activity [39, 41]. Baseline LSTM cell will not be able to utilize the information of 

consequent state, this limitation is overcome by employing Bidirectional LSTM cells. 
The current work employs bidirectional LSTM because of its enhancement that the 

present output is related to both former and consequent state information. 

Bidirectional LSTM consists of two LSTM cells and both of these cells are 

responsible for the production of the output. 

The data captured from the wearable and environment sensors are continuous 

in nature, i.e., not discrete. This data is segmented by using a window of width ‘w’ 

with 50% of overlapping. For interpretation, we define the input as 

{i0,i1,……it,it+1,…..} the hidden layer as {h0,h1,……ht,ht+1,…..} and output as 

{o0,o1,……ot,ot+1,…..}, where “t” represents the time instant. X represents the weight 

matrix from the input layer to the hidden, W represents the weight matrix from one 

hidden to the next hidden layer, and Y represents the weight matrix from the final 
hidden layer to the output layer. The forward and backward sequences in hidden 

layers are represented by ℎ⃗  and ℎ⃖⃗ respectively. For the moment t (t=0,1,2….), the 

hidden layer and output layer are defined as given below: 

ℎ⃗ 𝑡 = 𝑔(𝑋ℎ⃗⃗ 𝑖𝑡 + 𝑊ℎ⃗⃗ ℎ⃗ 𝑡−1 + 𝑏ℎ⃗⃗ )                                                                              (1) 

 ℎ⃗⃗⃗⃖𝑡 = 𝑔(𝑋ℎ⃗⃗⃖𝑖𝑡 + 𝑊ℎ⃗⃗⃖ ℎ⃗⃖𝑡−1 + 𝑏ℎ⃗⃗⃖)                                                                             (2) 

  𝑜𝑡 = 𝑔(𝑌ℎ⃗⃗ ℎ⃗
 
𝑡 + 𝑌ℎ⃗⃗⃖ ℎ⃖⃗𝑡 + 𝑏𝑜)                                                                                 (3) 

where g (.) represents the activation function and b represents the bias. 
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Equation (1) represents the forward sequence calculation from input to hidden or 

hidden to hidden and Eq. (2) denotes the backward sequence calculation from 

hidden to hidden or hidden to input. Equation (3) represents the calculation using 

both former and subsequent information. The results of the ht computations are 

concatenated and then applied to the global max pooling to reduce the features. 
This will be followed by a fully connected neural network and finally a softmax 

function will perform the activity classification. The architecture of this network is 

depicted in Fig. 5. 

 

Fig. 5. The architecture of BD-LSTM. 

4.  Evaluation Metrics and Discussion 

Five different benchmark datasets are employed to evaluate the deep learning 

models. Precision, Recall, and F1 measure metrics are used to evaluate the 
performance of these models. These metrics are calculated in 3 different ways 

namely micro, macro [42], and weighted. Precision is the measure of the ability of 

the classifier to classify the true positive samples as positive. Recall computes the 

number of correct class predictions in the dataset produced from all the positive 

classes. F1 score is the weighted average between precision and recall. The 

difference between micro and macro computing is that the former approach 

considers all the classes similarly thereby not discriminating between the different 

classes while the second one considers the size of each class also in the process of 

classification. The micro averaging approach just computes the averages of the 

metric score whereas macro averaging computes the metrics for each label and 

determines their unweighted mean. The formula of micro and macro precision is 

given in Eq. (4) and (5). 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛𝑚𝑖𝑐𝑟𝑜 =
𝑇𝑃1+𝑇𝑃2……+𝑇𝑃𝑛

𝑇𝑃1+𝑇𝑃2……+𝑇𝑃𝑛+𝐹𝑃1+𝐹𝑃2……+𝐹𝑃𝑛
                                                     (4)   

                              

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛𝑚𝑎𝑐𝑟𝑜 =
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 1+𝑃𝑟𝑒𝑐𝑖𝑠𝑜𝑛2……+𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛𝑛

𝑛
                                                (5)  

The equation of the micro and macro Recall is given in Eq. (6) and (7). 

𝑅𝑒𝑐𝑎𝑙𝑙𝑚𝑖𝑐𝑟𝑜 =
𝑇𝑃1 + 𝑇𝑃2 ……+ 𝑇𝑃𝑛

𝑇𝑃1 + 𝑇𝑃2 ……+ 𝑇𝑃𝑛 + 𝐹𝑁1 + 𝐹𝑁2 ……+ 𝐹𝑁𝑛

                       (6) 
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 𝑅𝑒𝑐𝑎𝑙𝑙𝑚𝑎𝑐𝑟𝑜 =
𝑅𝑒𝑐𝑎𝑙𝑙 1 + 𝑅𝑒𝑐𝑎𝑙𝑙2 ……+ 𝑅𝑒𝑐𝑎𝑙𝑙𝑛

𝑛
                                            (7) 

The equation of the micro and macro F1 score is given in Eq. (8) and (9). 

 𝐹1𝑆𝑐𝑜𝑟𝑒𝑚𝑖𝑐𝑟𝑜 = 2 ∗
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛𝑚𝑖𝑐𝑟𝑜 ∗ 𝑅𝑒𝑐𝑎𝑙𝑙𝑚𝑖𝑐𝑟𝑜

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛𝑚𝑖𝑐𝑟𝑜 + 𝑅𝑒𝑐𝑎𝑙𝑙𝑚𝑖𝑐𝑟𝑜

                                          (8) 

 𝐹1𝑆𝑐𝑜𝑟𝑒𝑚𝑎𝑐𝑟𝑜 = 2 ∗
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛𝑚𝑎𝑐𝑟𝑜 ∗ 𝑅𝑒𝑐𝑎𝑙𝑙𝑚𝑎𝑐𝑟𝑜

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛𝑚𝑎𝑐𝑟𝑜 + 𝑅𝑒𝑐𝑎𝑙𝑙𝑚𝑎𝑐𝑟𝑜

                                         (9) 

The weighted F-score is computed by considering the metrics for each label and 

finding their average, weighted by support (the number of true instances for each 

label). This alters macro computations to account for label imbalance; it can result 

in an F-score that is not between precision and recall. 

5.  Experimental Results and Analysis 

5.1. Deep neural network 

Assessment of the proposed model is accomplished by using the DNN model. To 
perform cross-validation, 80% of the dataset is utilized for training, and the remaining 

20% of the dataset is utilized for testing. To determine appropriate activation 

functions for employed datasets, the experiment was conducted on various activation 

functions like ReLu, ELU, SeLu, Leaky Relu, and sigmoid with 200 epochs and a 

batch size of 64. The experimental results of this are depicted in Fig. 6.  

From the analysis shown in Fig. 6 activity detection using DNN on the 

Opportunity dataset reached the highest training accuracy of 95.96 for the ELU 

activation function. The highest training accuracy for the PAMAP2 dataset is 

obtained using the ELU activation function. Similarly, the Daphnet Gait and UCI-

HAR datasets obtained the highest training accuracy of 95.25, 97.25 with the ReLu 

activation function, and the SPHERE dataset obtained the highest training accuracy 
of 84.63 with ELU activation functions. Similarly, testing accuracy is evaluated on 

the same dataset for the above-mentioned activation functions. The experimental 

results are depicted in Fig. 7. 

Fig. 6. Training Accuracy on various 

Activation Functions for DNN. 

Fig.7. Testing Accuracy on various 

Activation Functions for DNN. 

*OPP - Opportunity Dataset, *PA2 -PAMAP2 Dataset, *DAP- Daphnet Gait 

Analysis of training and testing accuracy depicted in Figs. 6 and 7 show that 

OPP, PA2, and SPHERE datasets attained better training and testing accuracy using 

the ELU activation function; DAP and UCI-HAR datasets attained better training 
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and testing accuracy using the ReLu activation function. Hence, these datasets are 

evaluated for the corresponding activation function which gives better accuracy. 

To select an appropriate optimizer in the layers of DNN, the experimentation is 

conducted on datasets by employing Adam and Gradient Descent optimizer with 

200 epochs and a batch size of 64. The experimental results of this are shown in 

Figs. 8 and 9. 

As per Figs. 8 and 9, the Adam optimizer outperforms the Gradient Descent 

optimizer. To select the appropriate number of hidden layers for deep neural 

networks, the experiment was conducted using the various number of hidden layers 

with Adam optimizer, 0.0001 Learning rate, and ELU activation function for 

Opportunity dataset, PAMAP2 dataset, and Sphere dataset; ReLu activation 

function for Daphnet gait and UCI-HAR dataset with 200 epochs and batch size of 

64. Figures 10 and 11 illustrate the performance of the DNN for hidden layers 1 to 

4. The training and testing accuracy of DNN is maximum for 2 hidden layers. 

However, it starts decreasing for a higher number of hidden layers. Hence, a neural 

network with two hidden layers is employed for further experimentation. 

Fig. 8. Performance evaluation of  

DNN with Adam optimizer. 

Fig. 9. Performance evaluation of  

DNN with gradient descent optimizer. 

Fig. 10. Training Accuracy of  

DNN with number of hidden layers. 

Fig. 11. Testing Accuracy of  

DNN with number of hidden layers. 

5.2. Performance analysis of CNN for benchmark datasets 

C1DCNN architecture is fine-tuned by choosing the appropriate optimizer and 

varying the parameters like the learning rate, and the number of epochs. For cross-

validation, the dataset was divided into two parts in a ratio of 80:20. The training 

phase utilized 80% of the dataset and validation/ testing was performed on 20% of 

the dataset. To identify the suitable optimizer function, learning rate, and the 
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number of epochs for various datasets the experiment was conducted on various 

datasets with a batch size of 64. 

All datasets were trained using CNN for 200 Epochs using Adam and Gradient 

Descent optimizer with a learning rate of 0.0001. The results of this 

experimentation are depicted in Figs. 12 and 13. As per Figs.12 and 13, the Adam 

optimizer provides higher accuracy.  

Further, the network is fine-tuned by varying the learning rate with the step size 

of 0.0001. The Performance of CNN is evaluated for the learning rate 0.0001, 

0.0002, 0.0003, 0.0004, and 0.0005 which is depicted in Table 5. 

Fig. 12. Performance evaluation of  

CNN with Adam optimizer. 

Fig. 13. Performance evaluation of  

CNN with gradient descent optimizer. 

Table 5. Performance analysis of CNN with learning rate 

U
C

I-

H
A

R
 

D
a

ta
se

t 

Learning 

Rate 

0.0001 0.0002 0.0003 0.0004 0.0005 

Epoch 182 150 136 129 95 

TR 99.3 98.9 97.5 98.2 97.8 

TS 93.5 92.8 90.7 93.1 90.9 

O
P

P
O

R
T

U

N
IT

Y
 

D
a

ta
se

t 

Learning 

Rate 

0.0001 0.0002 0.0003 0.0004 0.0005 

Epoch 198 105 125 110 100 

TR 99.11 98.89 98.73 97.9 97.5 

TS 92.45 89.85 91.48 91.2 90.35 

P
A

M
A

P
2

 

D
a

ta
se

t 

Learning 

Rate 

0.0001 0.0002 0.0003 0.0004 0.0005 

Epoch 129 85 59 59 49 

TR 89.6 89.3 84.5 82.8 83.3 

TS 94.3 94.1 91.8 91.4 82.3 

D
a

p
h

n
e
t 

G
a

it
 

D
a

ta
se

t 

Learning 

Rate 

0.0001 0.0002 0.0003 0.0004 0.0005 

Epoch 198 187 175 199 198 

TR 98.14 97.73 97.28 97.9 97.68 

TS 89.1 88.62 88.14 89.23 88.73 

S
P

H
E

R
E

 

D
a

ta
se

t 

Learning 

Rate 

0.0001 0.0002 0.0003 0.0004 0.0005 

Epoch 197 198 193 190 192 

TR 87.6 86.9 86.4 85.8 86.1 

TS 83.2 82.8 82.3 80.8 81.5 

*TR- Training Accuracy     TS-Testing Accuracy 

The C1DCNN is finally trained with Adam optimizer with a learning rate of 

0.0001, batch size 64 and with different activation functions like ReLu, SeLu, ELU, 

Leaky ReLU and sigmoid activation functions. The training and testing accuracy 
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of C1DCNN aforementioned activation functions is given in Table 6. As shown in 

Table 6, The Opportunity dataset achieved the highest 99.4% and 93.5% training 

and testing accuracy respectively by using SeLu activation function. For PAMAP2 

dataset, the C1DCNN with ReLu activation function obtained the comparatively 

good accuracy of 89.6% and 94.3% training and testing accuracy respectively by 
using ReLu. Daphnet Gait dataset achieved the training and testing accuracy of 

98.14% and 89.1% respectively using ReLu activation function. The C1DCNN 

with ELU activation function obtained the training accuracy 99.45% and 88.9% for 

UCI-HAR and SPHERE datasets respectively and the testing accuracy was 94.01% 

and 84.6% for UCI-HAR and SPHERE datasets.  

Table 6. Training and testing accuracy on various functions for CNN. 

Dataset 

Training Accuracy Testing Accuracy 

ReLu SeLu ELU 
Leaky 

Relu 
Sigmoid ReLu SeLu ELU 

Leaky 

Relu 

Sigmo

id 

OPP 99.1 99.4 98.7 99.2 89.2 92.4 93.5 91.28 91.9 90.3 

PA2 89.6 87.3 88.6 87.6 82.1 94.1 93.2 93.5 93.5 91.2 

DAP 98.1 97.2 97.5 97.5 90.28 89.1 85.1 85.23 84.45 82.3 

UCI-HAR 99.3 97.2 99.4 98.3 92.6 93.5 92.8 94.01 93.12 89.6 

SPHERE 87.6 83.4 88.9 82.6 80.4 83.2 79.6 84.6 78.4 75.3 

5.3. Bidirectional LSTM recurrent neural network (BD-LSTM-RNN) 

To accomplish HAR, the BDLSTM is employed with one forward and one backward 

RNN LSTM cell with 128 nodes in each layer. The learning rate considered for this 

work is 0.0001 and performance is analysed with Adam and gradient descent 

optimizers with epochs 500 and batch size of 64. Figure 14 depicts the training and 

testing accuracy for various benchmark datasets of HAR using Adam and Gradient 

descent optimizers and proves that Adam outperforms the other optimizers.  

 

Fig. 14. Performance evaluation of BDLSTM with optimizer techniques. 

5.4. Comparative analysis using evaluation metrics 

In this section, Deep learning algorithms DNN, CNN, and BDLSTM are evaluated 

using evaluation metrics explained in section 4. 

According to the experimental results shown in Table 7, the approach giving the 

best performance for the Opportunity dataset is C1DCNN with an F1-score of 

0.891. BDLSTM is a considerably good approach for the Opportunity dataset with 

an F1score of 0.890. Similarly, C1DCNN outperforms on the PAMAP2, Daphnet 

Gait, UCI-HAR, and SPHERE datasets with f1-scores of 0.944, 0.887, 0.963, and 

0.886 respectively. 
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Table 7. Comparative analysis using evaluation metrics. 

Quality 

Measures 

OPPORTUNITY 

Dataset 
PAMAP2 Dataset UCI- HAR Dataset 

DNN CNN 
BD 

LSTM 
DNN CNN 

BD 

LSTM 
DNN CNN 

BDL

STM 

Pmicro 0.88 0.884 0.883 0.812 0.944 0.887 0.886 0.963 0.894 

Pmacro 0.567 0.630 0.628 0.802 0.938 0.645 0.822 0.957 0.640 

PWeighted 0.88 0.906 0.899 0.817 0.948 0.916 0.824 0.967 0.914 

Rmicro 0.535 0.884 0.883 0.812 0.944 0.887 0.886 0.963 0.894 

Rmacro 0.880 0.700 0.699 0.785 0.936 0.725 0.853 0.955 0.712 

RWeighted 0.535 0.884 0.883 0.812 0.944 0.887 0.886 0.963 0.894 

F1score 

micro 
0.880 0.884 0.883 0.812 0.944 0.887 0.886 0.963 0.894 

F1score 

macro 
0.541 0.639 0.599 0.787 0.935 0.6486 0.812 0.954 0.658 

F1 score 

Weighted 
0.879 0.891 0.890 0.807 0.944 0.8967 0.862 0.963 0.901 

 Daphnet Gait Dataset SPHERE Dataset    

Pmicro 0.861 0.897 0.728 0.832 0.878 0.815    

Pmacro 0.668 0.789 0.718 0.816 0.872 0.603    

PWeighted 0.841 0.885 0.732 0.821 0.882 0.851    

Rmicro 0.861 0.897 0.728 0.832 0.878 0.815    

Rmacro 0.617 0.691 0.707 0.798 0.870 0.652    

RWeighted 0.861 0.897 0.728 0.832 0.878 0.815    

F1score 

micro 
0.861 0.897 0.728 0.832 0.878 0.815    

F1score 

macro 
0.635 0.726 0.715 0.799 0.869 0.623    

F1 score 

Weighted 
0.849 0.887 0.736 0.812 0.886 0.826    

5.5. Results and Discussion 

In this section, the performance of deep learning algorithms employed in this work 
for HAR is compared with other algorithms. Table 8 lists the accuracy of various 

algorithms used for HAR on various benchmark datasets.  

It clearly shows that for the UCI HAR dataset the performance of the proposed 

algorithms CNN with Swish and ELU activation function outperforms the other 

algorithms studied in the literature review. Similarly, for the Opportunity dataset, 

proposed DNN, BD-LDTM-RNN, and C1DCNN with SeLU activation function 

outperform the performance of other algorithms with the accuracy of 95.96%, 

97.8%, and 99.4% respectively.  

For the PAMPA2 dataset, C1DCNN with a swish activation function 

outperforms other methods with an accuracy of 94.2%. For, the Daphnet Gait 

dataset, C1DCNN with a ReLu activation function outperforms other methods with 

an accuracy of 98.12%. 
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Table 8. Performance analysis of proposed methods and literature work. 

Ref. Dataset Method Accuracy 

[10] Opportunity SVM 93% 

[10] Opportunity Naïve Bayes 97% 

[10] Opportunity KNN 91% 

[18] UCI CNN + stat. features, intervals of size 50 94.35% 

[18] UCI CNN + stat. features, intervals of size 128 97.63% 

[19] UCI DRNN 96.50% 

[19] Opportunity DRNN 92% 

[19] PAMPA2 DRNN 93% 

[20] Opportunity DeepConvLSTM 93% 

[22] Opportunity DDNN 86.1% 

[22] Opportunity b-LSTM-S 92.7% 

[22] PAMPA2 DDNN 93.38% 

[22] Daphnet Gait DDNN 92.5% 

[22] Daphnet Gait b-LSTM-S 74.1% 

[23] PAMPA2 Conditionally Parametrized Convolutions 94.01% 

[43] UCI PCA+SVM 91.82% 

[44] UCI CNN 94.79% 

[45] UCI Recurrent Neural Network 95.03% 

[46] Opportunity AROMA 93.3% 

[46] Opportunity DCNN 91.9% 

[46] Opportunity DeepConvLSTM 91.2% 

[47] Opportunity CNN-LSTM-ELM 91.8% 

[48] Opportunity MLP-M 91.28% 

[48] Opportunity CNN-M 90.88% 

[48] Opportunity LSTM-M 92.30% 

[48] PAMPA2 MLP-M 82.47% 

[48] PAMPA2 CNN-M 93.74% 

[48] PAMPA2 LSTM-M 86.00% 

[49] PAMPA2 Dynamic Fusion-Ternary(2-bit)-Convolutional 

Network 

91.40% 

[50] PAMPA2 LSTM + Continuous Temporal + Continuous Sensor 

Attention 

89.96% 

Daphnet Gait 83.73% 

Proposed UCI CNN (Swish Activation) 99.58% 

Proposed UCI CNN(ELU) 99.45% 

Proposed Opportunity DNN 95.96% 

Proposed Opportunity BD-LSTM-RNN 97.8% 

Proposed Opportunity CNN(SeLu) 99.4% 

Proposed PAMPA2 DNN 81.04% 

Proposed PAMPA2 BDLSTM 91.2% 

Proposed PAMPA2 CNN (Swish) 94.2% 

Proposed Daphnet Gait DNN 95.25% 

Proposed Daphnet Gait BDLSTM 91.2% 

Proposed Daphnet Gait CNN 98.12% 

6.  Conclusion 

This research work introduced the Customized 1D CNN architecture for HAR and 

also explored the state of the art of deep learning approaches to wearable sensor 

human activity recognition datasets. Comprehensive experiments were conducted on 

various benchmark datasets of HAR using customized CNN with different activation 

functions. In this experimental study, we determined that customized CNN with 

Swish, SELU, ELU, and Relu activation functions outperform the existing 

approaches in terms of accuracy for the aforementioned benchmark datasets. It is also 

seen that the BD LSTM approach is better than the deep neural networks-based 

configuration for all five datasets which are considered in this study. 
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