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Abstract 

In general, pneumonia affects children under 5 years and adults over 65 years of 
age which targets the lungs and fills the alveoli (air sacs) with liquid. In this paper, 
we employ convolutional neural networks (CNNs) of varying configurations on 
a machine learning based binary classification task with a given dataset of chest 
X-rays that depicts affected and unaffected cases of pneumonia. This paper 
primarily focuses on putting forth the performances of different simple CNN 
architectures and selecting the best architecture based on optimum corresponding 
minimum loss and maximum accuracy which can serve as a viable tool for 
physicians and the medicine community to correctly identify and diagnose viral, 
bacterial, fungal-caused and community acquired pneumonia given only the chest 
X-ray of the patient.  

Keywords: Artificial neural network (ANN), Biomedical imaging, Deep learning, 
Machine learning, Neural networks. 
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1.  Introduction 
Pneumonia is a widely occurring severe form of acute respiratory disease that is 
caused due to infectious agents with high attack rates among individuals that belong 
to age groups of either of the extreme ends of the lifespan of an average human 
being [1]. These infectious agents may be viral, fungal or bacterial and the lungs 
react to the infiltration of these foreign microorganisms by an inflammatory 
response which causes the bronchioles and alveoli to get filled with liquid [2]. This 
in turn causes difficulty in respiration for the affected individual. In the case of 
children under 5 years of age, pneumonia is responsible for over 15% deaths 
recorded globally, with 920,000 deaths in 2015 alone. In the same year, the US 
witnessed over 500,000 cases of emergency admissions in hospitals due to 
pneumonia [3] with 50,000 casualties reported [4] which puts the disease among 
the top 10 causes of deaths in the US. 

There are three main types of pneumonia: a) community acquired, b) viral, and 
c) bacterial. Community acquired pneumonia is mainly distinguished from 
nosocomial acquired pneumonia and roughly 1.5 million people in the US are 
hospitalized owing to community acquired pneumonia every year [5]. Globally, 
around 200 million people get affected by viral pneumonia annually [6], with a 50-
50 infection rate between adults and children. Generally, bacteria are classified as 
typical or atypical. Typical bacteria can be seen on the Gram strain and cultured 
through standard media, which, on the other hand, is not seen in atypical class of 
bacteria [7]. Typical bacteria-caused pneumonia can be listed as staphylococcus 
aureus, streptococcus pneumoniae, haemophilus influenza, etc. whereas atypical 
bacteria-caused pneumonia is mostly caused by chlamydia pneumoniae, legionella, 
chlamydia psittaci, and mycoplasma pneumonia [8]. Other types of pneumonia are 
fungal, aspiration, and hospital-acquired. 

The most commonly sought diagnostic technique for all forms of pneumonia 
involves studying the increased opacity in regions of the lungs as shown by the chest 
radiograph, or chest X-ray (CXR). The increased opacity is caused due to the 
inflammation of the lungs with the high amounts of liquid in the affected areas [9]. 
There can be complications to the diagnosis of pneumonia through CXR because of 
the possibility of existence of pulmonary edema [10] which is mostly caused by 
cardiac problems, or internal lung bleeding, lung cancer, or in some patients, 
atelectasis [11] which results in unilateral collapse or shutdown of a part of a lung or 
the whole lung itself. In this condition, alveoli are deflated to very low volumes, 
visible from the increased opacity of the affected part seen in the CXR. Due to these 
complications, it becomes vital for having trained physicians and specialists, 
equipped with the patients’ clinical record, to study the CXRs at different time frames 
for comparison and proper diagnosis.  

The medical field has witnessed lots of breakthroughs in better diagnosis of 
diseases through machine learning [12-16]. In this paper, we use the principles of 
deep learning, which is a branch of machine learning by employing convolutional 
neural networks (CNN) trained on normal and pneumonia positive CXR images to 
correctly identify whether or not a new CXR fed into the network is pneumonia 
positive when in the field for diagnostic purposes. The rest of the paper is organized 
as follows: 2. Related Work, 3. Methods and Data, 4. Experimentation and Results, 
5. Conclusions and Future Work. We do a comprehensive evaluation of different 
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structures of the CNN to best identify the ideal architecture for the particular CXR 
dataset used in Section 4. 

2.  Related Work  
Researchers in the past have emphasized on the use of deep learning frameworks, 
namely, CNNs to tackle the problem of diagnosis of pneumonia [17-20]. However, 
most of the work done in the literature focuses on detection of features through 
modern CNN architectures which are deeper than traditional, few layer 
architectures, for example, VGGNet proposed by Simonyan and Zisserman [21] 
and ResNet proposed by He et al. [22]. For instance, Kermany et al. [17] perform 
a comprehensive study of development of diagnostic tools to treat patients with 
treatable blinding retinal diseases and pneumonia with a state-of-the-art deep CNN. 
One of the problems with these deep, modern CNN architectures is the difficulty 
of training all the corresponding layers which proves to be quite time-taking and 
computationally extensive. To solve this, Kermany et al. [17] used a technique 
called “transfer learning” which essentially means the use of pre-trained weights in 
the neural network to kick-start the initialization of learning and expedite the whole 
training process through all its layers with the requirement of only a fraction of the 
training data.  

Another example of the use of very deep convolutional architectures is 
demonstrated by ChexNet proposed by Rajpurkar et al. [18]. Their architecture 
correctly identifies pneumonia and goes further to localize the areas of maximum 
lung inflammation in a heat-map fashion. Zech et al. [19] studied the performance 
of training of ChexNet on an internal dataset of pneumonia and normal medical 
CXRs and tested it on an external dataset. Through the work done in [19] it became 
very clear that a generalized pneumonia detection model must be trained on pooled 
data from different sources (say, hospitals or different departments in a hospital) 
for better generalization of model behaviour.  

Pankratz et al. [23] made use of machine learning algorithm namely logistic 
regression to detect usual interstitial pneumonia (UIP) distinguished from non-UIP 
cases with the area under the receiver-operator characteristic curve (AUC) to be as 
high as 0.92. Generally, there is noticed a trade-off between intelligibility of 
machine learning systems and the accuracy they attain in the field of medicine. The 
models that attain a high accuracy usually are not very intelligible. In other words, 
one cannot exactly understand every step of the process a less intelligible model 
undertakes and hence understanding, editing or validation of parameters of such 
models becomes difficult, even though they provide a high accuracy. We see such 
trade-offs when we are faced to choose between simple and intelligible machine 
learning algorithms like logistic regression or random forest put against more 
complex, less intelligible deep learning models like artificial neural networks which 
offer higher accuracy. In a field like medicine, a high accuracy may not always be 
the prime goal because these AI systems are augmented - with the supervision by 
a qualified person (say, the doctor) who has the final say.  

To solve this problematic trade-off, Caruana et al., worked on development of 
an intelligible model using generalized additive models (GAMs) [24] to make 
generalized additive models with pairwise interactions (GA2Ms) to achieve state-
of-the-art accuracy on CXR data [25]. Wang et al., created a hospital-scale chest 
X-ray dataset and collected over 100,000 frontal view CXRs of over 30000 unique 
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patients for eight common thoracic diseases [26]. One of these was pneumonia 
which was detected through localization using a unified weakly-supervised multi-
label image classification framework. For the CNN, they used transfer learning 
(ImageNet pretrained) to apply AlexNet, GoogLenet, VGGNet and ResNet except 
for the last fully connected layers for each of these models. For pneumonia, their 
method encountered a precision of 0.66, recall of 0.93 and an F1-score of 0.77. 
Sirazitdinov et al. [27] used a combination of two models, namely, Mask R-CNN 
[28] and RetinaNet [29] to form a deep ensemble model for the detection and 
localization of pneumonia. They achieved state-of-the-art mean Average Precision 
(mAP) for localization of the pathology and also comparable precision, recall and 
F1-scores of 0.758, 0.793 and 0.775. Following a similar approach as ours, Stephen 
et al. (2019) used a simple CNN architecture with a few layers to achieve high 
validation accuracy on a dataset of CXRs [30]. Table 1 summarizes and analyses 
the related work. 

Table 1. Analyses of related work. 

No. Ref. 
no. Technique Advantage Disadvantage 

1. [17] Pre-trained 
(ImageNet) CNN 
for classification 

Quick learning 
procedure even for 
very deep CNNs 

Transfer learning from 
ImageNet may involve 
negative transfer; when 
the CNN is pre-trained 
on data not similar to 

CXRs 
2. [18] 121-layer CNN to 

output 
localization-based 

pathology 
detection 

Density-based 
localization of 

pathology providing 
a very descriptive 

result 

Only uses frontal CXRs 
which may not always be 

adequate for diagnosis 
(without lateral view) 

3. [23] Genomic classifier 
distinguishing UIP 

from non-UIP 
through logistic 

regression 

Achieves very high 
specificity and AUC 

(area under ROC 
curve) of 0.86 and 
0.86, respectively 

Takes into consideration 
a smaller cohort for 

experiments. 
Additionally, achieves a 

sub-par sensitivity of 
0.63 

4. [25] Use of a highly 
intelligible 

additive model for 
pneumonia 
detection 

Work shows that 
intelligibility and 

achieving state-of-
the-art accuracy is 

possible through their 
approach 

Although the model is 
intelligible, the exact 

reason for the predictions 
being made are not 

known (various factors: 
overfitting, variable 

correlation, etc.) 
5. [26] Creation of a 

thoracic diseases 
CXR-based dataset 
and applying pre-
trained CNNs for 

heatmap 
localization 

Creation and usage of 
a very diverse and 

vast dataset (108,948 
frontal CXRs of 
32,717 unique 

patients) 

The ground-truth labels 
were attained through 

data mining which were 
an individual 

radiologist’s judgement. 
Due to ambiguity of 

pathologies’ appearance 
on CXRs, this ground 

truth may not always be 
accurate 

6. [27] Creation of a deep 
ensemble 

Deep ensemble 
learning achieves 

Training both models is 
very intensive in terms of 
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pathology 
detection and 

localization model 
using Mask R-

CNN and 
RetinaNet 

high mAP in terms of 
localization of 

pathology 

CPU and may be tedious. 
Work only uses frontal 
CXRs without lateral 

ones which may be stated 
a disadvantage 

7. [28] 4 layered-CNN 
used for detection 

of pneumonia 

Simple CNN 
architecture which 

achieves 93% 
accuracy on 
validation 

Work does not mention 
important metrics such as 
precision, recall and F1 

score 

In this paper, we demonstrate that simpler CNN architectures can achieve state-
of-the-art accuracy as compared to their bigger architecture counter parts with the 
added advantage of lower training times and lower computational expenses. 
Moreover, we do not employ any transfer learning techniques in our study. This is 
because, the sole purpose of our work is to explore the efficacy of smaller CNN 
architectures when put against very deep CNNs. There is no transfer learning 
required to train the architectures of the scale that we use in this paper since the 
weights are easily learnt due to the low number of layers. In fact, most transfer 
learning methods may have the issue of negative transfer where the model has pre-
trained weights from images not related at all to the task that one tries to solve. 
Usually, models are pre-trained on vast number of images such as ImageNet and 
due to the amount of uncertainty involved in the extent of negative transfer, the 
transfer learning approach can be very tedious to optimize. It may be possible that 
transfer learning used for the architectures that take longer training time may help 
the model converge quickly, however, this may trade more important metrics such 
as accuracy, precision and recall for reduced training time due to negative transfer. 

3.  Methods and Data 
In this section, we describe the methods used behind the classification process of 
CXRs determined to be pneumonia positive or negative. We also specify the dataset 
used for the task and the technology with which the experiments and computations 
were carried out. This section maps out as follows: 3.1. Dataset use, 3.2. Image 
augmentation, 3.3. Artificial Neural Network (ANN), 3.4. Convolutional Neural 
Network (CNN) and 3.5. Software and hardware. 

3.1. Dataset use 

The CXRs were collected from paediatric patients between one to five years of age 
from Gangzhou Women and Children’s Medical Center, Gangzhou by Kermany et 
al. [17]. A sample distinction between a normal CXR and a pneumonia positive 
CXR is shown in Fig. 1. Table 2 describes the amount of CXRs taken for training 
and testing of the model. 

Table 2. Dataset layout and proportions  
of images taken for training and testing. 

 Normal Pneumonia 
Training 1341 3875 
Testing 242 389 
Total 1583 4264 
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Fig. 1. (L) CXR of a normal individual, and (R) of a  

pneumonia positive patient. The increased opacity can clearly  
be seen in the pneumonia positive CXR which is a powerful indicator. 

3.2. Image augmentation 

Deep learning models usually require enormous amounts of data to train on for 
them to correctly function. In the case of CNNs, thousands upon thousands of 
images are required which, pragmatically speaking, is a difficult prospect. To solve 
this, a technique named image augmentation is used [31-34]. Image augmentation 
virtually increases the size of an existing dataset to a large extent with techniques 
like standardization of features (pixel values), whitening transforms [35], random 
rotations and shifts, flipping, rescaling, shearing, zooming, etc. In our approach, we 
rescale, shear, zoom and flip horizontally the training image for a wider variety and 
augmentation of training data. 

3.3. Artificial Neural Network (ANN) 
Artificial Neural Networks (ANN) are considered to be the backbone of deep neural 
networks and the deep learning framework. ANNs are powerful models which are 
used in a wide range of fields like regression and classification tasks, and some 
special applications like character recognition [36-40], speech recognition [41-44], 
face recognition [45-48], etc. They are also often used in combination with some 
specialized layers like convolutional and deconvolutional layers. Broadly, they 
consist of three layers: input, hidden and output. Figure 2 describes the structure of 
an ANN. Each layer’s nodes are connected, in a directed fashion, to each of the 
nodes in the next layer through weights, which are adjusted during the training 
process. Let 𝐿𝐿 = �𝐿𝐿1, 𝐿𝐿2, … , 𝐿𝐿𝑄𝑄� be the set of layers of an ANN having a total 𝑄𝑄 
layers with Q-2 hidden layers. Then we have a set of nodes 𝑁𝑁 = {𝑁𝑁1,𝑁𝑁2, … ,𝑁𝑁𝑄𝑄} 
where 𝑁𝑁𝑖𝑖 = �𝑁𝑁𝑖𝑖1,𝑁𝑁𝑖𝑖2, … ,𝑁𝑁𝑖𝑖

𝑃𝑃𝑖𝑖�, 1 ≤ 𝑖𝑖 ≤ 𝑄𝑄  and 𝑃𝑃𝑖𝑖  denotes the number of nodes in 
layer  𝐿𝐿𝑖𝑖 . The links between the nodes are defined as weights by set  𝑊𝑊 =
{𝑊𝑊2,𝑊𝑊3, … ,𝑊𝑊𝑄𝑄} whose first element is 𝑊𝑊2 because the first layer 𝐿𝐿1 (input layer) 
does not have weights from a previous layer which is non-existent. Each element 
in 𝑊𝑊 is defined by 𝑊𝑊𝑖𝑖 = {𝑊𝑊𝑖𝑖

1,1,𝑊𝑊𝑖𝑖
1,2, … ,𝑊𝑊𝑖𝑖

1,𝑃𝑃𝑖𝑖 ,𝑊𝑊𝑖𝑖
2,𝑃𝑃𝑖𝑖 , … ,𝑊𝑊𝑖𝑖

𝑃𝑃𝑖𝑖−1,𝑃𝑃𝑖𝑖}. For instance, 
the weight between 3rd node of 𝐿𝐿4 and 2nd node of 𝐿𝐿3 is given by 𝑊𝑊4

2,3. Each node 
in an ANN is designed to mimic a neuron which has an option to either fire and 
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propagate a signal, or completely ignore it. Each node receives input from all other 
nodes in the previous layer multiplied by their connection weights which is 
summed as, 

𝑆𝑆 =  �𝑊𝑊𝑖𝑖
𝑗𝑗,𝑘𝑘𝑁𝑁𝑖𝑖−1

𝑗𝑗
𝑃𝑃𝑖𝑖−1

𝑗𝑗=1

, 1 ≤ 𝑘𝑘 ≤  𝑃𝑃𝑖𝑖 (1) 

When an input is fed to the input layer, all the inputs get propagated through 
the network with some random initialized weights with each node having an 
activation function 𝜑𝜑(𝑆𝑆) which decides whether or not to fire (propagate) the input 
forward. The activation function 𝜑𝜑(𝑆𝑆) are of many types, such as sigmoid, rectified 
linear unit (reLU), leaky reLU, softmax, etc. The predicted values formed at the 
output layer are compared with test values and an error is backpropagated through 
the network to adjust the weights for better results in the next iteration or epoch. 

Figure 2 shows an ANN having the following number of nodes, layer-wise (L-
R): {12, 10, 10, 10, 2}. The input layer is the first layer with 12 nodes where the 
inputs are provided. Output layer has 2 nodes which have a softmax activation 
function for values to sum up to unity.  

 
Fig. 2. The Artificial Neural Network (ANN).  

3.4. Convolutional Neural Network (CNN) 
Convolutional Neural Networks (CNN) [49] are one of the most popular deep 
learning framework models proposed by LeCun et al. which revolutionized 
deep learning and is also the model we use in our approach. CNNs are mainly 
used to operate on image data to help classify objects. CNNs have been used to 
detect faces [50, 51], scene labelling [52], action recognition [53, 54], etc. 

CNNs are composed of two main types of layers - convolutional and dense 
(here dense refers to the ANN layers), Fig. 3 shows the procedure of usage of 
CNNs. The main objective of convolutional layers is to find features in an image 
using feature detectors which are 2D matrices called kernels or filters. This 
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obtains a feature map which stores the spatial relationships between pixels of the 
input image. 

 

Fig. 3. CNN used for classification of images.  

These spatial relationships are vital to finding differences between two objects 
in two images. A convolution operation of two functions 𝑓𝑓(𝑡𝑡) and 𝑔𝑔(𝑡𝑡) can be 
defined as, 

𝑓𝑓(𝑡𝑡) ∗ 𝑔𝑔(𝑡𝑡) ≜  � 𝑓𝑓(𝜏𝜏)𝑔𝑔(𝑡𝑡 − 𝜏𝜏)𝑑𝑑𝜏𝜏
∞

−∞�������������
(𝑓𝑓∗𝑔𝑔)(𝑡𝑡)

 (2) 

After the convolution layer, a pooling layer is used to further down sample the 
detected features which helps to detect the image whether it is tilted, stretched or 
rotated which helps provide spatial invariance to these models. Pooling reduces the 
parameters by 75% and also prevents overfitting. The next layer is to flatten all the 
pooled values and arrange them into a vertical array to be fed into an ANN (the 
dense layers). This step is called the full connection (FC). Finally, the values are 
propagated through the ANN to get an output at the output layer. Figure 4 displays 
a full convolutional neural network. 

 
Fig. 4. Architecture of a 2 layered CNN. 

3.5. Software and hardware 

All the various architectures of CNNs that were trained were done through Python 
3 with the Keras library (that uses TensorFlow backend) high level API for 
construction of neural networks on a workstation with Intel i5 8th generation 
processor with 8 GB RAM. 

4.  Experimentation and Results 
In this section, we discuss the comprehensive experiments performed on the CXR 
dataset through different architectures as we select the most ideal one for 
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classification. We divide this section as follows: 4.1. Experiments and analysis, and 
4.2. results of selected architecture. 

4.1. Experiments and analysis 

We carried out experiments with different CNN architectures pertaining to the 
number of convolutional layers, number of dense layers, inclusion, and exclusions 
of regularizations like L1, L2, BatchNorm (Batch Normalization) and Dropout, 
image input sizes, kernel sizes, pooling matrix sizes, and compared each 
architecture’s performance based on the maximum accuracy achieved during 
training in addition to the least cross entropy loss encountered during training. 
Table 3 specifies the meanings of the abbreviations used in Table 4 which contains 
information of 15 different CNN architectures and their maximum accuracy and 
least loss along with the time taken in seconds to train them. One thing to note is 
that the number of nodes in each ANN layer is taken to be 128 except for the last 
output layer having 2 output nodes.  

Figure 4 summarizes the statistics of each architecture based on LVCEL, MVA 
and TT. Figure 5(a) plots the training accuracy and Fig. 5(b) loss achieved per each 
epoch for each architecture. From Table 4 we notice that architectures 10 and 11 
perform poorly with respect to MVA and LVCEL. This may be due to the L1 
regularization added on these architectures (which is not applied on any other case) 
which restricts the model from correctly learning the relationships in the dataset. 
We also notice a directly proportional relationship between architecture size and 
TT. However, TT highly depends upon IS and as we see in architectures 5, 6 and 
13, when IS (64, 64), TT is greatly reduced. It is helpful to note that TT is also 
directly proportional to the how computationally expensive training the model is. 
Training neural networks takes a lot of computational power, and the longer it runs, 
the more intensive the task is.  

Finally, we can reduce from Table 4 that MVA and LVCEL do not improve 
drastically with increasing architecture size, whereas TT increases drastically (Fig. 
6(c)). This brings us to the simple conclusion that for a given dataset, the simpler the 
architecture, the better. Adding extra layers to the neural network may cause it to 
underfit the data as it starts to attempt to detect features which are not really existent. 
Based on MVA, LVCEL and TT, for our purposes, we select architecture 5 for further 
consideration as the most ideal model and we use this simple architecture to evaluate 
model performance on the CXR dataset in the next sub-section. 

Table 3. Abbreviations used in Table 4. 
Abbreviation Meaning 

CL Number of CNN Layers in specific architecture. 
AL Number of ANN Layers in specific architecture. 
L1 Level 1 regularization 
L2 Level 2 regularization 
BN Batch Normalization 
DO Dropout 
IS Input Size of image (64x64 or 128x128) fed to the CNN 

FD 
Features Detected in a convolutional layer, layer-wise. Varies from 
layer to layer, so for instance, {64, 32} refers to 64 features detected 

in first layer and 32 in the second layer. 
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KS 
Kernel Sizes for each convolutional layer, layer-wise. Assumed 

to always be square matrices, for instance, {9, 3} refers to 9x9 in 
the first layer and 3x3 in the second layer. 

PS Pooling Sizes followed by every convolutional layer, always 
assumed to be a square matrix. 

TT Time Taken in time units to train the model. 

LVCEL Least Validation Cross Entropy Loss encountered during training. 
Here, validation refers to results on test set. 

MVA Maximum Validation Accuracy encountered during training. 

Table 4. Performance of 15 different CNN architectures. 

4.2. Results of selected architecture 

We evaluate the model performance of architecture 5 on the test set specified by 
Table 2. As the evaluation metrics, we use confusion matrix and calculate the 
Sensitivity and Specificity as follows, 

𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑖𝑖𝑡𝑡𝑖𝑖𝑆𝑆𝑖𝑖𝑡𝑡𝑆𝑆 =  𝑇𝑇𝑃𝑃 (𝑇𝑇𝑃𝑃 + 𝐹𝐹𝑁𝑁)�  (3) 

𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑖𝑖𝑓𝑓𝑖𝑖𝑆𝑆𝑖𝑖𝑡𝑡𝑆𝑆 =  𝑇𝑇𝑁𝑁 (𝑇𝑇𝑁𝑁 + 𝐹𝐹𝑃𝑃)�  (4) 

where TP, TN, FN, FP refer to True Positive, True Negative, False Negative, and 
False Positive, respectively.  

S.  
No. CL AL Regularizations IS FD KS PS LVCEL MVA TT 

   L1 L2 BN DO        

1 2 3 ✖ ✖ ✖ ✖ (128,128) {64,32} {9,3} {4,2} 0.138 0.8984 2147 

2 2 4 ✖ ✖ ✖ ✖ (128,128) {64,32} {9,3} {4,2} 0.1963 0.8703 2440 

3 2 4 ✖ ✖ ✔ ✔ (128,128) {64,32} {9,3} {4,2} 0.3541 0.8703 2261 

4 2 4 ✖ ✖ ✔ ✖ (128,128) {64,32} {9,3} {4,2} 0.1733 0.9 2647 

5 2 4 ✖ ✖ ✖ ✔ (64,64) {64,32} {9,3} {4,2} 0.2017 0.9031 1563 

6 2 2 ✖ ✖ ✖ ✖ (64,64) {64,32} {9,3} {4,2} 0.2024 0.8938 1563 

7 2 3 ✖ ✖ ✔ ✔ (128,128) {64,32} {9,3} {4,2} 0.2849 0.8797 2237 

8 3 4 ✖ ✖ ✔ ✖ (128,128) {128,64,32} {9,6,3} {4,2,2} 0.2669 0.8 3549 

9 3 5 ✖ ✔ ✖ ✖ (128,128) {128,64,32} {9,6,3} {4,2,2} 0.2744 0.9 3591 

10 4 4 ✔ ✖ ✖ ✔ (128,128) {128,64,32,16} {9,6,3,3} {4,2,2,2} 0.5624 0.6996 3554 

11 4 5 ✔ ✔ ✖ ✖ (128,128) {128,64,32,16} {9,6,3,3} {4,2,2,2} 0.6898 0.6928 4125 

12 4 5 ✖ ✖ ✖ ✖ (128,128) {128,64,32,16} {9,6,3,3} {4,2,2,2} 0.2702 0.8953 4253 

13 4 5 ✖ ✖ ✖ ✖ (64,64) {64,32,32,16} {9,6,3,3} {2,2,2,2} 0.2492 0.8766 1410 

14 5 5 ✖ ✖ ✖ ✖ (128,128) {128,64,64,32,16} {9,6,6,3,3} {2,2,2,2,2} 0.1127 0.8859 8254 

15 5 6 ✖ ✖ ✖ ✖ (128,128) {128,64,64,32,16} {9,6,6,3,3} {2,2,2,2,2} 0.3088 0.8797 8200 
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Sensitivity in our case is defined as the proportion of patients who test 
pneumonia positive. Specificity, on the other hand, is the proportion of patients not 
having pneumonia being tested negative. Figure 7 illustrates the confusion matrix 
of the selected model. 

 
Fig 7. The confusion matrix for model of architecture 5  

(see Table 4). From the figure, we see that TP=381, TN=200, FP=17, FN=42. 

Hence, we calculate from Eqs. (3) and (4), 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑖𝑖𝑡𝑡𝑖𝑖𝑆𝑆𝑖𝑖𝑡𝑡𝑆𝑆 =  0.9007 
and 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑖𝑖𝑓𝑓𝑖𝑖𝑆𝑆𝑖𝑖𝑡𝑡𝑆𝑆 = 0.9216. Both these metrics are above 90% which is a good 
indicator that the model performs excellently in both, having the ability to correctly 
identify most of the positive pneumonia cases, and also the ability of ruling out the 
negative cases. Moreover, the ROC curve illustrated in Fig. 8 whose area under the 
curve (AUC) is 0.9582 which is very high. These metrics are comparable to most 
of the state-of-the-art architectures applied on CXRs for pneumonia detection. 

 
Fig 8. The receiver-operating characteristics (ROC) curve for  

5th CNN architecture. Area under this curve is calculated to be 0.9582 unit. 



872       S. S. Rautaray et al. 

 
 
Journal of Engineering Science and Technology        February 2021, Vol. 16(1) 

 

5.  Conclusions and Future Work 
In this paper, we attempt to find a simpler approach for pneumonia detection based 
on CXRs by comparing the performances of 15 different CNN architectures trained 
on the same dataset. Based on our findings, we select the most ideal model which 
is easy to train (less computationally expensive and quicker), intelligible, and has 
one of the best performance metrics. The metrics of the selected architecture 
compare to some of the state-of-the-art architectures trained on CXRs that goes 
ahead to prove that striving for the simplification of CNN architectures is crucial 
for intelligibility without compromising accuracy and quality of performance. As 
learnt from the findings in this research work, we recommend that there be more 
research into fine-tuning simpler architectures to gain even higher levels of 
accuracy. We admit that the simple architecture 5 that was chosen after thorough 
experimentation can perform even better if fine-tuned and experimented upon 
more. Future work on detection of pneumonia may also be done through 
multimodal learning where symptoms of the patients as text could be taken by the 
model along with the CXR image for even better diagnosis. 

 

Nomenclatures 
L Set of layers 
N Set of nodes 
Pi Number of nodes in layer i 
Q Total layers 
S Neural firing sum 
W Set of weights 

Greek Symbols 
𝜑𝜑 Activation function 

Abbreviations 

AL Artificial neural network Layers 
ANN Artificial Neural Network 
AUC Area Under Curve 
BN Batch Normalization 
CL Convolutional Layers 
CNN Convolutional Neural Network 
CXR Chest X-ray 
DO Dropout 
FC Full Connection 
FD Features Detected 
FN False Negative 
FP False Positive 
IS Input Size 
KS Kernel Size 
L1 L1 regularization 
L2 L2 regularization 
LVCEL Least Validation Cross Entropy Loss 
MVA Maximum Validation Accuracy 
PS Pooling Size 
ROC Receiver-Operating Characteristics 
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TN True Negative 
TP True Positive 
TT Training Time 
UIP Usual Interstitial Pneumonia 
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