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Abstract 

Quantitative measurements of thermal comfort conditions are required for a more 
valid measurement result than using a questionnaire only. This research aims to 
conduct a preliminary study using electroencephalography (EEG) signals to 
predict personal thermal comfort in an indoor environment. The individual's 
satisfaction or dissatisfaction describes personal thermal comfort to the thermal 
condition exposure. The applied classification method in this research is the k-
Nearest Neighbor classification. The obtained results show that the brain's 
occipital lobe (represented by the O2 channel) and the frontal lobe (represented 
by the FC5 channel) were suspected can quantizing personal thermal comfort. 
The quantization was generated in the delta (0-4 Hz) and theta (4-8 Hz) frequency 
ribbon in the O2 channel, as well as the beta (13-30 Hz) frequency ribbon in the 
FC5 channel. With its accuracy of 85%, the k-Nearest Neighbor algorithm was 
suitable to predict personal thermal comfort.  

Keywords: Brain signal, k-Nearest Neighbor algorithm, Physiological signal, 
Power spectral density, Thermal comfort. 
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1.  Introduction 
Thermal comfort is one of the building parameters to indicate the indoor 
environmental quality. It is an essential factor that can affect a person's work 
productivity. Several previous experiments have proven the relationship between 
comfort and productivity. It is said that the more uncomfortable an indoor 
environment then the more likely a person's productivity will decrease [1]. Data 
shows that the most significant amount of electrical energy in Indonesia's buildings 
is required to fulfil that building's thermal comfort [2, 3]. The high energy use is 
caused by inefficient air conditioner (AC) usage when it is set incorrectly and does 
not fit with the occupants' needs [4]. Observation of occupant's thermal comfort is 
required to determine the air conditioner's correct setting for more energy-efficient 
use of the system. 

Thermal comfort is a response of the human body that will provide 
physiological and psychological responses towards the surrounding thermal 
environment. A physiological response appears in the form of feeling hot or cold. 
It was known as thermal sensation, and it correlates to the process of heat exchange 
when the human body attempts to maintain its core temperature. Meanwhile, 
according to the ANSI/ASHRAE Standard 55 [5], thermal comfort is a state of a 
person's mind that expresses satisfaction towards the thermal environment and can 
be assessed through subjective evaluation. It can be seen that thermal comfort leans 
more on the psychological response of the body. The body's response concerning 
its thermal comfort includes sensations and the body's perception, which was where 
the psychology works.  

A person's thermal comfort in a room can be assessed using questionnaires. 
Questionnaires are a method to measure an excellent thermal comfort, but it poses 
the challenge of quantifying perception (qualitative value) into numbers 
(quantitative value). Another method and measuring tool are required to obtain a 
more valid measurement result of thermal comfort condition. Several prior 
experiments used physiological signals such as skin temperature [6-9], body 
temperature [10], blood flow [6], amount of sweat [6], heart rate [7], blood pressure 
[8], and heat released from the skin [7] as parameters from the process of heat 
transfers that can represent thermal sensation. 

A few research types have also discovered that brain wave detected using 
electroencephalography (EEG) technology can be utilized to observe thermal 
sensation [11-13]. Brain waves from the EEG are a physiological sign from the body 
that represents something in the person's thoughts due to a certain stimulant. This 
signal can illustrate the brain’s activity [14], the level of concentration/attention [14], 
emotional level [14-16], pleasant/unpleasant [11], and level of relaxation [16]. It 
indicates that EEG signals can predict personal thermal comfort through 
psychological analysis by stating whether it shows "satisfaction" or "dissatisfaction" 
towards a certain thermal environment. So far, no studies have been found to detect 
brain signal by EEG to predict personal thermal comfort. 

Represented brain waves by EEG require a classification algorithm to predict 
the tested qualitative value. Implemented features in the EEG signal classification 
consist of power spectral density, the average value of raw data, the standard 
deviation of raw data, and others. The features obtained from EEG signals only 
have quantitative value. However, the meaning of the quantitative value is 
unknown. Therefore, a classification method for EEG signal features is required to 
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correlate the quantitative value with qualitative value, such as thermal comfort, 
pain, hand motions, etc. Several methods of classification have been used in prior 
research, including the Support Vector Machine (SVM) method [17], [18], k-
Nearest Neighbor (kNN) [17, 18], Artificial Neural Network [17], Linear 
Discriminant Analysis (LDA) [13, 17], Quadratic Discriminant Analysis (QDA) 
[17], Logistic Regression [18], and Naive Bayesian [18]. 

This research aims to conduct a preliminary study using EEG signals to predict 
personal thermal comfort in an indoor environment. The individual's satisfaction or 
dissatisfaction describes personal thermal comfort to the thermal condition 
exposure. The classification method used in this research is the k-Nearest Neighbor 
(kNN) classification. 

2. Methods  
The phases of this research are illustrated in Fig. 1. To predict personal thermal 
comfort, the k-Nearest Neighbor (kNN) classification algorithm was connected to 
the output data of thermal comfort with the brain signals' input data from the EEG 
signals based on the environmental and personal condition when the measurement 
was taken, as seen in Fig. 2.  

 
Fig. 1. The phase of the research. 

 
Fig. 2. Algorithm block diagram of personal thermal comfort prediction. 
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2.1. Data collecting 
Thermal comfort is affected by environment and human factors [19]. Several 
research types have varied the physical parameters of an environment [12, 20] with 
personal parameters [21, 22]. The measurement time varies from 15 minutes [20] 
to 120 minutes [22], depending on the aim and the parameter variation used in the 
measurement. In this research, the thermal comfort level was conditioned by 
varying the respondents' body metabolism with different activities. Each 
respondent was asked to undertake two different activities, namely an office 
activity (1.0 met) and a physical activity (3.0 - 4.0 met). Both activities were 
performed in the PSoC (Programmable System on Chip) Room, Laboratory of 
Sensor and Telecontrol System, Department of Nuclear Engineering and 
Engineering Physics, Faculty of Engineering, Universitas Gadjah Mada, with an 
adjusted room air temperature that corresponds to the National Standard of 
Indonesia (SNI 6390:2011) [23]. The testing was carried out for 40 minutes, with 
the details of the data retrieval shown in Fig. 3. The data taken from this testing 
was the EEG signal data and the questionnaire data. 

 
Fig. 3. Detail scheme of data acquisition. 

2.1.1. Thermal comfort questionnaire data 
The questionnaire used in this research was made in Bahasa Indonesia. The 
questionnaire was divided into three questions about thermal sensation, thermal 
preference, and thermal comfort in the order of question numbers 1, 2, and 3, 
respectively, as can be seen in Fig. 4. The question of thermal comfort was used to 
conduct an assessment of whether an individual felt satisfaction or dissatisfaction in the 
thermal environment. The results of this questionnaire were the output data to develop 
the k-Nearest Neighbor classification algorithm. The question on thermal sensation and 
preference was used to conduct data selection in order to know which data was correctly 
answered by the respondent. The questionnaire data selection utilized a premise test by 
summing the score of the answers from the thermal sensation with the thermal 
preference. Because the thermal sensation questionnaire was provided on a five scale, 
the score offered was at a range of -2 to +2. The sum of the scores for thermal sensation 
and thermal preference must not exceed that range. If so, the actual data, both 
questionnaires and EEG data, will be thrown away. 

2.1.2. EEG signal 
The EEG signal was recorded using consumer-grade Emotiv EPOC, which has 14 
channels (F3, F4, FC5, FC6, F7, F8, T7, T8, P7, P8, O1, O2, AF3, AF4), with the 
placement of the electrodes pictured in Fig. 5. The EEG signal recording results were 
saved in a file with a Comma Separated Value (CSV) format. The following feature 
extraction processes were done to acquire the EEG signal features of this research. The 
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features implemented were the power spectral density value for delta, theta, alpha, beta, 
and gamma ribbon frequency of 14 channels. The extraction process comprises four 
separate processes as follows: artifact rejection process, filtering using the band-pass 
filter, calculating power spectral density, and feature normalization process. 

  

(a) Version Bahasa Indonesia (b) English Version 
Fig. 4. The questionnaire used in this research. 

 
Fig. 5. Electrode placement for Emotiv EPOC [24]. 

2.2. Statistical testing 
A statistical test was conducted to ensure that the questionnaire's data represents 
the changes in activity stimulant. Data analysis was completed according to the 
schematic in Fig. 6. The T pairs testing with a 95% accuracy level ensures that the 
stimulants' changes (activity conditions) produce different responses from both the 
questionnaire's respondents and EEG signal's respondents. 

  
Fig. 6. Data analysis scheme. 
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2.3. Development of kNN algorithm classification 
The k-Nearest Neighbor (kNN) is a machine learning classification algorithm based 
on the distance of a data with a group of train data sets taken from k nearest 
neighbors. Two factors that influence the performance of kNN are, first, the method 
for calculating the distance between the new data with the data of learning into its 
neighbor, and the last is the number of nearest neighbors. Based on these two 
factors, there are several types of kNN algorithms [25], which are listed below. 

• Fine-kNN. The number of neighbor is one, the distance is Euclidean. The 
Euclidean distance is given by Eq. (1) where x and y are subjects to compared 
with n characteristics. 

𝑃𝑃(𝑥𝑥,𝑦𝑦) = �(𝑥𝑥1 − 𝑦𝑦1)2 + (𝑥𝑥2 − 𝑦𝑦2)2 + ⋯+ (𝑥𝑥𝑛𝑛 − 𝑦𝑦𝑛𝑛)2             (1) 

• Medium-kNN. The number of neighbor is ten, the distance is Euclidean.  
• Coarse-kNN. The number of neighbor is 100, the distance is Euclidean. 
• Cosine-kNN.  The number of neighbor is ten, the distance is cosine. The 

Cosine distance from vector u and v is calculated by Eq. (2). 

𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 = 1 − 𝑢𝑢.𝑣𝑣
|𝑢𝑢|.|𝑣𝑣|

                 (2) 

• Cubic-kNN. The number of neighbor is ten and the distance is cubic. The 
Cubic distance from two vector n-dimensional u and v is calculated by Eq. (3). 

𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 = �∑ |𝑢𝑢𝑖𝑖 − 𝑣𝑣𝑖𝑖|3𝑛𝑛
𝑖𝑖=1

3                           (3) 

• Weighted-kNN. The number of neighbor is ten, the distance is weighted. The 
Weighted Euclidean distance from vector u and v is calculated by Eq. (4), 
where 0 < 𝑤𝑤1 < 1 and ∑ 𝑤𝑤𝑖𝑖 = 1𝑛𝑛

𝑖𝑖=1 . 

𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 = �∑ 𝑤𝑤1(𝑢𝑢𝑖𝑖 − 𝑣𝑣𝑖𝑖)2𝑛𝑛
𝑖𝑖=1                 (4) 

The k-Nearest Neighbor (kNN) classification algorithm was developed if the 
data spread could explain that the research data could be differentiated. To attain a 
high accuracy from the classifier that was created, this development process was 
made up of several analysis phases and optimization. The steps to develop the kNN 
classification algorithm were as follows: 

• It determined the type of kNN classification algorithm by comparing each type 
of algorithm's accuracy, which was the Fine-kNN, Medium-kNN, Coarse-
kNN, Cosine-kNN, Cubic-kNN, and Weighted-kNN algorithm. 

• Optimization of the frequency ribbon combination aims to discern the most 
dominant frequency ribbon to state the stimulant changes. 

• Optimization of the kNN algorithm performance, which aims to determine the 
algorithm parameters, generated the highest accuracy, in this case, the value of 
k in the k-Cross-Validation. 

• Optimization of feature combination per channel aims to discover the most 
dominant feature and discern the part of the brain that mirrors thermal comfort. 
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3.  Results and Discussion 

3.1. Data analysis of the thermal environment parameters 
The parameters of a thermal environment (temperature, humidity, and wind speed) 
significantly impact personal thermal comfort. During this research's data 
acquisition process, the thermal environment parameters were maintained in the 
SNI 6390:2011 safe range and explained the energy conservation of a building's 
airflow system. The standards state that in order to provide a comfortable 
environment, the dry-bulb temperature and humidity must be 24°C, - 27°C or 25°C 
± 1.5°C and 60% ± 5% RH, respectively [23]. 

The data acquisition process results state that the temperature and relative 
humidity were 25 ± 1 °C and 55 ± 5% RH, respectively. It fits the standards' 
requirements, confirming that the temperature and relative air humidity of the room 
during the process could represent personal thermal comfort. 

3.2. Data selection 
The data selection results show that from the 21 questionnaire respondents, there 
was one who was invalid, and the details can be seen in Table 1. 

Table 1. Invalid data from the questionnaire. 

Condition Thermal 
Sensation 

Thermal 
Preference Total Result 

Sedentary 
activity -1.917 -1.292 -

3.208 Rejected 

Physical 
activity 1.063 0.729 1.792 Accepted 

Based on Table 1, there was one condition that did not pass the preliminary test. 
Therefore, it was a questionnaire; none of the conditions could be used. The data 
selection process obtained 40 sets of questionnaire data for office and physical 
activity conditions that could be processed when testing the data distribution. 

3.3. Data spread analysis based on respondent's activities 
A statistical test was conducted in order to ensure that the data from the 
questionnaire represents the changes in activity stimulants. The process utilized 
the T-paired test with an accuracy of 95% since each respondent participated in 
two separate measurements of different conditions. The test was based on the 
following hypotheses: 

• The null hypothesis (H0): µ1 = µ2 (there was no difference between the 
respondent's questionnaire value when partaking in an office activity and 
physical activity) 

• The alternative hypothesis (H1): µ1 ≠ µ2 (there was a difference between the 
respondent's questionnaire value when partaking in an office activity and 
physical activity) 
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A p-Value determined the chosen hypothesis yielded from the experiment. If p-
Value > 0.05, then H0 was received, and H1 was rejected. If p-Value < 0.05, then 
H0 was rejected, and H1 was received. 

The results show that the average scale of thermal comfort during office 
activities was as big as 1.007, while physical activities were as big as -0.256. It 
indicates that office activities and physical activities can be differentiated through 
the results of the questionnaire. To better describe the questionnaire data spread, 
the data has been depicted inside a boxplot in Fig. 7. 

 
Fig. 7. Data spread of the questionnaire on the respondent's activities. 

3.4. Data spread analysis based on respondent's activities 
Feature extraction can be conducted through 4 phases: artifact rejection process, 
signal filtering process, calculating the power spectral density value, and feature 
normalization. 

3.4.1. Artefact rejection 
An artifact, which was a form of noise inside EEG signals, was monitored through 
EEG Lab installed in the MATLAB software. By monitoring the time where the 
noise appeared, it can be discarded from the CSV formatted file's raw data. The 
discarded artifacts were artifacts originating from the physiological process and the 
environmental factors. The comparison between the EEG signal before and after 
the artifact rejection process was pictured in Fig. 8. 

Based on Fig. 8, by utilizing the Artefact Rejection function in EEG Lab, the 
noises found in the EEG signal become visible and can be erased. Hence what was 
left was a cleansed raw data of the EEG signal. It can be summed that erasing the 
artifact from the raw data in the CSV file produced a cleansed data. 
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(a) EEG signal before artefact rejection process. 

 

(b) EEG signal after artefact rejection process. 
Fig. 8. Time artifact was detected.  

3.4.2. Signal filtering 
The EEG signal cleansed of artifacts will then go through a filtering process. In this 
process, the filter was the band-pass filter, which was tested through a frequency 
from 0.1 Hz to 50 Hz. The results from the signal filtering process were shown in 
the following Fig. 9. Based on Fig. 9, if we were to overpass a frequency of 50 Hz, 
a signal that at first has considerable power will weaken until it reaches a value 
nearing 0 μV2. It indicates that the filter worked; thus, the EEG signal that will be 
processed afterwards will genuinely be clean and within the required range (0 Hz 
was the bottom border of the delta ribbon frequency, while 50 Hz was the upper 
border from the gamma ribbon frequency). 

3.4.3. Calculate Power Spectral Density (PSD) value 
Calculating the power spectral density (PSD) value that becomes a feature in this 
research was done utilizing the MATLAB software. The calculation was done using 
the Pwelch periodogram function. An example of the data spread from the power 
spectral density calculation for channel FC5 was shown in Fig. 10. It was shown in Fig. 
10 that the PSD value obtained from the calculation has an extensive range, with many 
outliers from those conditions, specifically for the delta ribbon frequency. That 
extensive range must be anticipated, and one way was through normalization. 
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(a) The EEG signal before filtering process. 

 

(b) The EEG signal after filtering process 
Fig. 9. Frequency of EEG signal before and after filtering process. 

 
Fig. 10. PSD data spread for each ribbon frequency in channel FC5. 
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3.4.4. Feature normalization 
Feature normalization was done to decrease the wide range between the PSD values 
and reduce the number of outliers from the obtained feature value. The results of the 
feature normalization can be seen in Fig. 11. It was shown in Fig. 11 that the range from 
each feature in the ribbon frequency becomes narrower than before normalization. The 
outlier inside the data also disappears after conducting normalization. The normalized 
data will then be used to develop the k-Nearest Neighbor classifiers algorithm. 

 
Fig. 11. PSD data spread of each ribbon  

frequency in channel FC5 after normalization. 

3.5. Data spread analysis of the EEG signal based on the respondents' 
activities 

A data spread analysis was conducted to ensure there was a change of EEG signal 
due to a change stimulated from the respondents' activities. This analysis was 
done using the T-test paired with a 90% level of accuracy. The matrix from the 
statistical test results of the EEG signal's data spread towards the respondents' 
activities was shown in Fig. 12. Based on the matrix, the green-coloured cells 
showed that the PSD value in that channel could be used to differentiate the 
respondents' activities. In contrast, the yellow-coloured cells show the PSD value 
in that channel that cannot be used to differentiate the respondents' activities. The 
matrix indicates that low frequencies, such as delta and theta, were sensitive 
enough to detect the different activities. However, for waves with a higher 
frequency, such as alpha, beta, and gamma, the different activities showed no 
significant results in the Power Spectral Density value. 

3.6. Developing the k-Nearest Neighbor classifiers algorithm 
The k-Nearest Neighbor classifiers algorithm was created using MATLAB 
software. Developing the classifiers algorithm was to classify the EEG signal used 
on the questionnaire as a physiological response. 
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Fig. 12. Matrix of the statistical test for EEG  

signal data spread of the respondents' activities. 

3.6.1. Determining the kNN type of algorithm 
The first step in optimizing the ribbon combination frequency was determining the 
k-Nearest Neighbor classifiers algorithm in MATLAB software. The algorithms 
were the Fine-kNN, Medium-kNN, Coarse-kNN, Cosine-kNN, Cubic-kNN, and 
the Weighted-kNN. Those six types of kNN were tested using all the features in 
order to produce accuracy. The kNN type with the highest accuracy will be the 
algorithm that was used and optimized. The accuracy test results of all six kNN 
algorithm types can be seen in Fig. 13, with the highest accuracy in the Fine kNN 
algorithm of 82.5 %. Based on that result, the Fine-kNN algorithm was put through 
an optimization process. 

 
Fig. 13. Results of the accuracy-test for six types of k-NN algorithms. 

3.6.2. Optimization ribbon frequency combination 
Optimizing the ribbon frequency combination begins with inserting all the features 
into the algorithm, then the ribbon frequencies were erased one by one from the 
combination. The results of the optimization of the ribbon frequency combination 
were depicted in Fig. 14. The ribbon frequency combination consists of the delta, 
theta, and beta ribbons, which were capable of producing an 85% accuracy, which 
was more than when using all the features, which only gives an accuracy of 82.5%. 
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Fig. 14. Results of the accuracy-test of  

the first ribbon frequency combination. 

3.6.3. Optimization 
Using the ribbon frequency combination in step 2, the k-Nearest Neighbor 
classification algorithm's performance can be optimized by varying the value of k 
in the k-Cross-Validation. The results were shown in the following Fig. 15. Based 
on Fig. 15, it can be concluded that the highest accuracy of classification was when 
k = 9, k = 10, and k = 11, which is as big as 85%. 

 
Fig. 15. Results of the Optimization of the  

k-Nearest Neighbor classifiers algorithm performance. 

3.6.4. Optimization of feature combination per channel 
The final optimization was the optimization of the feature combination per channel. 
Its purpose was to determine which feature has the most effective and which part 
of the brain that mirrors thermal comfort. The ribbon frequencies used in this 
optimization were the delta, theta, and beta ribbons that have the highest accuracy 
and validated with a value of k = 10 in the k-Cross-Validation. The features per 
channel were tested one by one in order to know what accuracy can be produced 
using only one feature. After all, the features were tested, continued by finding the 
average value and the standard deviation of the accuracy in order to get the accuracy 
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range (average standard deviation (%) from each ribbon frequency. The features 
that will be combined were the features that have the highest level of accuracy 
above the measured range. After determining the feature combination, like ribbon 
frequency combination optimization, the features were eliminated one by one in 
order to know which feature can be felt when describing a personal thermal 
comfort. The results of this process were shown in Fig. 16. 

 
(a) Delta ribbon. 

 
(b) Theta ribbon. 

 
(c) Beta ribbon. 

Fig. 16. Feature accuracy per channel. 

Based on Fig. 16, the features that will be combined were channel 7 (O2) and 
channel 11 (AF4) delta, channel 7 (O2), channel 9 (T8), and channel 10 (F8) theta, 
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as well as channel 2 (FC5) and channel 14 (AF3) beta. The optimization results 
from combining the features can be seen in Fig.17. 

 
(a) First step. 

 
(b) Second step. 

 
(c) Third step. 

Fig. 17. Results of feature optimization per channel. 

Based on Fig. 17(a) depicts the first step in this optimization. When the 
AF4_Delta and T8_Theta features were erased, the accuracy increases. It indicates 
that the effects of both channels were insignificant. Thus, both channels were 
eliminated in the second step. While in Fig. 17(b), it was a picture of step two, 
whereby erasing F8_Theta, the accuracy, which before was only 75%, increases to 
become 77.5%. Therefore, the F8_Theta feature was also erased on the third step. 
In Fig. 17(c), it was shown that the third step from the optimization process. After 
all the features were used, the accuracy was as big as 77.5%. Furthermore, after 
eliminating feature AF3_Beta, the value increased to 85%, which was the same 
value we would receive if all the channels were used. Thus, it can be seen that the 
features which produce the most optimal accuracy were the O2_delta feature, 
O2_theta, and FC5_beta, with the value of k in the k-Cross-Validation as big as 10. 
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4.  Conclusions 
This research concluded that the sense of personal thermal comfort and thermal 
inconvenience could be predicted using brain waves represented by EEG signals. 
In order to obtain that prediction, the k-Nearest Neighbor classification algorithm 
method can be used as a classifier when correlating the EEG signal with the thermal 
comfort of an individual. 

By utilizing feature combination optimization, information can be obtained that 
the occipital lobe of the brain represented by the O2 channel, and the frontal lobe 
represented by the FC5 channel, was able to quantize personal thermal comfort. The 
quantization was generated in the delta (0-4 Hz) and theta (4-8 Hz) frequency ribbon 
in the O2 channel, as well as beta (13-30 Hz) frequency ribbon in the FC5 channel. 

Relating to the prediction of the thermal comfort value using the EEG signal, it 
was possible to use the Fine k-Nearest Neighbor classifiers algorithm with 
O2_delta, O2_theta, and FC5_beta features and the value of k being 10 in the k-
Cross-Validation. With an accuracy of 85%, a k-Nearest Neighbor algorithm can 
be used to predict personal thermal comfort. 

Furthermore, to improve the accuracy of predictions, several things can be 
improved for further research. In this study, the normalization process was carried out 
on the resulting feature values. The normalization process can be carried out at the 
beginning of the EEG signal processing. In this way, the uniqueness of each feature will 
be more observable.  In addition, increasing the number of features using different 
feature types will provide the possibility to increase the accuracy of predictions. 
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Nomenclatures 
 
H0 Null hypothesis 
H1 Alternative hypothesis 
n Number of characteristics in Eq. (1) 
p-Value The chosen hypothesis yielded from the experiment 
u, v  Vectors in Eq. (2), (3) and (4) 
w1 Weight in Eq. (4) 
x, y Subject to compared with n characteristic 
 
Greek Symbols 
µ1 Respondent's questionnaire value when partaking in an office 

activity 
µ2 Respondent's questionnaire value when partaking in a physical 

activity 
µV2 Amplitude (Fig. 9) 
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Abbreviations 

AC Air Conditioner 
ASHRAE American Society of Heating, Refrigerating and Air-Conditioning 

Engineers 
CSV Comma Separated Value 
EEG Electroencephalography 
kNN k-Nearest Neighbor 
PSD Power Spectral Density 
PSoC Programmable System on Chip 
SNI Standar Nasional Indonesia (National Standard of Indonesia) 
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