
Journal of Engineering Science and Technology
Vol. 17, No. 2 (2022) 1532 - 1549
© School of Engineering, Taylor’s University

1532

OPTIMAL HYPER-PARAMETER TUNING
USING CUSTOM GENETIC ALGORITHM ON DEEP

LEARNING TO DETECT TWITTER BOTS

KARTHIKAYINI THAVASIMANI1,*, N. K. SRINATH2

1Department of Computer Science and Engineering, RV College of Engineering,

Mysore Rd, RV Vidyaniketan Post, Bengaluru, Karnataka 560059, India
2Department of Computer Science and Engineering, RV College of Engineering,

Mysore Rd, RV Vidyaniketan Post, Bengaluru, Karnataka 560059, India

*Corresponding Author: karthikayini@outlook.com

Abstract

Deep learning, an evolution of the machine learning methods, is nowadays

successfully used in various applications such as object detection, image

recognition, language processing, bot detections, fraud detections, etc. Although

its successful exploration in many areas, researchers find difficulties in choosing

the network architectures suitable for the problems. It takes a substantial amount

of time to create a babysitting model by manually tuning the hyperparameters for

any deep learning architecture. Currently, research is going on in optimizing the

hyperparameters of deep learning models using various search techniques. In our

paper, we propose a Custom Genetic algorithm (CGA), an enhanced optimization

technique to tune the hyperparameters of a deep learning model for Twitter bot

detection. The proposed algorithm overcomes the limitations of the native genetic

algorithm like early convergence and local optima traps. We compared our

experimental results against default hyperparameter values and existing

techniques. The results were promising and, our proposed CGA technique

outperformed the current research techniques.

Keywords: Bot account detection, Custom genetic algorithm (CGA), Genetic

algorithm, Hyperparameter optimization, Hyperparameter tuning,

Optimization techniques.

Optimal Hyper-Parameter Tuning using Custom Genetic Algorithm on 1533

Journal of Engineering Science and Technology April 2022, Vol. 17(2)

1. Introduction

A bot is a program or script created to automate the tasks. There are two types of

bots on the internet, legitimate and malicious bots. Although the bots are created

for legitimate tasks [1] such as automatic execution of a script, web crawling,

chatbots, etc., other bots' categories are malicious.[2] that is mainly intended for

credential theft, dissemination of information, execution of network attacks, fake

social network accounts, false allegations, counterfeit advertisements, malicious

URLs, etc. Detecting such malicious bots is very crucial as it possesses serious

security threats to online businesses. Statistics say that 94.2% of the entire websites

in the world are affected by bots. Because they are more sophisticated and

intelligent enough to mimic humans [3], it has created immense interest among the

researchers to develop new bot detection techniques using ML and DL algorithms.

As mentioned by Ferrara et al. [3], bot detection is based on three approaches,

static, behavioral, and hybrid. An online social network, in particular, Twitter, is

highly targeted by the bots. They redirect the users to intermediate malicious URLs

resulting in a security breach such as phishing attacks. Twitter recorded more than

9.9 million suspicious accounts per the Washington Post statistics in 2018, and the

count was tripled in late 2017 [4]. There are about 48 million bot accounts on

Twitter now, amounting to roughly 15% of all existing accounts [5].

Karthikayini and Srinath [6] applied different optimizers to detect the bots from

CRESCI 2017 dataset using deep learning. Researchers are developing new

approaches to fight the endless influenza of malicious bots targeting social

networks. Most of the research is actively headed toward deep learning nowadays.

It is successfully working on image classification, speech recognition, language

processing, spam detections, etc.

The deep learning models are developed using several architectures such as

Convolution neural network (CNN), Feedforward network, recurrent network, etc.

These Deep learning models have different hyper-parameters such as Number of

hidden units, Number of hidden layers, activation functions, momentum, learning

rate, learning rate decay, mini-batch, Epsilon (€), 1 and 2 mainly used to

optimize the performance. However, most researchers use default parameter values

of the deep learning models that drastically impact the performance. The

hyperparameters influence the results to a greater extent. So, using optimal hyper-

parameter values are very crucial.

Our work is organized in the following sequence. Section 1 presents the related

work on the existing bot detection techniques and hyper-parameter tuning

techniques. Section 2 is about dataset collection and feature extraction steps.

Section 3 explains the proposed Custom Genetic Algorithm (CGA) to auto-tune the

hyper-parameters along with the proposed framework. Section 4 depicts the

experimental results and discussion Section 5 Conclusion and future work.

2. Related Work

Cai et al. [7] proposed a behavior enhanced deep model to detect bots by combining

content and behavior information on the Twitter Honeypot dataset. The BeDM model

process the user contents through the convolutional layer and behavioral data such as

timestamps and posting types using the LSTM network. Softmax is applied for the

final output layer to classify bot accounts from human accounts. The author reported

1534 K. Thavasimani and N. K. Srinath

Journal of Engineering Science and Technology April 2022, Vol. 17(2)

precision-88.41%, recall-86.26%, F1score- 87.32%, and proved that the proposed

model outperforms existing techniques such as Boosting, BoostOR, and Stweeler.

The author experimented with very few sets of parameters for CNN & LSTM like

size, filter width, memory dimensions, Number of hidden units.

Antoun et al. [8] addressed three challenges of fake news detection. One of those

is bot detection. The author proposed a Voting classifier for ensemble tree methods

by fusing Random Forest, Adaboost, XGboost, and processing various user content

features to classify bots and human accounts. He reported the accuracy range from

96% - 99%. They also said that the Random Forest shows 96% accuracy for a specific

range of features.

Wei and Nguyen [9] classified the bot accounts and human accounts using

BiLSTM(Bi-directional long, short term memory), a deep learning model on the

CRESCI-2017 dataset. Authors concluded that they got similar performances

compared with the existing work with 96 % accuracy, 96.3 % F-measure, 92 % MCC

for Test 1 and 92.9% Accuracy, 92.6% F-measure, 0.857 % for Test 2.

Fernquist et al. [10] made a study on political bots from Twitter during the

Swedish general election, September 2018. Authors applied a machine learning

model on a Twitter dataset with a vast collection of the bot, and genuine accounts

crawled from various sources. Different machine learning algorithms such as random

forest, AdaBoost, support vector machines, logistic regression, and naive Bayes were

tested. They concluded random forest was showing the highest accuracy compared

to the other ML techniques. They compared their results with other existing models

showing improvement in recall (97.6%) alone.

Khalil et al. [11] used two clustering methods db-scan and K-means, for bot

detection. They concluded that db-scan shows better performance than K-means

with 97.7% accuracy, 94%, f-measure, 91% precision, and 98% recall. Siddiqui

et al. [12] used a javascript testing framework with REST API for bot detection.

They experimented with 700 Twitter accounts and reported that 11% of the

dataset are bot accounts.

Liu [13] developed a lag-sensitive hash technique named "De-bot," a method by

clustering the user accounts into correlated sets in real-time and reported they could

detect thousands of bots per day with a precision of 94%. They also mentioned that

544868 unique bots were captured in the year 2016. Kiran et al. [14] developed an

artificial neural network model using the "neural net' library provided by R and

experimented on the Twitter dataset crawled using Python's tweepy library. They

came up with an accuracy ranging from 91.20% to 97.79%. John P.

Dickerson et al. [15] proposed a framework called SentiBot by analysing both

user content features and behavior features for bot detection. The results showed an

improvement in the performance, especially accuracy, which increased from 0.65 to

0.73. They used 7.7 M Indian political tweets of over 555,000 users.

Lingam et al. [16] introducing a social bot detection algorithm with a Trust model

to identify a trustworthy path. The trust model comprises two parameters: The first

parameter uses the Bayesian theory to obtain the trust value from direct participants.

The second parameter uses the Dempster-Shafer theory to get the trust value from

neighboring participants. They achieved an accuracy of 95% and a 4% increase

compared to the existing algorithm.

Optimal Hyper-Parameter Tuning using Custom Genetic Algorithm on 1535

Journal of Engineering Science and Technology April 2022, Vol. 17(2)

Heredia et al. [17] investigated the US election cycle to examine how far the social

bots influence the presidential candidates' sentiment. For this purpose, they created a

CNN model to be trained on the Sentiment140 dataset first and then trained CNN

used to label the election dataset captured in the year 2016. They finally concluded

that the model was able to show an accuracy of 84%. Ranjit et al. [18] experimented

on distributed hyperparameter tuning for long term convolutional recurrent neural

network in cloud infrastructure using Bayesian optimization. They used the

HyperDrive framework of Azure ML Service for the Video Activity Recognition

problem. They claimed that Bayesian optimization in the cloud infrastructure resulted

in better hyperparameter space coverage with improved validation accuracy.

Neary [19] proposed a reinforcement learning technique to optimize the

convolutional neural network's hyper-parameters for object recognition. They used

a multi-agent-based method where each agent is responsible for finding optimal

parameters based on reinforcement learning. Using the MNSIT dataset, they

reported that the final configuration of the algorithm's accuracy is 95% and, they

were able to obtain the optimal neural network structure in a short period. To reduce

the time and effort spent on the manual tuning of hyperparameters, Cho et al. [20]

proposed a DEEPBO algorithm, an enhanced Bayesian optimization technique with

diversification, early termination, parallelization, and cost function strategies for

CNN. Compared with GP-Hedge and BOHB, they proved that their algorithm is

robust and outperformed all the existing approaches with optimal parameters.

Goel et al. [21] proposed architecture for screening patients into three categories,

COVID-19 positive, pneumonia and normal automatically. Through manual tuning

of hyperparameters, they achieved an accuracy of 97.78% outperforming existing

CNN models. Choi et al. [22] used MNIST and CIFAR-10 datasets by experimenting

with learning curve predictions against different hyperparameter configurations.

They analysed 20,000 learning curves' characteristics corresponding to the 20,000

different hyperparameter configs with two Early termination rules. They concluded

that HPO (Hyperparameter Optimization) on CNN using the learning curve predicted

that the prediction is tough and challenging as the curve drastically varies if there is

a minor change in hyperparameters.

Aich et al. [23] proposed a CNN-based model to extract information from web

content categories useful for text mining applications. They achieved accuracy in

the range 85 and 92% for the text classification through manual tuning of

hyperparameters. Ugli et al. [24] developed a deep learning system for detecting

and classifying the distractions in real-time while driving a vehicle to avoid road

accidents. A new method is developed with pre-trained weights and various

optimizers using ResNet50 to improve the learning capabilities. On the "distracted

drivers" test dataset, they achieved an accuracy of 98.4%.

Chakraborty et al. [25] achieved an accuracy of 95.29 from a 3D CNN model

in detecting Parkinson's disease. Sequential model-based Bayesian Optimization is

used with a fixed penalty value to tune the model's hyperparameters. Antonio [26]

proposed a variation of Bayesian Optimization using Subject Machine Vector that

had better computational efficiency over Bayesian Optimization with fixed penalty

value. Kong et al. [27] proposed a tree-structured Parzen estimator integrated with

short- term load forecasting (STLF) framework to obtain better forecasting

performance for LSTM mode. Yi et al. [28] proposed the hypernet framework by

fusing the Bayesian technique and meta-learning for better highway traffic

1536 K. Thavasimani and N. K. Srinath

Journal of Engineering Science and Technology April 2022, Vol. 17(2)

prediction. The whole experiment was conducted using the Korean highway system

dataset. Bui and Yi [29] used meta-learning to optimize the deep learning model's

hyperparameters for better traffic prediction. They took data from the vehicle

detection system for their experiment.

After reviewing the above papers on hyperparameter tuning, we understood that

training a deep learning model requires lots of effort, especially by training it with

a wide range of hyperparameter values manually, which is frustrating and time-

consuming. Any deep learning specialists cannot create the best DL model on the

first go, requiring lots of iterations and optimizations. So, it's crucial to have the

best optimization algorithms to explore a wide range of parameter values.

Currently, Bayesian Optimization dominates the hyperparameter optimization

problem space. They focus on optimizing the configuration selection to solve the

fundamental problem of optimizing a high dimensional function that is non-convex

in nature with possible noisy evaluation and unknown smoothness [30].

Considering the current challenges and the black box methods that popular

optimization methods use, we wanted to create a straight-forward approach that finds

the optimal hyperparameters by relying on an early stopping strategy coupled with

evaluating orders of magnitudes of optimal parameters. Our primary motive is to

create a better optimization technique to find the best hyperparameters for a model.

3. Dataset

We used the CRESCI-2017 dataset [31, 32] in our proposed work that contains a

combination of accounts such as genuine and spambots (social and traditional).

Every category has a tweet and user file.

The dataset consists of 7,931 accounts and 3604238 tweets. Cresci et al. [31]

used Manual analysis and digital DNA for the classification of accounts. For

detecting the spambots, a combination of available user variables, LCS (Longest

Common Substring) curve, and various Twitter entities such as hashtag, media,

URL, user mentions, retweets, etc., are used.

We used a supervised deep learning model with tuned hyperparameters that

require labelled data. So, we used CRESCI 2017 dataset in our work. We ignored

CRESCI -2019 dataset due to a lack of tweets data. To evaluate our model, we

created two datasets, Test Set 1 and Test Set 2. Test set 1 is about the retweets of

an Italian political candidate. It contains 50% of human accounts and 50% of

accounts from the group, social bot 1. Test set 2 is about product spammers on

Amazon and contains 50% of human accounts and 50% of accounts from the group,

social bot 3.

4. Data Pre-processing

The dataset includes sparse data with missing values and a combination of strings

and numbers, including special characters. In the first step, we updated the null,

missing, and empty values with 0 and NA for numbers and strings, respectively.

The user level attributes are id, screen_name, name, followers_count, statuses_count,

friends_count, listed_count, favourites_count, lang, url, time_zone, default_profile,

location, geo_enabled, default_profile_image, profile_banner_url, profile_image_url,

profile_background_image_url_https, profile_use_background_image,

Optimal Hyper-Parameter Tuning using Custom Genetic Algorithm on 1537

Journal of Engineering Science and Technology April 2022, Vol. 17(2)

profile_text_color, profile_sidebar_border_color, profile_image_url_https,

profile_background_tile, profile_background_image_url, profile_sidebar_fill_color,

profile_background_color, is_translator, profile_link_color, utc_offset,

follow_request_sent, verified, protected, description, notifications, contributors_enabled,

created_at, following and timestamp.

The tweet level attributes are id, user_id, source, text, truncated,

in_reply_to_status_id, in_reply_to_screen_name, in_reply_to_user_id, geo,

retweeted_status_id, contributors, place, reply_count, retweet_count, favorite_count,

retweeted, favorited, num_hashtags, possibly_sensitive, num_mentions, num_urls,

timestamp, created_at, crawled_at and updated.

4.1. Step 1

The user file consists of 40 features of categorical data. User-level features such as

crawled at, and timestamp are removed since they don't impact the classification

process. We added a new label named the target value with the value 0 or 1

depending on the group name mentioned in Table 1. Zero denotes human accounts,

and 1 indicates bot accounts. We replaced the missing numerical values with 0 and

non-numerical values with NA, where the non-numerical values are converted to

numbers using the one-hot encoding technique. The preprocessed input files are

merged into a single file called "users_data" with 39 features for further analysis.

Table 1. Descriptive statistics on each dataset.

Group Name Description Accounts Tweets Year

Genuine Accounts Verified human accounts 3,474 8,377,522 2011

Social spambots #1
Retweeters of an Italian political

candidate
991 16,10,176 2012

Social spambots #2
Spammers of paid apps for

mobile devices
3,457 4,28,542 2014

Social spambots #3
Spammers of products on sale at

Amazon.com
464 14,18,626 2011

Traditional

spambots #1

training set of spammers used

by C. Yang, R. Harkreader, and

G.Gu

1,000 1,45,094 2009

4.2. Step 2

The tweet file consists of 25 features of categorical data and a total of 3604238 tweets.

We used batch processing for analysing using tweets features such as tweets_url,

retweet_count, tweets_place reply_count, favorite_count, num_hashtags, num_urls,

and num_mentions. Other features are removed due to less impact on classification.

Non-numerical values are converted to numbers using the one-hot encoding

technique. The numerical features are imputed with the mean value. The

preprocessed tweet files are merged into a single file called “tweets_data”.

4.3. Step 3

The final dataset is created by merging the user and tweet related data. For every user,

associated tweet related information is extracted using percentage, impute and count

functionalities. The final dataset contains a comprehensive list of features named, id,

screen_name, name, followers_count, statuses_count, favourites_count, friends_count,

1538 K. Thavasimani and N. K. Srinath

Journal of Engineering Science and Technology April 2022, Vol. 17(2)

listed_count, lang, url, time_zone, default_profile, location, default_profile_image,

profile_image_url, geo_enabled, profile_background_image_url_https,

profile_use_background_image, profile_banner_url, profile_text_color,

profile_sidebar_fill_color, notifications, favorite_count, utc_offset,

profile_image_url_https, profile_sidebar_border_color, updated,

profile_background_tile, profile_background_image_url, profile_link_color,

profile_background_color, follow_request_sent, protected, is_translator, verified,

description, contributors_enabled, created_at, following, tweets_url, retweet_count,

tweets_place reply_count, num_hashtags, num_urls and num_mentions and bot.

5. Feature Selection

In this step, we used Chi-squared technique to determine the important features for

prediction against the target label. As a result of this step, features such as

statuses_count, friends_count, followers_count, user_name, favorites_count,

listed_count, lang, url, location, time_zone, default_profile, geo_enabled,

profile_background_image_url_https, profile_image_url_https, verified,

profile_text_color, profile_background_image_url, profile_background_tile, protected,

profile_sidebar_border_color, profile_background_tile, profile_sidebar_fill_color,

description, profile_background_color, profile_link_color, tweets_url_percentage,

retweets_percentage, reply_percentage, hashtags_percentage, favourites_percentage,

num_urls_percentage, tweets_place_percentage, num_mentions_percentage and bot

are used for prediction in our proposed algorithm.

6. Proposed Work

We propose the Custom Genetic Algorithm (CGA), a hyperparameter optimization

technique for tuning the deep learning model. The genetic algorithm (GA) is

inspired by natural selection and belongs to the larger class of evolutionary

algorithms (EA). Its widely used to generate high-quality solutions for search

problems and optimization. Some of the limitations are the tendency to converge

towards local optima rather than global optimum and problems with fitness

measure, success or failure as there is no way to converge on the solution.

We created a Custom Genetic Algorithm (CGA) with three modules, population

selection, retain, and penalty-bonus to address this. Due to the fitness function's

success/failure measure, the GA algorithm will not converge on the global

optimum. The algorithm reaches the solution very quickly and will not explore the

search space. We keep a part of randomly discarded individuals to analyse the

search space with a wide range of values. To avoid early convergence, we apply

penalties and bonuses to the population. Any population reaching the convergence

early will be assigned a penalty, otherwise a bonus. While creating the future

population, parents with bonuses are preferred for crossover and mutation. As a

result, a wide range of the population is created for every generation. The above

concepts are implemented in deep learning models to determine the optimal

hyperparameters for a problem.

6.1. Module 1 (M1) – Retaining a part of discarded neural networks

The fittest Neural Networks (NNs) are used for producing offspring, and the remaining

networks are discarded in future selection. This results in reaching convergence at an

Optimal Hyper-Parameter Tuning using Custom Genetic Algorithm on 1539

Journal of Engineering Science and Technology April 2022, Vol. 17(2)

early stage and a low rate of mutation. To increase the mutation rate, diversity, and to

stop the premature convergence, a random part of discarded neural networks is

considered for further reproduction. To generate the random list of discarded, NNs with

M2 values as discussed in Module 2 is preferred. In case of insufficient NNs with M2

values, the population includes randomly picked networks without M2 as well.

6.2. Module 2 (M2) – Penalty and bonus

We used penalties and bonuses to maximize the convergence towards the global

optimum of the problem. Population (Neural networks with hyperparameters selected

due to crossover and mutation) reaching early convergence are penalized. Otherwise, a

bonus is assigned. During crossover and mutation for generating new neural networks,

parent networks with bonuses are preferred. The M2 values (bonus/penalty) is routed

using mRNA in the hyperparameters. Each Network, over a period of iterations, will

contain M2. The future selection criteria focus on and prioritize the M2 output.

6.3. Module 3 (M3) – Population selection

The fittest neural networks, part of the population for initial and progressive steps,

are determined using the proposed algorithm. The initial process involves starting

with the default population. Selecting a random parameter for the default

population can significantly impact the overall time to find the hyperparameters. It

may be either faster or slower, or moderate. One of the significant challenges faced

by genetic algorithms is the execution time, which depends on the hyperparameter

space, available resources, and populations in the traversed generations.

The proposed algorithm contains the below steps,

i. Pick a random set of hyperparameter configurations from the list

ii. Evaluate the set’s performance

iii. Select the top 50% sets and ignore the rest

iv. Go back to step 2 until the optimal population is found (default to 10)

The algorithm focuses on reducing the training time of the sets, which doesn’t

lead us to any concrete solution; instead, it picks up the top-performing settings.

The proposed algorithm is different from the existing algorithm in the below ways,

i. Resource overflow is controlled since there is a max of configs to converge

ii. Execution time is faster as top performing 50% sets are considered to

progress further, essentially dropping the sets to traverse to a greater extend

Module 3 (M3) - Population Selection

Input: Limit L, Set s where ji,c denotes the cth loss from the ith set, Max size M

1. Initialization:

S0 = [n], N=10

2. Finding optimal set:

For i 0,1, …. c

 Set si = [sN-i], mi = [MNi-c]

 Pull each set in Si for mi times

1540 K. Thavasimani and N. K. Srinath

Journal of Engineering Science and Technology April 2022, Vol. 17(2)

 Keep the best set in terms of mith observed loss as Si+1

Output: Optimal set, Os

Custom Genetic Algorithm

Inputs: epochs ei…n, batch size bi…n, layers li…n, neurons ni…n, optimizers Oi,

activation_function ai, last_layer_activation_function lli, losses ls, Hi…n, where Hi

is the hyperparameters space.

1. Initialization

Ho eo, bo, lo, no, Oo, ao, llo, lso, penalty=null; bonus=null; early stop with

patience, esp=5, N=10; (Refer to Table 2 for range)

2. Create the initial population

For i 0 to initial_pop_size,

 Create N

 End For

 Invoke M3 to return the optimal No to start

 Return No

3. For i0 to number of generations

 Train the networks, Ni

Evolve P

 acc = Score and Sort Ni in descending order

 crossover, Nc = Select the parents,

 p with bonus and high acc

 while len(children c) < desired length:

if Nc == Ni

Nc = random (p)

#Child Network

Nc = Breed and mutate

#M2

If early stop, es:

#Add penalty, pes

Nc = Nc , pe

else:

#Add bonus, bes

Nc = Nc , bes

N N { pe , bes } (M2 values via mRNA)

#M1

For i 1 to retain_length

#Keep some for diversity

If random_select > random.random():

 population.append(individual)

Invoke M3 to generate optimal P for future evolutions

Iterate until H (Stop if H is no longer increasing)

4. #Optimal Hyperparameter space

Return H with highest acc

Optimal Hyper-Parameter Tuning using Custom Genetic Algorithm on 1541

Journal of Engineering Science and Technology April 2022, Vol. 17(2)

For validation, we used the CRESCI dataset to identify human and bot accounts

on twitter.

7. Algorithm Description

Figure 1 represents the high-level workflow of the algorithm in how the optimal

hyperparameters are selected. The initial hyperparameter space is set with a range

of values for batch size, neurons, layers, Optimizer, activation function, last layer

activation function, and loss to create the default population. For the custom

module, penalty and bonus are initialized with a default value, null. The initial

population is created using the population selection module that returns the optimal

hyperparameter space, to begin with. Every generation starts with the default

population and progresses with offspring through crossover and mutation.

Fig. 1. Algorithm workflow.

Accuracy of the Neural Network (NN) model obtained from Module 3,

population selection is used to determine the parents for creating the child Neural

Networks (NNs). Parent NNs with higher accuracy are preferred. Since the

networks are created using random hyperparameters controlled by the population

selection module and grow based on accuracy, there is a probability of getting the

same NNs for crossover. In the case of the same NNs, a random function is used to

select different parent NNs in corner scenarios. Selected parents NNs create new

child NNs through the crossover and mutation. If the chosen parents result in early

convergence, a penalty is applied. Otherwise, a bonus is applied.

The bonus and penalty are passed as M2 values using messenger RNA

(mRNA). The mRNA is added to NNs that pass-through penalty or bonus criteria.

To increase the mutation rate and the diversity of the parent's selection, a random

part of discarded NNs after crossover and mutation are reused for creating future

offspring. This process involves prioritizing the networks with M2 values and any

processed neural network setup by the population selection module. After iterating

1542 K. Thavasimani and N. K. Srinath

Journal of Engineering Science and Technology April 2022, Vol. 17(2)

over the selected Number of generations and populations, the algorithm returns the

optimal hyperparameter values with the highest accuracy.

8. Experimental Results and Discussion

In this section, we present the experimental results and comparative analysis of our

model’s performance with existing work [9, 31-34].

8.1. Hyperparameters range

Table 2 represents the input hyperparameters range used for optimization. The

optimal hyper parameters of CGA are epoch = 300, batch size = 20, number of

layers = 4, Optimizer = Adam, Activation function = relu, last layer activation

function = sigmoid, loss = binary cross entropy and dropout rate = 0.2. We used

accuracy as the metrics for evaluation.

Table 2. Hyperparameters space and optimized.

Hyper parameters Input Range (default) CGA Model values

Number of epochs [50,100,150,200,250,300,350,400] 300

Batch size [10,20,30,40,50,60,70,80] 20

Number of layers [2,4,6,8,10,12,14,16] 4

Number of Neurons [2,5,10,15,20,25,30,35] 40

Optimizers
[“adam”, “sgd”, “rmsprop”, “Adadelta”,

“Adamax”, “Nadam”]
Adam

Activations [“Relu”, “sigmoid”, “tanh”] Relu

Last layer

activation function
Sigmoid Sigmoid

Losses Binary Cross Entropy Binary Cross Entropy

Metrics
Accuracy (Test Set 1) 0.992

Accuracy (Test Set 2) 0.958

Regularizer Dropout 0.2

Figures 2 to 5 show the training and validation, accuracy, and loss of the CGA

tuned model for test set 1 and test set 2. We used a validation split of 0.3 to avoid

overfitting and underfitting problems. It is noted that the loss decreases as the

accuracy increases for both training and validation sets.

Fig. 2. Test Set 1 – Training Accuracy of CGA.

Optimal Hyper-Parameter Tuning using Custom Genetic Algorithm on 1543

Journal of Engineering Science and Technology April 2022, Vol. 17(2)

Fig. 3. Test Set 1 – Training Loss of CGA.

Fig. 4. Test Set 2 – Training accuracy of CGA.

Fig. 5. Test Set 2 – Training loss of CGA.

8.2. Comparison with existing research works

1544 K. Thavasimani and N. K. Srinath

Journal of Engineering Science and Technology April 2022, Vol. 17(2)

We compared the CGA tuned deep learning model with the existing research works

[9, 31-34]. Cresci et al. [31] categorized features into account and tweel-level. Tweet

type and tweet contents are used as DNA for analysis. In our work, we applied the

chi-squared technique that returned 33 important features for prediction and accuracy

as the final metrics. Miller et al. [32] used vectors created from 126 features that are

extracted from both tweets and accounts. Ahmed and Abulaish [33] used 14

behavioral -based generic statistical features like retweets, mentions, hashtags, and

URLs. Yang et al. [34] grouped twenty-five features into six categories: automation-

based, timing-based, content-based, profile-based features, neighbor-based, and

graph-based features. Davis et al. [35] grouped more than a thousand features in 6

main classes: user, sentiment, friend, content, temporal, and network.

We evaluated our CGA tuned model using the test set 1 and test 2 to find

accuracy, f measure, precision, and recall. Table 3 compares the results of test set

1 and test set 2 with existing spambot detection techniques. For the test set 1, the

CGA model outperformed others with an accuracy of 0.991 and a recall of 0.976.

For test 2, the CGA model outperformed existing methods with an accuracy of

0.958, recall of 0.960, and F measure of 0.960. We found that the remaining metrics

showing competitive performance with the existing techniques.

Table 3. Performance comparison of spambot detection

techniques applied on CRESCI 2017 dataset with existing research.

Test Set #1

Technique Type Accuracy F measure Precision Recall

Human annotators Manual 0.698 0.123 0.267 0.080

Wei et al. [9] Supervised 0.961 0.963 0.940 0.976

Cresci et al. [31] Unsupervised 0.976 0.977 0.982 0.972

Miller et al. [32] Unsupervised 0.526 0.435 0.555 0.358

Siddiqui et al. [12] Supervised 0.734 0.288 0.471 0.208

Ahmed and

Abulaish [33]
Unsupervised 0.943 0.944 0.945 0.944

Yang et al. [34] Supervised 0.506 0.261 0.563 0.170

CGA Supervised 0.991 0.974 0.976 0.976

Test Set #2

Human annotators Manual 0.829 0.570 0.647 0.509

Wei et al. [9] Supervised 0.929 0.926 0.933 0.919

Cresci et al. [31] Unsupervised 0.929 0.923 1.000 0.858

Miller et al. [32] Unsupervised 0.481 0.370 0.467 0.306

Siddiqui et al. [12] Supervised 0.922 0.761 0.635 0.950

Ahmed and

Abulaish [33]
Unsupervised 0.923 0.923 0.913 0.935

Yang et al. [34] Supervised 0.629 0.524 0.727 0.409

CGA Supervised 0.978 0.988 0.994 0.982

8.3. Comparison with existing optimization techniques

We compared CGA with other optimization techniques such as Random Search,

Bayesian Optimization, and Optimization using Genetic Algorithms. Grid Search

is ignored since it traverses through all the parameters, which could take days or

months. For the Genetic Algorithm, we used the TPOT classifiers Neural Network

Module. We used 50 populations and 50 generations, both the Genetic Algorithm

Optimal Hyper-Parameter Tuning using Custom Genetic Algorithm on 1545

Journal of Engineering Science and Technology April 2022, Vol. 17(2)

and the proposed Custom Genetic Algorithm, without any caveats around the

selection for a fair comparison.

All the sparse values are cleaned, and the dataset contains complete values for

all features after the data preprocessing step. So, we considered accuracy and F-

measure as our metrics. Weighted f1-score is ignored to give equal importance to

precision and recall.

Of all the techniques, TPOT took very high execution, followed by Bayesian and

Random search. CGA took the least execution time. However, we couldn't calculate

the accurate timings since the execution was paused multiple times due to the Cloud's

busy machines. Theoretically, if there are n configurations, each with an error factor

of ei for i = 1 … n. The allocation and selection of configurations (hyperparameter

spaces) by random, Bayesian, grid, and TPOT will take more time since they traverse

through the spaces on specific set criteria independent of optimal configs traversal.

However, CGA picks only the best parameters and traverses through the

spaces/configurations that perform better with a high weightage to the top 50%.

Figures 6 to 9 show the ROC Curve for Random Search, Bayesian Search,

Genetic Algorithm, and the proposed Custom Genetic Algorithm (CGA). The CGA

ROC graphs clearly show the model's performance in identifying true positives and

false negatives and outperforms the other optimization techniques with area under

the curve value of 0.98 and 0.94 for Test Set 1 and Test 2 respectively.

Fig. 6. Random search - ROC Curve for Test Set 1 and Test Set 2.

Fig. 7. Bayesian search - ROC Curve for Test Set 1 and Test Set 2.

1546 K. Thavasimani and N. K. Srinath

Journal of Engineering Science and Technology April 2022, Vol. 17(2)

Fig. 8. Genetic algorithm (TPOT) - ROC curve for Test Set 1 and Test Set 2.

Fig. 9. Custom genetic algorithm - ROC curve for Test Set 1 and Test Set 2.

Table 4 compares the metrics such as Accuracy, F measure, Precision, and

Recall for all the optimization techniques. CGA tuned model outperformed all the

existing techniques and methods on both sets with an accuracy of 0.991 for Test

Set 1 and 0.958 for Test Set 2, and F-measure of 0.974 for Test Set 1 and 0.960 for

Test Set 2, respectively.

Table 4. Performance comparison of spambot detection techniques

applied on CRESCI 2017 dataset with existing optimization techniques.

Test Set #1

Technique Accuracy F measure Precision Recall

Random Search 0.864 0.905 0.83 0.995

Bayesian Search 0.954 0.97 0.946 0.995

TPOT 0.763 0.822 0.704 0.988

CGA 0.991 0.974 0.976 0.976

Test Set #2

Random Search 0.818 0.886 0.801 0.991

Bayesian Search 0.944 0.945 0.907 0.987

TPOT 0.731 0.822 0.704 0.987

CGA 0.978 0.988 0.994 0.982

9. Conclusion and Future Work

In this paper, we proposed a Custom Genetic Algorithm for tuning

hyperparameters. Finding optimal parameters for any deep learning model is a

Optimal Hyper-Parameter Tuning using Custom Genetic Algorithm on 1547

Journal of Engineering Science and Technology April 2022, Vol. 17(2)

tedious and time-consuming task. We identified that our proposed CGA algorithm

reduces the search time to a greater extent in finding the optimal hyperparameters.

Experimental results show tuned models outperforming existing techniques. We

believe that the proposed model can be applied to any classification dataset with

minimal changes. As future work, we are planning to apply the CGA to wider

datasets for further analysis and improvement.

Nomenclatures

acc Accuracy

N Network

Ng Number of Generations

No Network Object

P Population

Abbreviations

CGA Custom Genetic Algorithm

CNN Convolutional Neural Network

DL Deep Learning

LSTM Long Short Term Memory

ML Machine Learning

mRNA Messenger Ribonucleic Acid

NN Neural Network

References

1. Abbas, A.; Khan, M.U.S.; Ali, M.; Khan, S.U.; and Yang, L.T. (2015). A cloud

based framework for identification of influential health experts from Twitter.

IEEE 12th Intl Conf on Ubiquitous Intelligence and Computing and 2015 IEEE

12th Intl Conf on Autonomic and Trusted Computing and 2015 IEEE 15th Intl

Conf on Scalable Computing and Communications and Its Associated

Workshops (UIC-ATC-ScalCom), 831-838.

2. Khan, M.U.S.; Ali, M.; Abbas, A.; Khan, S.U.; and Zomaya, A.Y. (2016).

Segregating spammers and unsolicited bloggers from genuine experts on Twitter.

IEEE Transactions on Dependable and Secure Computing, 15(4), 551-560.

3. Ferrara, E.; Varol, O.; Davis, C.; Menczer, F.; and Flammini, A. (2016). The

rise of social bots. Communications of the ACM, 59(7), 96-104.

4. Wu, B.; Liu, L.; Yang, Y.; Zheng, K.; and Wang, X. (2020). Using improved

conditional generative adversarial networks to detect social bots on Twitter.

IEEE Access, 8, 36664-36680.

5. Loyola-González, O.; Monroy, R.; Rodríguez, J.; López-Cuevas, A.; and

Mata-Sánchez, J.I. (2019). Contrast pattern-based classification for bot

detection on twitter. IEEE Access, 7, 45800-45817.

6. Karthikayini Thavasimani; and Srinath, N.K. (2020). Deep learning

techniques: A case study on comparative analysis of various optimizers to

detect bots from CRESCI-2017 dataset. International Journal of Advanced

Science and Technology, 29(04), 10040 -10053.

7. Cai, C.; Li, L.; and Zengi, D. (2017). Behavior enhanced deep bot detection in

1548 K. Thavasimani and N. K. Srinath

Journal of Engineering Science and Technology April 2022, Vol. 17(2)

social media. IEEE International Conference on Intelligence and Security

Informatics (ISI), 128-130.

8. Antoun, W.; Baly, F.; Achour, R.; Hussein, A.; and Hajj, H. (2020). State of

the art models for fake news detection tasks. IEEE International Conference

on Informatics, IoT, and Enabling Technologies (ICIoT), 519-524.

9. Wei, F.; and Nguyen, U.T. (2019). Twitter bot detection using bidirectional

long short-term memory neural networks and word embeddings. First IEEE

International Conference on Trust, Privacy and Security in Intelligent Systems

and Applications (TPS-ISA), 101-109.

10. Fernquist, J.; Kaati, L.; and Schroeder, R.; (2018). Political bots and the

swedish general election. IEEE International Conference on Intelligence and

Security Informatics (ISI), 124-129.

11. Khalil, H.; Khan, M.U.; and Ali, M. (2020). Feature Selection for

Unsupervised Bot Detection. 3rd International Conference on Computing,

Mathematics and Engineering Technologies (iCoMET), 1-7.

12. Siddiqui, H.; Healy, E.; and Olmsted, A. (2017). Bot or not. 12th international

conference for internet technology and secured transactions (ICITST), 462-463.

13. Liu, A. (2000). DeBOT - an approach for constructing high performance,

scalable distributed object systems (panel session). Proceedings of the 22nd

International Conference on Software Engineering, 782.

14. Kiran, K.; Manjunatha, C.; Harini, T.S.; Shenoy, P.D.; and Venugopal, K.R.

(2019). Identification of anomalous users in Twitter based on user behaviour

using artificial neural networks. IEEE 5th International Conference for

Convergence in Technology (I2CT), 1-5.

15. Dickerson, J.P.; Kagan, V.; and Subrahmanian, V.S. (2014). Using sentiment

to detect bots on twitter: Are humans more opinionated than bots? IEEE/ACM

International Conference on Advances in Social Networks Analysis and

Mining (ASONAM 2014), 620-627.

16. Lingam, G.; Rout, R.R.; and Somayajulu, D.V.L.N. (2018). Detection of social

botnet using a trust model based on spam content in Twitter network. IEEE

13th International Conference on Industrial and Information Systems (ICIIS),

280-285.

17. Heredia, B.; Prusa, J.D.; and Khoshgoftaar, T.M. (2018). The impact of

malicious accounts on political tweet sentiment. IEEE 4th International

Conference on Collaboration and Internet Computing (CIC), 197-202.

18. Ranjit, M.P.; Ganapathy, G.; Sridhar, K.; and Arumugham, V. (2019). Efficient

deep learning hyperparameter tuning using cloud infrastructure: Intelligent

distributed hyperparameter tuning with Bayesian optimization in the cloud. IEEE

12th International Conference on Cloud Computing (CLOUD), 520-522.

19. Neary, P. (2018). Automatic hyperparameter tuning in deep convolutional

neural networks using asynchronous reinforcement learning. IEEE

International Conference on Cognitive Computing (ICCC), 73-77.

20. Cho, H.; Kim, Y.; Lee, E.; Choi, D.; Lee, Y.; and Rhee, W. (2020). Basic

enhancement strategies when using Bayesian optimization for hyperparameter

tuning of deep neural networks. IEEE Access, 8, 52588-52608.

21. Goel, T.; Murugan, R.; Mirjalili, S.; and Chakrabartty, D.K. (2021). OptCoNet:

Optimal Hyper-Parameter Tuning using Custom Genetic Algorithm on 1549

Journal of Engineering Science and Technology April 2022, Vol. 17(2)

an optimized convolutional neural network for an automatic diagnosis of

COVID-19. Applied Intelligence, 51(3), 1351-1366.

22. Choi, D.; Cho, H.; and Rhee, W. (2018). On the difficulty of DNN

hyperparameter optimization using learning curve prediction. In TENCON

2018-2018 IEEE Region 10 Conference, 0651-0656.

23. Aich, S.; Chakraborty, S.; and Kim, H.-C. (2019). Convolutional neural

network-based model for web-based text classification. International Journal

of Electrical and Computer Engineering, 9(6), 5785-5191.

24. Ugli, I.K.K.; Aich, S.; Ryu, H.; Joo, M.I.; and Kim, H.-C. (2021). Detection of

distracted driving using deep learning. International Conference on Future

Information & Communication Engineering, 12(1), 29-32.

25. Chakraborty, S.; Aich, S.; and Kim, H.C. (2020). Detection of Parkinson’s

disease from 3T T1 weighted MRI scans using 3D convolutional neural

network. Diagnostics, 10(6): 402.

26. Antonio, C. (2021). Sequential model based optimization of partially defined

functions under unknown constraints. Journal of Global Optimization, 79(2),

281-303.

27. Kong, W.; Dong, Z.Y.; Luo, F.; Meng, K.; Zhang, W.; Wang, F.; and Zhao, X.

(2017. Effect of automatic hyperparameter tuning for residential load

forecasting via deep learning. Australasian Universities Power Engineering

Conference (AUPEC), 1-6.

28. Yi, H.; and Bui, K.-H.N. (2020). An automated hyperparameter search-based

deep learning model for highway traffic prediction. IEEE Transactions on

Intelligent Transportation Systems, 22(9), 5486-5495.

29. Bui, K.H.N.; and Yi, H. (2020). Optimal hyperparameter tuning using meta-

learning for big traffic datasets. IEEE International Conference on Big Data

and Smart Computing (BigComp), 48-54.

30. Li, L.; Jamieson, K.; DeSalvo, G.; Rostamizadeh, A.; and Talwalkar, A. (2017).

Hyperband: A novel bandit-based approach to hyperparameter optimization.

Journal of Machine Learning Research, 18(1), 6765-6816.

31. Cresci, S.; Di Pietro, R.; Petrocchi, M.; Spognardi, A.; and Tesconi, M. (2016).

DNA-inspired online behavioral modeling and its application to spambot

detection. IEEE Intelligent Systems, 31(5), 58-64.

32. Miller, Z.; Dickinson, B.; Deitrick, W.; Hu, W.; and Wang, A.H. (2014).

Twitter spammer detection using data stream clustering. Information Sciences,

260, 64-73.

33. Ahmed, F.; and Abulaish, M. (2013). A generic statistical approach for spam

detection in online social networks. Computer Communications, 36(10-11),

1120-1129.

34. Yang, C.; Harkreader, R.; and Gu, G. (2013). Empirical evaluation and new

design for fighting evolving twitter spammers. IEEE Transactions on

Information Forensics and Security, 8(8), 1280-1293.

35. Davis, C.A.; Varol, O.; Ferrara, E.; Flammini, A.; and Menczer, F. (2016).

Botornot: A system to evaluate social bots. Proceedings of the 25th

International Conference Companion on World Wide Web, 273-274.

