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Abstract 

Deep learning, an evolution of the machine learning methods, is nowadays 

successfully used in various applications such as object detection, image 

recognition, language processing, bot detections, fraud detections, etc. Although 

its successful exploration in many areas, researchers find difficulties in choosing 

the network architectures suitable for the problems. It takes a substantial amount 

of time to create a babysitting model by manually tuning the hyperparameters for 

any deep learning architecture. Currently, research is going on in optimizing the 

hyperparameters of deep learning models using various search techniques. In our 

paper, we propose a Custom Genetic algorithm (CGA), an enhanced optimization 

technique to tune the hyperparameters of a deep learning model for Twitter bot 

detection. The proposed algorithm overcomes the limitations of the native genetic 

algorithm like early convergence and local optima traps. We compared our 

experimental results against default hyperparameter values and existing 

techniques. The results were promising and, our proposed CGA technique 

outperformed the current research techniques. 

Keywords: Bot account detection, Custom genetic algorithm (CGA), Genetic 

algorithm, Hyperparameter optimization, Hyperparameter tuning, 

Optimization techniques. 
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1. Introduction 

A bot is a program or script created to automate the tasks. There are two types of 

bots on the internet, legitimate and malicious bots. Although the bots are created 

for legitimate tasks [1] such as automatic execution of a script, web crawling, 

chatbots, etc., other bots' categories are malicious.[2] that is mainly intended for 

credential theft, dissemination of information, execution of network attacks, fake 

social network accounts, false allegations, counterfeit advertisements, malicious 

URLs, etc. Detecting such malicious bots is very crucial as it possesses serious 

security threats to online businesses. Statistics say that 94.2% of the entire websites 

in the world are affected by bots. Because they are more sophisticated and 

intelligent enough to mimic humans [3], it has created immense interest among the 

researchers to develop new bot detection techniques using ML and DL algorithms.  

As mentioned by Ferrara et al. [3], bot detection is based on three approaches, 

static, behavioral, and hybrid. An online social network, in particular, Twitter, is 

highly targeted by the bots. They redirect the users to intermediate malicious URLs 

resulting in a security breach such as phishing attacks. Twitter recorded more than 

9.9 million suspicious accounts per the Washington Post statistics in 2018, and the 

count was tripled in late 2017 [4]. There are about 48 million bot accounts on 

Twitter now, amounting to roughly 15% of all existing accounts [5].  

Karthikayini and Srinath [6] applied different optimizers to detect the bots from 

CRESCI 2017 dataset using deep learning. Researchers are developing new 

approaches to fight the endless influenza of malicious bots targeting social 

networks. Most of the research is actively headed toward deep learning nowadays. 

It is successfully working on image classification, speech recognition, language 

processing, spam detections, etc. 

The deep learning models are developed using several architectures such as 

Convolution neural network (CNN), Feedforward network, recurrent network, etc. 

These Deep learning models have different hyper-parameters such as Number of 

hidden units, Number of hidden layers, activation functions, momentum, learning 

rate, learning rate decay, mini-batch, Epsilon (€), 1 and 2 mainly used to 

optimize the performance. However, most researchers use default parameter values 

of the deep learning models that drastically impact the performance. The 

hyperparameters influence the results to a greater extent. So, using optimal hyper-

parameter values are very crucial. 

Our work is organized in the following sequence. Section 1 presents the related 

work on the existing bot detection techniques and hyper-parameter tuning 

techniques. Section 2 is about dataset collection and feature extraction steps. 

Section 3 explains the proposed Custom Genetic Algorithm (CGA) to auto-tune the 

hyper-parameters along with the proposed framework. Section 4 depicts the 

experimental results and discussion Section 5 Conclusion and future work. 

2. Related Work 

Cai et al. [7] proposed a behavior enhanced deep model to detect bots by combining 

content and behavior information on the Twitter Honeypot dataset. The BeDM model 

process the user contents through the convolutional layer and behavioral data such as 

timestamps and posting types using the LSTM network. Softmax is applied for the 

final output layer to classify bot accounts from human accounts. The author reported 
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precision-88.41%, recall-86.26%, F1score- 87.32%, and proved that the proposed 

model outperforms existing techniques such as Boosting, BoostOR, and Stweeler. 

The author experimented with very few sets of parameters for CNN & LSTM like 

size, filter width, memory dimensions, Number of hidden units.  

Antoun et al. [8] addressed three challenges of fake news detection. One of those 

is bot detection. The author proposed a Voting classifier for ensemble tree methods 

by fusing Random Forest, Adaboost, XGboost, and processing various user content 

features to classify bots and human accounts. He reported the accuracy range from 

96% - 99%. They also said that the Random Forest shows 96% accuracy for a specific 

range of features.  

Wei and Nguyen [9] classified the bot accounts and human accounts using 

BiLSTM(Bi-directional long, short term memory), a deep learning model on the 

CRESCI-2017 dataset. Authors concluded that they got similar performances 

compared with the existing work with 96 % accuracy, 96.3 % F-measure, 92 % MCC 

for Test 1 and 92.9% Accuracy, 92.6% F-measure, 0.857 % for Test 2.  

Fernquist et al. [10] made a study on political bots from Twitter during the 

Swedish general election, September 2018. Authors applied a machine learning 

model on a Twitter dataset with a vast collection of the bot, and genuine accounts 

crawled from various sources. Different machine learning algorithms such as random 

forest, AdaBoost, support vector machines, logistic regression, and naive Bayes were 

tested. They concluded random forest was showing the highest accuracy compared 

to the other ML techniques. They compared their results with other existing models 

showing improvement in recall (97.6%) alone.  

Khalil et al. [11] used two clustering methods db-scan and K-means, for bot 

detection. They concluded that db-scan shows better performance than K-means 

with 97.7% accuracy, 94%, f-measure, 91% precision, and 98% recall. Siddiqui 

et al. [12] used a javascript testing framework with REST API for bot detection. 

They experimented with 700 Twitter accounts and reported that 11% of the 

dataset are bot accounts. 

Liu [13] developed a lag-sensitive hash technique named "De-bot," a method by 

clustering the user accounts into correlated sets in real-time and reported they could 

detect thousands of bots per day with a precision of 94%. They also mentioned that 

544868 unique bots were captured in the year 2016. Kiran et al. [14] developed an 

artificial neural network model using the "neural net' library provided by R and 

experimented on the Twitter dataset crawled using Python's tweepy library. They 

came up with an accuracy ranging from 91.20% to 97.79%. John P.  

Dickerson et al. [15] proposed a framework called SentiBot by analysing both 

user content features and behavior features for bot detection. The results showed an 

improvement in the performance, especially accuracy, which increased from 0.65 to 

0.73. They used 7.7 M Indian political tweets of over 555,000 users.  

Lingam et al. [16] introducing a social bot detection algorithm with a Trust model 

to identify a trustworthy path. The trust model comprises two parameters: The first 

parameter uses the Bayesian theory to obtain the trust value from direct participants. 

The second parameter uses the Dempster-Shafer theory to get the trust value from 

neighboring participants. They achieved an accuracy of 95% and a 4% increase 

compared to the existing algorithm.  
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Heredia et al. [17] investigated the US election cycle to examine how far the social 

bots influence the presidential candidates' sentiment. For this purpose, they created a 

CNN model to be trained on the Sentiment140 dataset first and then trained CNN 

used to label the election dataset captured in the year 2016. They finally concluded 

that the model was able to show an accuracy of 84%. Ranjit et al. [18] experimented 

on distributed hyperparameter tuning for long term convolutional recurrent neural 

network in cloud infrastructure using Bayesian optimization. They used the 

HyperDrive framework of Azure ML Service for the Video Activity Recognition 

problem. They claimed that Bayesian optimization in the cloud infrastructure resulted 

in better hyperparameter space coverage with improved validation accuracy. 

Neary [19] proposed a reinforcement learning technique to optimize the 

convolutional neural network's hyper-parameters for object recognition. They used 

a multi-agent-based method where each agent is responsible for finding optimal 

parameters based on reinforcement learning. Using the MNSIT dataset, they 

reported that the final configuration of the algorithm's accuracy is 95% and, they 

were able to obtain the optimal neural network structure in a short period. To reduce 

the time and effort spent on the manual tuning of hyperparameters, Cho et al. [20] 

proposed a DEEPBO algorithm, an enhanced Bayesian optimization technique with 

diversification, early termination, parallelization, and cost function strategies for 

CNN. Compared with GP-Hedge and BOHB, they proved that their algorithm is 

robust and outperformed all the existing approaches with optimal parameters.  

Goel et al. [21] proposed architecture for screening patients into three categories, 

COVID-19 positive, pneumonia and normal automatically. Through manual tuning 

of hyperparameters, they achieved an accuracy of 97.78% outperforming existing 

CNN models. Choi et al. [22] used MNIST and CIFAR-10 datasets by experimenting 

with learning curve predictions against different hyperparameter configurations. 

They analysed 20,000 learning curves' characteristics corresponding to the 20,000 

different hyperparameter configs with two Early termination rules. They concluded 

that HPO (Hyperparameter Optimization) on CNN using the learning curve predicted 

that the prediction is tough and challenging as the curve drastically varies if there is 

a minor change in hyperparameters.  

Aich et al. [23] proposed a CNN-based model to extract information from web 

content categories useful for text mining applications. They achieved accuracy in 

the range 85 and 92% for the text classification through manual tuning of 

hyperparameters. Ugli et al. [24] developed a deep learning system for detecting 

and classifying the distractions in real-time while driving a vehicle to avoid road 

accidents. A new method is developed with pre-trained weights and various 

optimizers using ResNet50 to improve the learning capabilities. On the "distracted 

drivers" test dataset, they achieved an accuracy of 98.4%. 

Chakraborty et al. [25] achieved an accuracy of 95.29 from a 3D CNN model 

in detecting Parkinson's disease. Sequential model-based Bayesian Optimization is 

used with a fixed penalty value to tune the model's hyperparameters. Antonio [26] 

proposed a variation of Bayesian Optimization using Subject Machine Vector that 

had better computational efficiency over Bayesian Optimization with fixed penalty 

value. Kong et al. [27] proposed a tree-structured Parzen estimator integrated with 

short- term load forecasting (STLF) framework to obtain better forecasting 

performance for LSTM mode. Yi et al. [28] proposed the hypernet framework by 

fusing the Bayesian technique and meta-learning for better highway traffic 



1536        K. Thavasimani and N. K. Srinath 

 
 
Journal of Engineering Science and Technology               April 2022, Vol. 17(2) 

 

prediction. The whole experiment was conducted using the Korean highway system 

dataset. Bui and Yi [29] used meta-learning to optimize the deep learning model's 

hyperparameters for better traffic prediction. They took data from the vehicle 

detection system for their experiment.  

After reviewing the above papers on hyperparameter tuning, we understood that 

training a deep learning model requires lots of effort, especially by training it with 

a wide range of hyperparameter values manually, which is frustrating and time-

consuming. Any deep learning specialists cannot create the best DL model on the 

first go, requiring lots of iterations and optimizations. So, it's crucial to have the 

best optimization algorithms to explore a wide range of parameter values.  

Currently, Bayesian Optimization dominates the hyperparameter optimization 

problem space. They focus on optimizing the configuration selection to solve the 

fundamental problem of optimizing a high dimensional function that is non-convex 

in nature with possible noisy evaluation and unknown smoothness [30]. 

Considering the current challenges and the black box methods that popular 

optimization methods use, we wanted to create a straight-forward approach that finds 

the optimal hyperparameters by relying on an early stopping strategy coupled with 

evaluating orders of magnitudes of optimal parameters. Our primary motive is to 

create a better optimization technique to find the best hyperparameters for a model. 

3. Dataset 

We used the CRESCI-2017 dataset [31, 32] in our proposed work that contains a 

combination of accounts such as genuine and spambots (social and traditional). 

Every category has a tweet and user file. 

The dataset consists of 7,931 accounts and 3604238 tweets. Cresci et al. [31] 

used Manual analysis and digital DNA for the classification of accounts. For 

detecting the spambots, a combination of available user variables, LCS (Longest 

Common Substring) curve, and various Twitter entities such as hashtag, media, 

URL, user mentions, retweets, etc., are used.  

We used a supervised deep learning model with tuned hyperparameters that 

require labelled data. So, we used CRESCI 2017 dataset in our work. We ignored 

CRESCI -2019 dataset due to a lack of tweets data. To evaluate our model, we 

created two datasets, Test Set 1 and Test Set 2. Test set 1 is about the retweets of 

an Italian political candidate. It contains 50% of human accounts and 50% of 

accounts from the group, social bot 1. Test set 2 is about product spammers on 

Amazon and contains 50% of human accounts and 50% of accounts from the group, 

social bot 3. 

4. Data Pre-processing 

The dataset includes sparse data with missing values and a combination of strings 

and numbers, including special characters.  In the first step, we updated the null, 

missing, and empty values with 0 and NA for numbers and strings, respectively.  

The user level attributes are id, screen_name, name, followers_count, statuses_count, 

friends_count, listed_count, favourites_count, lang, url, time_zone, default_profile, 

location, geo_enabled, default_profile_image, profile_banner_url, profile_image_url, 

profile_background_image_url_https, profile_use_background_image, 
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profile_text_color, profile_sidebar_border_color, profile_image_url_https, 

profile_background_tile, profile_background_image_url, profile_sidebar_fill_color, 

profile_background_color, is_translator, profile_link_color, utc_offset, 

follow_request_sent, verified, protected, description, notifications, contributors_enabled, 

created_at, following and timestamp.  

The tweet level attributes are id, user_id, source, text, truncated, 

in_reply_to_status_id, in_reply_to_screen_name, in_reply_to_user_id, geo, 

retweeted_status_id, contributors, place, reply_count, retweet_count, favorite_count, 

retweeted, favorited, num_hashtags, possibly_sensitive, num_mentions, num_urls, 

timestamp, created_at, crawled_at and updated. 

4.1. Step 1 

The user file consists of 40 features of categorical data. User-level features such as 

crawled at, and timestamp are removed since they don't impact the classification 

process. We added a new label named the target value with the value 0 or 1 

depending on the group name mentioned in Table 1. Zero denotes human accounts, 

and 1 indicates bot accounts. We replaced the missing numerical values with 0 and 

non-numerical values with NA, where the non-numerical values are converted to 

numbers using the one-hot encoding technique. The preprocessed input files are 

merged into a single file called "users_data" with 39 features for further analysis. 

Table 1. Descriptive statistics on each dataset. 

Group Name Description Accounts Tweets Year 

Genuine Accounts Verified human accounts 3,474 8,377,522 2011 

Social spambots #1 
Retweeters of an Italian political 

candidate 
991 16,10,176 2012 

Social spambots #2 
Spammers of paid apps for 

mobile devices 
3,457 4,28,542 2014 

Social spambots #3 
Spammers of products on sale at 

Amazon.com 
464 14,18,626 2011 

Traditional 

spambots #1 

training set of spammers used 

by C. Yang, R. Harkreader, and 

G.Gu 

1,000 1,45,094 2009 

4.2. Step 2 

The tweet file consists of 25 features of categorical data and a total of 3604238 tweets. 

We used batch processing for analysing using tweets features such as tweets_url, 

retweet_count, tweets_place reply_count, favorite_count, num_hashtags, num_urls, 

and num_mentions. Other features are removed due to less impact on classification. 

Non-numerical values are converted to numbers using the one-hot encoding 

technique. The numerical features are imputed with the mean value. The 

preprocessed tweet files are merged into a single file called “tweets_data”. 

4.3. Step 3 

The final dataset is created by merging the user and tweet related data. For every user, 

associated tweet related information is extracted using percentage, impute and count 

functionalities. The final dataset contains a comprehensive list of features named, id, 

screen_name, name, followers_count, statuses_count, favourites_count, friends_count, 
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listed_count, lang, url, time_zone, default_profile, location, default_profile_image, 

profile_image_url, geo_enabled, profile_background_image_url_https, 

profile_use_background_image, profile_banner_url, profile_text_color, 

profile_sidebar_fill_color, notifications, favorite_count, utc_offset, 

profile_image_url_https, profile_sidebar_border_color, updated, 

profile_background_tile, profile_background_image_url, profile_link_color, 

profile_background_color, follow_request_sent, protected, is_translator, verified, 

description, contributors_enabled, created_at, following, tweets_url, retweet_count, 

tweets_place reply_count, num_hashtags, num_urls and num_mentions and bot. 

5. Feature Selection 

In this step, we used Chi-squared technique to determine the important features for 

prediction against the target label. As a result of this step, features such as 

statuses_count, friends_count, followers_count, user_name, favorites_count, 

listed_count, lang, url, location, time_zone, default_profile, geo_enabled, 

profile_background_image_url_https, profile_image_url_https, verified, 

profile_text_color, profile_background_image_url, profile_background_tile, protected, 

profile_sidebar_border_color, profile_background_tile, profile_sidebar_fill_color, 

description, profile_background_color, profile_link_color, tweets_url_percentage, 

retweets_percentage, reply_percentage, hashtags_percentage, favourites_percentage, 

num_urls_percentage, tweets_place_percentage, num_mentions_percentage and bot 

are used for prediction in our proposed algorithm. 

6.  Proposed Work 

We propose the Custom Genetic Algorithm (CGA), a hyperparameter optimization 

technique for tuning the deep learning model. The genetic algorithm (GA) is 

inspired by natural selection and belongs to the larger class of evolutionary 

algorithms (EA). Its widely used to generate high-quality solutions for search 

problems and optimization. Some of the limitations are the tendency to converge 

towards local optima rather than global optimum and problems with fitness 

measure, success or failure as there is no way to converge on the solution.  

We created a Custom Genetic Algorithm (CGA) with three modules, population 

selection, retain, and penalty-bonus to address this. Due to the fitness function's 

success/failure measure, the GA algorithm will not converge on the global 

optimum. The algorithm reaches the solution very quickly and will not explore the 

search space. We keep a part of randomly discarded individuals to analyse the 

search space with a wide range of values. To avoid early convergence, we apply 

penalties and bonuses to the population. Any population reaching the convergence 

early will be assigned a penalty, otherwise a bonus. While creating the future 

population, parents with bonuses are preferred for crossover and mutation. As a 

result, a wide range of the population is created for every generation. The above 

concepts are implemented in deep learning models to determine the optimal 

hyperparameters for a problem. 

6.1. Module 1 (M1) – Retaining a part of discarded neural networks 

The fittest Neural Networks (NNs) are used for producing offspring, and the remaining 

networks are discarded in future selection. This results in reaching convergence at an 
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early stage and a low rate of mutation. To increase the mutation rate, diversity, and to 

stop the premature convergence, a random part of discarded neural networks is 

considered for further reproduction. To generate the random list of discarded, NNs with 

M2 values as discussed in Module 2 is preferred. In case of insufficient NNs with M2 

values, the population includes randomly picked networks without M2 as well. 

6.2.  Module 2 (M2) – Penalty and bonus 

We used penalties and bonuses to maximize the convergence towards the global 

optimum of the problem. Population (Neural networks with hyperparameters selected 

due to crossover and mutation) reaching early convergence are penalized. Otherwise, a 

bonus is assigned. During crossover and mutation for generating new neural networks, 

parent networks with bonuses are preferred. The M2 values (bonus/penalty) is routed 

using mRNA in the hyperparameters. Each Network, over a period of iterations, will 

contain M2. The future selection criteria focus on and prioritize the M2 output. 

6.3.  Module 3 (M3) – Population selection 

The fittest neural networks, part of the population for initial and progressive steps, 

are determined using the proposed algorithm. The initial process involves starting 

with the default population. Selecting a random parameter for the default 

population can significantly impact the overall time to find the hyperparameters. It 

may be either faster or slower, or moderate. One of the significant challenges faced 

by genetic algorithms is the execution time, which depends on the hyperparameter 

space, available resources, and populations in the traversed generations.  

The proposed algorithm contains the below steps, 

i. Pick a random set of hyperparameter configurations from the list 

ii. Evaluate the set’s performance 

iii. Select the top 50% sets and ignore the rest 

iv. Go back to step 2 until the optimal population is found (default to 10) 

The algorithm focuses on reducing the training time of the sets, which doesn’t 

lead us to any concrete solution; instead, it picks up the top-performing settings. 

The proposed algorithm is different from the existing algorithm in the below ways, 

i. Resource overflow is controlled since there is a max of configs to converge 

ii. Execution time is faster as top performing 50% sets are considered to 

progress further, essentially dropping the sets to traverse to a greater extend 

Module 3 (M3) - Population Selection  

Input: Limit L, Set s where ji,c denotes the cth loss from the ith set, Max size M 

1. Initialization: 

S0 = [n], N=10 

2. Finding optimal set: 

For i  0,1, …. c 

 Set si = [sN-i], mi = [MNi-c] 

 Pull each set in Si for mi times 
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 Keep the best set in terms of mith observed loss as Si+1 

Output: Optimal set, Os 

Custom Genetic Algorithm 

Inputs: epochs ei…n, batch size bi…n, layers li…n, neurons ni…n, optimizers Oi, 

activation_function ai, last_layer_activation_function lli, losses ls, Hi…n, where Hi 

is the hyperparameters space.  

1. Initialization 

Ho  eo, bo, lo, no, Oo, ao, llo, lso, penalty=null; bonus=null; early stop with 

patience, esp=5, N=10; (Refer to Table 2 for range) 

2. Create the initial population 

For i  0 to initial_pop_size, 

    Create N 

             End For 

             Invoke M3 to return the optimal No to start 

 Return No 

3. For i0 to number of generations 

  Train the networks, Ni  

Evolve P 

      acc = Score and Sort Ni in descending order 

      crossover, Nc = Select the parents, 

          p with bonus and high acc 

      while len(children c) < desired length: 

if Nc == Ni 

Nc = random (p) 

#Child Network 

Nc = Breed and mutate 

#M2 

If early stop, es: 

#Add penalty, pes  

Nc = Nc , pe  

else: 

#Add bonus, bes 

Nc = Nc , bes  

N  N { pe , bes } (M2 values via mRNA) 

#M1 

For i  1 to retain_length 

#Keep some for diversity 

If random_select > random.random(): 

  population.append(individual) 

Invoke M3 to generate optimal P for future evolutions 

Iterate until H (Stop if H is no longer increasing) 

4. #Optimal Hyperparameter space 

Return H with highest acc   
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For validation, we used the CRESCI dataset to identify human and bot accounts 

on twitter. 

7.  Algorithm Description 

Figure 1 represents the high-level workflow of the algorithm in how the optimal 

hyperparameters are selected. The initial hyperparameter space is set with a range 

of values for batch size, neurons, layers, Optimizer, activation function, last layer 

activation function, and loss to create the default population. For the custom 

module, penalty and bonus are initialized with a default value, null. The initial 

population is created using the population selection module that returns the optimal 

hyperparameter space, to begin with. Every generation starts with the default 

population and progresses with offspring through crossover and mutation. 

 
Fig. 1. Algorithm workflow. 

Accuracy of the Neural Network (NN) model obtained from Module 3, 

population selection is used to determine the parents for creating the child Neural 

Networks (NNs). Parent NNs with higher accuracy are preferred. Since the 

networks are created using random hyperparameters controlled by the population 

selection module and grow based on accuracy, there is a probability of getting the 

same NNs for crossover. In the case of the same NNs, a random function is used to 

select different parent NNs in corner scenarios. Selected parents NNs create new 

child NNs through the crossover and mutation. If the chosen parents result in early 

convergence, a penalty is applied. Otherwise, a bonus is applied.  

The bonus and penalty are passed as M2 values using messenger RNA 

(mRNA). The mRNA is added to NNs that pass-through penalty or bonus criteria. 

To increase the mutation rate and the diversity of the parent's selection, a random 

part of discarded NNs after crossover and mutation are reused for creating future 

offspring. This process involves prioritizing the networks with M2 values and any 

processed neural network setup by the population selection module. After iterating 
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over the selected Number of generations and populations, the algorithm returns the 

optimal hyperparameter values with the highest accuracy. 

8.  Experimental Results and Discussion 

In this section, we present the experimental results and comparative analysis of our 

model’s performance with existing work [9, 31-34]. 

8.1. Hyperparameters range 

Table 2 represents the input hyperparameters range used for optimization. The 

optimal hyper parameters of CGA are epoch = 300, batch size = 20, number of 

layers = 4, Optimizer = Adam, Activation function = relu, last layer activation 

function = sigmoid, loss = binary cross entropy and dropout rate = 0.2. We used 

accuracy as the metrics for evaluation. 

Table 2. Hyperparameters space and optimized. 

Hyper parameters Input Range (default) CGA Model values 

Number of epochs [50,100,150,200,250,300,350,400] 300 

Batch size [10,20,30,40,50,60,70,80] 20 

Number of layers [2,4,6,8,10,12,14,16] 4 

Number of Neurons [2,5,10,15,20,25,30,35] 40 

Optimizers 
[“adam”, “sgd”, “rmsprop”, “Adadelta”, 

“Adamax”, “Nadam”] 
Adam 

Activations [“Relu”, “sigmoid”, “tanh”] Relu 

Last layer 

activation function 
Sigmoid Sigmoid 

Losses Binary Cross Entropy Binary Cross Entropy 

Metrics 
Accuracy (Test Set 1) 0.992 

Accuracy (Test Set 2) 0.958 

Regularizer Dropout 0.2 

Figures 2 to 5 show the training and validation, accuracy, and loss of the CGA 

tuned model for test set 1 and test set 2. We used a validation split of 0.3 to avoid 

overfitting and underfitting problems. It is noted that the loss decreases as the 

accuracy increases for both training and validation sets. 

 

Fig. 2. Test Set 1 – Training Accuracy of CGA. 
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Fig. 3. Test Set 1 – Training Loss of CGA. 

 

Fig. 4. Test Set 2 – Training accuracy of CGA. 

 

Fig. 5. Test Set 2 – Training loss of CGA. 

8.2. Comparison with existing research works 
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We compared the CGA tuned deep learning model with the existing research works 

[9, 31-34]. Cresci et al. [31] categorized features into account and tweel-level. Tweet 

type and tweet contents are used as DNA for analysis. In our work, we applied the 

chi-squared technique that returned 33 important features for prediction and accuracy 

as the final metrics. Miller et al. [32] used vectors created from 126 features that are 

extracted from both tweets and accounts. Ahmed and Abulaish [33] used 14 

behavioral -based generic statistical features like retweets, mentions, hashtags, and 

URLs. Yang et al. [34] grouped twenty-five features into six categories: automation-

based, timing-based, content-based, profile-based features, neighbor-based, and 

graph-based features. Davis et al. [35] grouped more than a thousand features in 6 

main classes: user, sentiment, friend, content, temporal, and network. 

We evaluated our CGA tuned model using the test set 1 and test 2 to find 

accuracy, f measure, precision, and recall. Table 3 compares the results of test set 

1 and test set 2 with existing spambot detection techniques. For the test set 1, the 

CGA model outperformed others with an accuracy of 0.991 and a recall of 0.976. 

For test 2, the CGA model outperformed existing methods with an accuracy of 

0.958, recall of 0.960, and F measure of 0.960. We found that the remaining metrics 

showing competitive performance with the existing techniques. 

Table 3. Performance comparison of spambot detection  

techniques applied on CRESCI 2017 dataset with existing research. 

Test Set #1 

Technique Type Accuracy F measure Precision Recall 

Human annotators Manual 0.698 0.123 0.267 0.080 

Wei et al. [9] Supervised 0.961 0.963 0.940 0.976 

Cresci et al. [31] Unsupervised 0.976 0.977 0.982 0.972 

Miller et al. [32] Unsupervised 0.526 0.435 0.555 0.358 

Siddiqui et al. [12] Supervised 0.734 0.288 0.471 0.208 

Ahmed and 

Abulaish [33] 
Unsupervised 0.943 0.944 0.945 0.944 

Yang et al. [34] Supervised 0.506 0.261 0.563 0.170 

CGA Supervised 0.991 0.974 0.976 0.976 

Test Set #2 

Human annotators Manual 0.829 0.570 0.647 0.509 

Wei et al. [9] Supervised 0.929 0.926 0.933 0.919 

Cresci et al. [31] Unsupervised 0.929 0.923 1.000 0.858 

Miller et al. [32] Unsupervised 0.481 0.370 0.467 0.306 

Siddiqui et al. [12] Supervised 0.922 0.761 0.635 0.950 

Ahmed and 

Abulaish [33] 
Unsupervised 0.923 0.923 0.913 0.935 

Yang et al. [34] Supervised 0.629 0.524 0.727 0.409 

CGA Supervised 0.978 0.988 0.994 0.982 

8.3. Comparison with existing optimization techniques 

We compared CGA with other optimization techniques such as Random Search, 

Bayesian Optimization, and Optimization using Genetic Algorithms. Grid Search 

is ignored since it traverses through all the parameters, which could take days or 

months. For the Genetic Algorithm, we used the TPOT classifiers Neural Network 

Module. We used 50 populations and 50 generations, both the Genetic Algorithm 
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and the proposed Custom Genetic Algorithm, without any caveats around the 

selection for a fair comparison.  

All the sparse values are cleaned, and the dataset contains complete values for 

all features after the data preprocessing step. So, we considered accuracy and F-

measure as our metrics. Weighted f1-score is ignored to give equal importance to 

precision and recall. 

Of all the techniques, TPOT took very high execution, followed by Bayesian and 

Random search. CGA took the least execution time. However, we couldn't calculate 

the accurate timings since the execution was paused multiple times due to the Cloud's 

busy machines. Theoretically, if there are n configurations, each with an error factor 

of ei for i = 1 … n. The allocation and selection of configurations (hyperparameter 

spaces) by random, Bayesian, grid, and TPOT will take more time since they traverse 

through the spaces on specific set criteria independent of optimal configs traversal. 

However, CGA picks only the best parameters and traverses through the 

spaces/configurations that perform better with a high weightage to the top 50%. 

Figures 6 to 9 show the ROC Curve for Random Search, Bayesian Search, 

Genetic Algorithm, and the proposed Custom Genetic Algorithm (CGA). The CGA 

ROC graphs clearly show the model's performance in identifying true positives and 

false negatives and outperforms the other optimization techniques with area under 

the curve value of 0.98 and 0.94 for Test Set 1 and Test 2 respectively. 

 

Fig. 6. Random search - ROC Curve for Test Set 1 and Test Set 2. 

 

Fig. 7. Bayesian search - ROC Curve for Test Set 1 and Test Set 2. 
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Fig. 8. Genetic algorithm (TPOT) - ROC curve for Test Set 1 and Test Set 2. 

 

Fig. 9. Custom genetic algorithm - ROC curve for Test Set 1 and Test Set 2. 

Table 4 compares the metrics such as Accuracy, F measure, Precision, and 

Recall for all the optimization techniques. CGA tuned model outperformed all the 

existing techniques and methods on both sets with an accuracy of 0.991 for Test 

Set 1 and 0.958 for Test Set 2, and F-measure of 0.974 for Test Set 1 and 0.960 for 

Test Set 2, respectively. 

Table 4. Performance comparison of spambot detection techniques  

applied on CRESCI 2017 dataset with existing optimization techniques. 

Test Set #1 

Technique Accuracy F measure Precision Recall 

Random Search 0.864 0.905 0.83 0.995 

Bayesian Search 0.954 0.97 0.946 0.995 

TPOT 0.763 0.822 0.704 0.988 

CGA 0.991 0.974 0.976 0.976 

Test Set #2 

Random Search 0.818 0.886 0.801 0.991 

Bayesian Search 0.944 0.945 0.907 0.987 

TPOT 0.731 0.822 0.704 0.987 

CGA 0.978 0.988 0.994 0.982 

9.  Conclusion and Future Work 

In this paper, we proposed a Custom Genetic Algorithm for tuning 

hyperparameters. Finding optimal parameters for any deep learning model is a 
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tedious and time-consuming task. We identified that our proposed CGA algorithm 

reduces the search time to a greater extent in finding the optimal hyperparameters. 

Experimental results show tuned models outperforming existing techniques. We 

believe that the proposed model can be applied to any classification dataset with 

minimal changes. As future work, we are planning to apply the CGA to wider 

datasets for further analysis and improvement. 

 

Nomenclatures 

 
acc Accuracy 

N Network 

Ng Number of Generations 

No Network Object 

P Population 
 

Abbreviations 

CGA Custom Genetic Algorithm 

CNN Convolutional Neural Network 

DL Deep Learning 

LSTM Long Short Term Memory 

ML Machine Learning 

mRNA Messenger Ribonucleic Acid 

NN Neural Network 
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