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Abstract 

Industries expect optimal solutions for the problems with a few experiments to 

reduce the cost and time of the experimentation. Many statistical methods are 

introduced to fulfil the demands of the industries. In the present study, three 

statistical methods namely Taguchi’s design of experiments, central composite 

designs (CCD) and balanced incomplete block design (BIBD) are considered. The 

adequacy of these methods is examined considering the test data of tensile shear 

strength of resistance spot welding for galvanized steel. Since the data is insufficient 

for the test runs demanded by the statistical methods, an empirical relation is 

developed from the test data using the response surface methodology (RSM). From 

the developed empirical relation, the necessary data is generated for CCD and 

BIBD. Empirical relations are also developed from the data of the test runs in CCD 

and BIBD. The optimal process parameters are identified from these methods and 

verified with the test data. The best method is identified based on the number of 

experiments and the adequacy in estimating the performance indicator for the 

identified optimal input variables. The maximum tensile shear strength estimated 

for the optimal input variables using Taguchi approach is close to the test results. 

Estimates from CCD and BIBD are slightly low to that of test results.  

Keywords: Balanced incomplete block designs, Central composite designs, 

Response surface method, Taguchi method. 
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1.  Introduction 

Majority of engineering problems are complex in nature and exact solution for the 

problems is very difficult. Development of a mathematical model for a new problem 

(whose behavior is unknown) is practically impossible. One has to depend on 

experimentation. More number of input variables demands a greater number of 

experiments. For example, four input variables with ‘3’ levels demand 81 

experiments. For the case of ‘n’ input variables with ‘3’ levels it is necessary to 

perform 3n experiments. Repetition of experiments indicates scatter in test results.  

Statistical methods can only handle the acceptance of the scatter in test data. 

These methods also help the designer to develop empirical relations for the 

performance indicator (output responses) in terms of input variables. Many 

statistical methods are being used to minimize the number of experiments and 

obtain the solution for the full factorial design of experiments. Each method has its 

own limitations.  

It is essential to understand such limitations prior to the selection of suitable 

statistical model for the intended application. More popular among many statistical 

methods are Taguchi method, central composite design (CCD) and balanced 

incomplete block design (BIBD) for response surface methodology (RSM), which 

are briefly highlighted below. 

1.1. Taguchi’s Design of Experiments  

Genichi Taguchi has developed a statistical method to improve the quality of 

manufactured goods. According to Taguchi method, the control factors should be 

selected in such a way that the effect of noise factors is nullified. To attain optimum 

results of a process, Taguchi method identify the appropriate control factors. 

Robust systems that are reliable under uncontrollable conditions can be designed 

using Taguchi method.  

Thakur et al. [1] have applied Taguchi method for resistance spot welding of a 

galvanized steel to specify optimal process parameters. Buddi et al. [2] have 

identified optimal process parameters for plywood manufacturing using soya meal 

adhesive. Dutta and Nageswara [3] have investigated the performance of chevron 

type plate heat exchangers.  

Satyanarayana et al. [4] have adopted Taguchi based CFD simulations and 

identified optimal laser beam welding (LBW) process parameters for E110 

Zirconium alloy butt joint. Ganguly and Patel [5] have studied the statistical design 

of X-bar control chart while optimizing the multi-objective function. 

Rajyalakshmi and Nageswara [6] have suggested a modified Taguchi approach to 

trace the optimum GMAW process parameters on weld dilution for ST-37 steel 

plates. Rajyalakshmi and Nageswara [7] have presented the expected range of the 

performance indicator (output response) for the optimal input process variables.  

Dharmendra et al. [8] have presented optimal abrasive water jet machining 

process parameters of Inconel 800. Kumar and Rajyalakshmi [9] have made a 

comparative study on CCD and the modified Taguchi approach. Dharmendra et al. 

[10] have identified optimal process parameters for nano-powder-mixed EDM 

(electrical discharge machining) of INCONEL800 (with copper electrode). 
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1.2. CCD for RSM 

Response surface methodology (RSM) is a powerful statistical tool to explore the 

relationship between several explanatory variables and a dependent variable.  It is 

also named as Box and Wilson CCD. CCD plays a key role in investigating the 

effects of process parameters on the output response. These methods will be helpful 

in fitting the output response as a second-order polynomial model in terms of input 

process variables for optimizing the several research problems.  

Box and Behnken [11] have introduced a few three-level designs for the 

quantitative variables and presented different combinations of the factors with 

coded levels. Prasad et al. [12] have constructed various designs for conducting 

agricultural experiments.  

Asghar et al. [13] have made a comparative study utilizing Taguchi and CCDs 

while optimizing the Fenton process. Barbuta et al. [14] have performed statistical 

analysis on the tensile strength of coal using CCD.  

Managamuri et al. [15] have optimized the culture conditions by RSM and 

unstructured kinetic modelling. Hassan et al. [16] have utilized CCD while 

optimizing the high-strength blended concrete. Sankha Bhattacharya [17] has made 

a review on the CCD for RSM and its applications in pharmacy.  

1.3. BIBD for RSM 

BIBD plays an important role in the design of experiments especially in field 

experiments (Das and Narasimham [18]). In BIBD, an arrangement of ‘v’ 

treatments in ‘b’ blocks such that every block contains k (k<v) treatments and 

satisfies the following conditions: 

(i) Each treatment does not appear in a block or appears exactly once in a block; 

(ii) Each treatment appears exactly in ‘r’ blocks; and 

(iii) Each pair of treatments occurs together in exactly ‘λ’ blocks. 

Das and Narasimham [18] have constructed rotatable designs using BIBD. 

Rajyalakshmi and Victorbabu [19, 20] have examined second-order rotatable 

designs under tri-diagonal correlated structure of errors using BIBD and 

symmetrical unequal block arrangements with two unequal block sizes. 

Rajyalakshmi and Victorbabu [21] have constructed second-order slope rotatable 

designs under tri-Diagonal correlated structure of errors using BIBD.  

1.4. Objectives of the present study 

In the present study the adequacy of Taguchi, CCD and BIBD methods are 

examined considering the existing test data [1]. Since the test data is available only 

for Taguchi’s L27 orthogonal array for four input process variables with three levels, 

which may be insufficient for all the test runs demanded by CCD and BIBD. An 

empirical relation is developed from the test data using RSM. From the empirical 

relation the output response for the specified process parameters in each test run for 

the methods are generated. The optimal process parameters are identified and 

confirmed with test results. The best among the three methods is selected based on 

the number of experiments and the adequacy in estimating the output response for 

the specified input process variables. 
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2.  Analysis 

Thakur et al. [1] have examined the effect of welding parameters on the tensile shear 

strength of spot-welded galvanized steel useful in the automobile and aerospace 

industry. The chemical composition of (wt %) galvanized steel consists of 

0.065C+0.095Si+0.107Cr+0.032Ni+0.053Cu+0.404Mn+0.017S+0.018P +balance Fe. 

The size of the sheet samples is 100X30X1 mm. Varying diameters of Cu Cr alloy 

are used as electrode. They have conducted ‘27’ runs of the experiments based on 

Taguchi’s L27 orthogonal array. Varying current, weld time, electrode diameter and 

force are the core process parameters designated by X1, X2, X3 and X4. Each 

parameter is assigned ‘3’ levels. Table 1 gives the levels of the input parameters and 

the output response (tensile shear strength) of the ‘27’ experiments. Using RSM and 

the test data in Table 1 an empirical relation is developed for the tensile shear strength 

ŷ (kN) in terms of process variables in coded form.  

Table 1. Levels of RSW process parameters with levels and  

the performance indicator (tensile shear strength) of galvanized steel. 

RSW process parameters Designation Level-1 Level-2 Level-3 

Welding current (kA) X1 8 10 12 

Weld time (Cycle) X2 8 12 16 

Elelctrode diameter (mm)  X3 4 6 8 

Welding force (kN) X4 2 3.5 5 

Coded values of X1, X2, X3, X4 -1 0 1 

 

S. No. 
Coded values Tensile shear strength (kN) 

X1 X2 X3 X4 Test RSM Additive Law 

1 -1 -1 -1 -1 3.83 3.8236 3.9766 

2 -1 -1 0 0 4.6 4.5888 4.7589 

3 -1 -1 1 1 3.6 3.6408 3.7800 

4 -1 0 -1 0 5.43 5.3697 5.3544 

5 -1 0 0 1 4.86 4.7847 4.7644 

6 -1 0 1 -1 4.47 4.4680 4.5033 

7 -1 1 -1 1 5.23 5.2694 5.1111 

8 -1 1 0 -1 5.43 5.3889 5.2389 

9 -1 1 1 0 5.67 5.7849 5.6323 

10 0 -1 -1 -1 5.63 5.7128 5.7266 

11 0 -1 0 0 6.57 6.4930 6.5089 

12 0 -1 1 1 5.64 5.5600 5.5300 

13 0 0 -1 0 6.94 7.1130 7.1044 

14 0 0 0 1 6.43 6.5430 6.5144 

15 0 0 1 -1 6.17 6.2164 6.2533 

16 0 1 -1 1 6.93 6.8668 6.8611 

17 0 1 0 -1 7.03 6.9764 6.9889 

18 0 1 1 0 7.53 7.3894 7.3823 

19 1 -1 -1 -1 6.27 6.1932 6.0676 

20 1 -1 0 0 6.9 6.9884 6.8499 

21 1 -1 1 1 6.03 6.0704 5.8710 

22 1 0 -1 0 7.56 7.4475 7.4454 

23 1 0 0 1 6.93 6.8925 6.8554 

24 1 0 1 -1 6.6 6.5560 6.5943 

25 1 1 -1 1 7.03 7.0554 7.2021 

26 1 1 0 -1 7.06 7.1551 7.3299 

27 1 1 1 0 7.56 7.5831 7.7233 
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ŷ = 7.1952 + 1.0456X1 + 0.5778X2 −  0.1000X3 + 0.0222X4 − 0.7044X1
2 −

0.1244X2
2 − 0.1822X3

2 − 0.6744X4
2 − 0.1542X1X2 + 0.0067X1X3 +

0.0083X1X4 + 0.023X2X3 − 0.0244𝑋2X4                                                           (1) 

Table 2 gives analysis of variance (ANOVA) for the data in Table 1 based on 

the Taguchi approach. The % contribution of each parameter is worked out and 

presented in Table 2. Table 2 shows that X1 contribution is high with 69.9%, X2 is 

18.7%, X3 is with 1.1% and X4 is with 8.7%.  X3 parameter has insignificant 

contribution when compared to other parameters (X1, X2 and X4). 

Table 2. Analysis of Variance (ANOVA). 

Parameters Mean1 Mean2 Mean3 
Grand 

Mean 
Sum of squares 

% 

Contribution 

X1 4.7911 6.5411 6.8822 6.0715 22.6546 69.9 

X2 5.4552 6.1544 6.6078 6.0725 6.0689 18.7 

X3 6.0944 6.2011 5.9189 6.0715 0.3655 1.1 

X4 5.8322 6.5289 5.8533 6.0715 2.8268 8.7 

Using the additive law (Ross 2005) and the data in ANOVA Table 2 one can 

find the output response for the specified all the combinations of input variables 

𝑋1𝑖
, 𝑋2𝑗

, 𝑋3𝑘
, 𝑋4𝑙

. 

ɳ = ɳ(𝑋1𝑖 ) + ɳ (𝑋2𝑗
) + ɳ(𝑋3𝑘

) + ɳ(𝑋4𝑙
) − 3ɳ̂𝑚                                              (2) 

where ɳ̂𝑚 is the grand mean of the output response. 

Table 1 gives the estimates of tensile shear strength using the empirical relation 

(1) of RSM and the additive law of Eq. (2). The estimates are reasonably in good 

agreement with test result. Using the mean values of Table 2 generated and additive 

law (2) one can develop the empirical relation in the form 

ŷ = 7.211 + 1.0455X1 − 0.7045𝑋1
2 + 0.5778X2 − 0.1244𝑋2

2 − 0.08775X3 −
0.19445𝑋3

2 − 0.01055X4 − 0.68615𝑋4
2                                                              (3) 

From the ANOVA Table 2 the process parameters identified for achieving the 

maximum tensile shear strength are X13, X23, X32, X42. Subscripts denote the levels 

of the parameters. For these levels the maximum tensile shear strength obtained 

from Eq. (2) is 8.0055 kN. Table 3 gives the levels of the process parameters as per 

CCD. The tensile shear strength values corresponding to the levels in Table 3 are 

obtained from Eqs. (1) and (2).  

Table 3. Levels of RSW process parameters and the performance  

indicator (tensile shear strength) of galvanized steel as per CCD. 

S. No. X1 X2 X3 X4 RSM Additive Law 

1 0 0 0 0 7.1952 7.2111 

2 0 0 0 0 7.1952 7.2111 

3 1 1 1 1 6.9148 7.0266 

4 0 1 0 0 7.6486 7.6645 

5 1 -1 1 1 6.0704 5.871 

6 0 0 0 0 7.1952 7.2111 

7 -1 -1 -1 1 3.9002 3.9555 

8 -1 1 1 -1 5.123 4.9567 

9 0 0 0 1 6.543 6.5144 
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10 1 0 0 0 7.5364 7.5521 

11 -1 0 0 0 5.4452 5.4611 

12 -1 -1 -1 -1 3.8236 3.9766 

13 -1 -1 1 1 3.6408 3.78 

14 0 0 0 0 7.1952 7.2111 

15 1 -1 -1 1 6.303 6.0465 

16 0 -1 0 0 6.493 6.5089 

17 -1 1 -1 1 5.2694 5.1111 

18 0 0 0 0 7.1952 7.2111 

19 1 1 -1 -1 7.0432 7.2232 

20 1 -1 -1 -1 6.1932 6.0676 

21 -1 1 -1 -1 5.2904 5.1322 

22 0 0 -1 0 7.113 7.1044 

23 1 1 -1 1 7.0554 7.2021 

24 1 1 1 -1 6.9026 7.0477 

25 0 0 0 -1 6.4986 6.5355 

26 -1 1 1 1 5.102 4.9356 

27 0 0 1 0 6.913 6.9289 

28 0 0 0 0 7.1952 7.2111 

29 -1 -1 1 -1 3.5642 3.8011 

30 1 -1 1 -1 5.9606 5.8921 

The output responses from Eqs. (1) and (2) are matching well for all the levels 

of the parameters in Table 3. Figure 1 represents the estimates of tensile shear 

strength from the developed empirical relation (1) utilizing RSM and comparison 

with test data [1].  

 
Fig. 1. Estimates of tensile shear strength from the developed  

empirical relation (1) utilizing RSM and comparison with test data [1]). 

Figure 2 provides the estimates of tensile shear strength from the developed 

empirical relation (3) utilizing the additive law and comparison with test data [1]. 

Using the generated data for the output responses in Table 3 the empirical 

relation obtained from the data of RSM is exactly matching with Eq. (1) whereas 

the data from the additive law of Table 4 gives the empirical relation almost same 

as that of Eq. (3).  
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Fig. 2. Estimates of tensile shear strength from the developed empirical 

relation (2) utilizing the additive law and comparison with test data [1]. 

Table 4. Levels of RSW process parameters and the performance  

indicator (tensile shear strength) of galvanized steel as per BIBD. 

S. No. X1 X2 X3 X4 RSM Additive Law 

1 -1 -1 0 0 4.5888 4.7589 

2 -1 1 0 0 6.0528 5.9145 

3 1 -1 0 0 6.9884 6.8499 

4 1 1 0 0 7.8356 8.0055 

5 0 0 -1 -1 6.4164 6.4288 

6 0 0 -1 1 6.4608 6.4077 

7 0 0 1 -1 6.2164 6.2533 

8 0 0 1 1 6.2608 6.2322 

9 0 0 0 0 7.1952 7.2111 

10 -1 0 -1 0 5.3697 5.3544 

11 -1 0 1 0 5.1563 5.1789 

12 1 0 -1 0 7.4475 7.4454 

13 1 0 1 0 7.2609 7.2699 

14 0 -1 0 -1 5.772 5.8333 

15 0 -1 0 1 5.8652 5.8122 

16 0 1 0 -1 6.9764 6.9889 

17 0 1 0 1 6.972 6.9678 

18 0 0 0 0 7.1952 7.2111 

19 0 -1 -1 0 6.4338 6.4022 

20 0 -1 1 0 6.1878 6.2267 

21 0 1 -1 0 7.5434 7.5578 

22 0 1 1 0 7.3894 7.3823 

23 1 0 0 -1 6.8315 6.8765 

24 1 0 0 1 6.8925 6.8554 

25 -1 0 0 -1 4.7569 4.7855 

26 -1 0 0 1 4.7847 4.7644 

27 0 0 0 0 7.1952 7.2111 

The maximum output response (tensile shear strength from Table 3) 

corresponding to the sl.no (4) is 7.6486 kN. The input process parameters in sl. no 

(4) are X12, X23, X32 and X42. The set of parameters identified for the maximum 

output response from Table 3 are found be different to that of obtained from the 

ANOVA Table 2. Figure 3 represents the estimates of tensile shear strength from 

the developed empirical relation (1) for the test runs in CCD. 



530       Varalakshmi M. et al. 

 
 
Journal of Engineering Science and Technology        February 2022, Vol. 17(1) 

 

 
Fig. 3. Estimates of tensile shear strength from the  

developed empirical relation (1) for the test runs in CCD. 

Table 4 gives the levels of the process parameters as per BIBD. The tensile shear 

strength values corresponding to the levels in Table 4 are obtained from Eq. (1) and 

Eq. (3). The output responses from Eq. (1) and Eq. (3) are matching well for all the 

levels of the parameters in Table 3. Using the generated data for the output response 

in Table 4 the empirical relation obtained from the data of RSM is exactly matching 

with Eq. (1) whereas the data from the additive law of Table 4 gives the empirical 

relation almost same as that of Eq. (2). The maximum output response (Tensile shear 

strength from Table 4) corresponding to sl. no (4) is 7.8356 kN. The input process 

parameters in sl.no (4) are X13, X23, X32, X42. The set of parameters identified for the 

maximum output response from CCD Table 3 are different to that of obtained from 

the ANOVA Table 2. Figure 4 represents the estimates of tensile shear strength from 

the developed empirical relation (1) for the test runs in BIBD. 

 
Fig. 4. Estimates of tensile shear strength from  

the developed empirical relation (1) for the test runs in BIBD. 

Careful examination of arriving the same empirical relations using RSM is 

mainly because of the central point having estimates of output responses same for 

repeated experiments. In case of scatter in the experimental data, those relations 

will be slightly different. Figure 5 indicates the variation of tensile shear strength 



Optimization of Process Parameters using Different Statistical Designs       531 

 
 
Journal of Engineering Science and Technology        February 2022, Vol. 17(1) 

 

with the coded X1 from the developed empirical relations (1) and (3) for the coded 

values of X2=1, X3=0, X4=0. Maximum tensile shear strength is at the coded value 

of X1=1. RSM estimates its value as 7.8356 kN, whereas additive law estimates 

8.0055 kN. 

 
Fig. 5. Variation of tensile shear strength with the coded X1 from the 

developed empirical relations (1) and (2) for the coded values of X2=1, X3=0, 

X4=0. Maximum tensile shear strength is at the coded value of X1=1. 

Optimal output response and the respective set of process parameters from 

Taguchi design of experiments and the BIBD are matching well. Optimal set of 

process parameters are not available in Taguchi’s L27 orthogonal array (Table 1), 

whereas they are available in Table 4 of BIBD are adapted from [20-24] RSM Eq. 

(1) estimates the tensile shear strength for the identified optimal process parameters 

is 7.8356 kN, which is found to be slightly lower than the confirmation test result 

of 8.02 kN [1].  

3.  Conclusions  

Three statistical methods namely Taguchi, central composite design (CCD) and 

balanced incomplete block design (BIBD) are examined considering the data of 

tensile shear strength ŷ of resistance spot welding for galvanized steel (RSW). 

Empirical relations are developed to generate the data corresponding to the test runs 

in CCD and BIBD. The optimal process parameters are identified from these 

methods and verified with the test data. The best method is identified as BIBD. The 

maximum strength estimated for the optimal input variables using Taguchi 

approach is close to the test results whereas that of BIBD is slightly low.  

Abbreviations 

CCD Central Composite Design 
BIBD Balance Incomplete Block Design 
RSM Response Surface Methodology 
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