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Abstract 

Preventive maintenance through predicting the Remaining Useful Life (RUL) of 
engineering components is considered as a breakthrough in Industry4.0. Researchers 
are developing prognostic models to predict the machine failures by deploying 
machine learning and deep learning algorithms. In the era of big data, featuring 
engineering is a challenging task in building predictive analytic models. The proposed 
methodology engrosses raw vibration signals of bearings and forms exemplar data 
through novel Reduced Affinity Propagated (RAP) clustering algorithm. Echo State 
Network with dynamic connections predicts the RUL from the natural grouping of 
the data. With these novelties, the developed approach outperforms the other state of 
art techniques. The model is robust and generic so that it can become a potential 
candidate for prognosis of higher engineering components.  

Keywords: Echo state networks (ESN), Reduced affinity propagated (RAP) 
clustering, Remaining useful life (RUL), Reservoir unit, Time window. 
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1. Introduction 
The dawn of Industry 4.0 has increased the deployment of advanced engineering 
systems in time critical and life- saving applications. This very fact seeks the attention 
of researchers to develop machine health prognostic procedures and methodologies 
using state of techniques. The streaming real time data, advancements in processing 
capabilities and new signal processing techniques has opened new ventures in 
Prognostics and Health Management (PHM) of machineries.  

The machine health monitoring is done in three phases namely detection of 
fault, its diagnosis and prediction of Remaining Useful Life (RUL) [1]. The 
prediction of RUL, which is one of the prominent prognostic techniques, is very 
crucial in machine health prognostics. It plays a key role in decisive processes 
involved in mission planning, fault mitigation and failure analysis [2]. The ISO 
13381-1 defines prognostics as the estimated time to failure and risk of one or more 
existing assets and the prediction of future failure modes [3]. Prognostics is seen as 
an array of activities to build systems with safety, availability and low-cost 
maintenance [4].  

RUL is the time span during which the equipment is expected to ensure its 
fullest performance in its intended purpose. The performance of the equipment is 
tested from the monitored critical variables. Any deviation from its standards will 
be viewed as an abnormal activity. The prognostic RUL prediction is generally 
done using model based and analytical based methodologies [5]. The model-based 
methods are designed using statistical knowledge and computational intelligence 
on run-to-failure data whereas the analytical approaches (Physics-of-failure) 
deploys the knowledge on physical property of the material. The former methods 
gain more popularity, since they do not require domain expertise, but the historic 
data can precisely model the nature of degradation. The data emanating from the 
systems may be classified into two types of namely event data and Condition 
Monitored (CM) data.  

The major challenge in manipulating the event data is the non- availability of 
failure data since critical assets cannot be run-to-failure. So, the natural solution 
would be to use CM data extracted from signals or operational profiles of 
equipment. The CM data is further bifurcated into direct CM and indirect CM. The 
direct CM describes the system by direct data to reach the predefined threshold 
level while the latter gives a partial indication of the system state through its data. 
Based on the type of data acquisition (direct or indirect), the system models are also 
classified as direct model and indirect model [6]. Prediction of RUL using indirect 
data is done by integrating CM data and model that describes the data. The hybrid 
models combine the merits of physical models by using degradation status and the 
historical data. 

The model-based methods gained more significance after the advent of machine 
learning and artificial intelligence. The prognostics have taken a giant leap after the 
deployment of extreme learning and deep learning techniques since they eliminated 
the tedious process of feature engineering. These methods are much valued as they 
can be deployed over both raw and processed signal data. In addition to this, the 
sensor data can effectively disclose the underlying correlation, thereby aiding the 
computation of RUL [7]. It is no wonder that the robustness of machine learning 
algorithms has found them momentous locus in almost every field today.  
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This work aims to develop a data driven model that estimates the RUL of 
rotating machinery namely bearing with run to failure data using vibration signals. 
Bearings are indispensable part of heavy mechanical and civil structures, as they 
reduce friction between moving parts. Though the bearings are designed for 
longevity, improper practices and standard wear and tear invite premature bearing 
failures. The consequences bearing failure may affect the adjacent components like 
shaft and housings. On the bottom line, frequent bearing failures will heavily cost 
the industries in terms of reduced operational time and increased downtime; 
declined performance; amplified maintenance costs and may weaken operator 
safety. Detecting bearing failure at very initial stage of deterioration by capturing 
its health trend is a more appropriate choice for industries [8]. It is evident that 
degradation of bearing is not a sudden phenomenon.  

The CM data of the normal bearing may show some random deviations in the 
initial degraded stage and eventually results in irreversible deterioration of the 
bearing performance. This trend is well portrayed by vibration signals that can be 
easily measured through accelerometers mounted in appropriate positions. The 
simplicity of mounting hardware and rich statistical features makes the vibration 
signals a potential candidate for bearing health prognostic [9, 10]. 

This article considers the data emanated from vibration signals to design a 
novel approach, using Reduced affinity propagated clustering and Recurrent Neural 
Network (RNN) to predict the RUL of bearings. The major research contributions 
of this work include: 

• Formation of RAP clusters from the temporal vibrational data. 
• Choosing time scaled exemplar points based on context-based likelihood. 
• Hybridizing the Self Organising Maps (SOM) to form dynamic inhibiting 

connections from the exemplar points to predict the RUL.  

This work will be of immense help in building reliable smart factories where 
human intervention must be kept at bay. As Industry 4.0 aims to install smartness 
in all possible areas, this work would assist the maintenance and support team to 
schedule proactive maintenance activities.  

The proposed framework is considered unique of its kind for two major reasons. 
Firstly, the learning does not happen based on the pre assumed features. Secondly, 
the exemplar points will act as a representative candidate for signals in particular 
time frame. The organisation of the paper is: Section 1 introduces the problem 
domain and brief literature is presented in Section 2. The proposed novel RAP 
clustering algorithm and estimation of RUL is discussed in Section 3 and 4 
respectively. Section 5 describes the formation of dynamic connections and 
experimental procedure is detailed in Section 6. Section 7 concludes the work with 
its future scope. 

2.  Prognostics: A Brief Review 
The prognostic methodologies are classified into i) Model based approaches ii) 
Data driven approaches and iii) hybrid approaches. Literature in prognostics of 
RUL is inclined towards building systems using hybrid methodologies, which 
indicates the importance of statistical and domain expertise in the field. 
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Construction of health indicators in machineries should reflect the monotonic 
trends and patterns occur in their degradation phase [11].Various knowledge 
extraction strategies were developed such as empirical mode decomposition [12], 
recurrence quantification analysis [13], and adaptive time window approach [14], 
which uses raw signal data to construct health indicators.  

The two main issues in these strategies are that the original data is sensitive to 
faults only in certain specific conditions: after the degradation is progressed to 
diagnosable extent and existence of correlation among the features is not exploited. 
These factors mitigate the chances of early fault predictions. Fusing multiple but 
correlated features to form a more powerful feature space is attempted by Qiu et al. 
[15] by using Self Organising Maps, Huang et al. [16] by using dynamic principal 
component analysis and Lei et al. [17] by using particle filtering. Sparse 
representation score derived from orthogonal matching is also used as an alternate 
representation for classical features like RMS, kurtosis etc [18]. However, all the 
features do not positively contribute to the precise prediction because of non-
monotonicity exhibited during the degradation process of the components. 

Intelligent techniques like Artificial Neural Networks [19], Extreme learning 
Machines [20], deep Convolutional Neural Network (CNNs) [21], Support Vector 
Machines [22], Recurrent Neural Networks [23], Adaptive Hidden Markov Models 
[24], bidirectional Long Short-Term Memory (LSTM) [25] were used in 
prognostics of RUL. A detailed study on literature of prognostics reveals that ANNs 
were predominantly used in estimation of RULs, because of their time series 
forecasting nature. Shallow neural networks integrated with Monte Carlo method 
was deployed on non-linear time series data for forecasting [26]. ANNs were 
combined with Weibull failure rate function in predicting the life percentage based 
on vibration data [27]. 

Multi valued neurons were used to extract highly dynamic patterns for multi-
step ahead predictions [28]. Gugulothu et al. [29] used RNNs over multivariate time 
series data to form normal and degraded patterns in the form of embedding. 
Integrating homogeneous and heterogeneous machine learning algorithms has 
given rise to ensemble models in estimation of RUL. Ensemble of neural networks 
with Kalman filter was proposed by Peel [30]. Integration of Regression Vector 
Machines, Support Vector Machines, Least Square exponential Fitting, Bayesian 
linear regression and RNNs were designed by Li et al [31]. Ensembling of 
optimised Echo state networks with mean variance estimation was used to deal the 
uncertainties in estimation of RUL [32]. An ensemble of deep belief network was 
constructed by Zhang et al. [33] that deploys evolutionary multi-objective function 
to reduce errors.  

Not many works were done in using clustering-based RUL estimation. Some of 
the noteworthy works are enumerated here. Hu et al. [34] used Fuzzy C-means 
clustering along with wavelet Support Vector Regression over a degradation path 
model. Subtractive maximum entropy-based clustering methodology is adapted to 
label the data to fault classes is proposed by Chiu [35] and further estimation of 
RUL is done by integrating it with extreme learning machines.  

Deep learning methods are now dominating the field of RUL prediction. A double 
CNN model where first model is used to isolate the incipient fault point and second to 
predict the RUL is proposed by Yang et al. [36]. An encoder-decoder based recurrent 
neural network is used by Chen et al. [37] to derive the health index values without 
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thresholding. The final RUL is predicted using linear regression. The generic CNN does 
not consider temporal variations of the signals. Hence RCNN model is deployed to 
learn the time-based deviations using recurrent layers [38]. This methodology is used 
to learn various degradation stages from the vibration data.  

The detailed literature in RUL prediction indicates that deep learning methods 
overshadow machine learning algorithms because of their inherent processing 
power and wards off the tiresome task of feature engineering from the algorithm. 
Augmenting to this, the selection of improper features may sometimes lead to 
adverse effects on the algorithm. Also, these methods exhibit improved 
performance at relatively lower time scale. However, the adaptive learning occurs 
in multiple layers, which apparently demands high end resources with considerably 
good processing power. The streaming signal data will further escalate the 
complexity of deployment of these methods. 

This paper proposes a methodology that uses novel reduced affinity propagation 
clustering those forms exemplar points based on availability and responsibility of 
the degradation-based vibration signals. The exemplar points, representing the 
colossal signal characteristic are fed into the Echo State Networks (ESN) which 
predicts the RUL of the component. The proposed RAP clustering algorithm 
reduces substantial number of computations by reorienting the signals into 
exemplar points, without loss of generality. This method naturally learns from the 
time-based signals without suffering from the curse of dimensionality. 

3. Clustering by Passing Messages 
The classical Affinity Propagated (AP) clustering methodology works on the 
dogma of insinuating the exemplar points among the other data points by message 
passing mechanism. The AP clustering relies on the real valued similarities among 
the nodes or data points. 

Consider DP={1, 2, 3, …, n}, the real valued data points in the vectored feature 
space {Dp (i, j)}N×N. The affinity measure A(i, j) between the nodes i and j is 
established by mutual handshaking of responsibility r(i, j) and availability av(i, j) 
messages among the nodes r(i, j) is the evidence of j being exemplar point to i and 
av(i, j) is the evidence sent by the candidate exemplar to every data point i. The 
process is repeated till a strong and stable exemplar node could be designated as a 
vintage of the so formed cluster. This is illustrated in Figs. 1(a) and (b).  Equation 
(1) gives the expression for estimating the likelihood of exemplar point [39]. 

jijirjiav ,),(),(:max ∀+                                           (1) 

For instance, consider DPi be a node whose affinity measure is A(i, DPi). The 
exemplar points for DPi are obtained through maximizing the objective function F 
through Eq. (2). 
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The range of Dp={1, 2, 3, …,n}NxN and Gj is termed as coherence constant. 
The first term of Eq. (2) is the affinity measure of node i belonging to its exemplar 
point Ei. The performance of AP clustering depends largely on hyper-parameter 
termed self- preference Pj, which is estimated from Eq. (3). 
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The measure Pj is the likelihood of the node j being chosen as an exemplar point 

for its corresponding cluster. The preference set P comprises of the self- preference 
values of all the nodes as shown in Eq. (4).  

NxNNppppP },...,,{ 32,1=                                            (4) 

 
Fig. 1(a). Passing responsibility  messages for choosing exemplar. 

 

 
Fig. 1(b). Passing availability messages for choosing exemplar. 

The value of Pj is a dominant factor in determining the quality of clusters. A 
sub optimal low value of Pj will lead to the formation of fewer clusters and high 
value will lead to more clusters, which will eventually miss the extraction of 
important correlations between nodes. Confining the Pj value within an upper and 
lower bound [40], iteratively adjusting the Pj value [41] and incrementing or 
decrementing Pj values [42] are few notable methods to arrive optimal value. Also, 
the number of clusters corresponds to the preference points. Hence this method 
does not confine the number of clusters to a pre-defined value, making the 
algorithm best suited for online applications. However, deducting a method to fix 
the preference value is beyond the scope of this work.  
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3.1. Reduced affinity propagation clustering 
The classical AP clustering has two major pitfalls namely choosing preference 
value for exemplar points and continuous message passing between nodes. The 
work focuses on estimating the RUL of bearings with low-cost computation but 
with increased accuracy by aggregating local data. The RAP clustering serves the 
objective by incorporating: 

• Time scaled data: fixing a time window frame. 
• Forming temporal exemplar points from degradation signals. 

The estimation of responsibility and availability in RAP algorithm is done 
through estimation of similarities based on the Context Based Multi-layered 
Bayesian Inference (CBMBI) predictive analytic framework [43]. This predictive 
analytic technique roots from Mismatch Negativity (MMN), a physiological 
process that happens inside human brain that estimates the evidence of novel events 
from the signals transmitted by the sensory organs [44].  

In accordance with Newton’s free energy principle, the human brain changes 
its state to supress the free energy generated by the surprise events. This change in 
state is elicited by the accumulation of sensory signals, which contributes to the 
free energy. This is the MMN phenomenon. This could be adopted in detecting 
novel and abnormal events that occurs in condition monitoring of equipment. An 
upper boundary on the accumulation of evidence is imposed by introducing a novel 
hyper parameter, Context (C) to mitigate the over fitting effect. The estimation of 
evidence is done from Eq. (5). 

2)2/exp(
2
1);,( iiii ISCSfg −=
π                                                                           (5) 

where Ii the input vector of signal data and Si is the predicted state information of 
previous state. The I value ranges between [1, C].The magnitude of the predicted 
value of ),,( CSIg ii will correspond to the magnitude of the novel event and 
magnitude is denoted by y of the input cause vector VC . 

)()|();( VVV CPCyPCYP =                                (6) 

Determining the value of y, provisions the classification of health state of the 
machine into multiple states based on the significance of the equipment under 
study. Estimating the );( VCyP for every node reduces the flooding of messages to 
form exemplar points, as the transmission happens only after the sufficient value 
for y is obtained. This is given in Eq. (6). This aggregated event limits the number 
of messages thus reducing the complexity. Limiting the messages will increase the 
efficiency for the RAP in two folds: reduces the complexity and number of 
transmissions. The exemplar points (Ei) will be formed from the temporal signals 
and will act as representative of the behaviour of degradation signals. 

NNxNNi tiEEEEE ∈= ,},...,,{ 2,10                                      (7) 

The set Ei contains all the exemplar points in the given time domain tN as 
mentioned in Eq. (7). Thus, this novel non-linear, non- parametric methodology 
captivates the signal characteristics through exemplar points. The robustness of the 
model is enhanced by fixing the self-preference value (pj) of each exemplar by a 
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fixed size, moving time window. As the estimation of RUL is done using Echo 
State Network (ESN), it is important to consider the correlation between the data 
points. Hence, fixing pj values and forming exemplar points is dependent on the 
movement of the time window. The time window size (w) is also a significant hyper 
parameter, whose value is set to the scale that exhibits the smallest operational 
characteristic profile from the signal data.  

4. Estimation of RUL from Temporal Data 
RNNs are excellent candidate in estimating RUL, since their computations are 
powered by time information. The recurrent edges in RNN have 2 types of self-
connections: one from previous layer and another from themselves in the previous 
state (iteration). The description of RNN is given in Fig. 2. 

 
Fig. 2. Single output Recurrent Neural Network (RNN). 

The input at time instant t (I (t)) is fed inside the hidden layer h(t) acted upon by 
the weight (W), which is homogeneously maintained as same value. M and N are 
parameterized weights, acting between input-hidden layer and hidden-output layer, 
respectively. O(t) is the net output from the RNN at time index t. As the work focus 
on predicting the RUL, which is a single value rather than a sequence, the designed 
RNN will cumulatively output a single value Y, which is the normalised probability 
over the obtained output at various time indices between [0, π]. 

)()1()( ttt MIWhji ++= −                         (8) 

)( )1()()( −+= ttt WhMIFh                         (9) 
)()( tt MhkO +=                       (10) 
)(_ tOnormY =                       (11) 

The mathematical descriptions of RNN are given in Eq. (8-11) [45].The main 
drawbacks of Vanilla RNN are the exploding and vanishing gradient problems. 
ESN alleviate this by replacing the hidden layer by internal reservoir units with 
dynamic lateral connections as given in Fig. 3.  
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The fixed size time window frame moves over the temporal exemplar values 
},...,,{ 2,10 Ni EEEEE = where 0≤ i ≤ N, in overlapping fashion on a scale of N/2, 

so that important patterns are not overlooked. Ti+1 is the prediction for (i+1)th 
exemplar points using RNN. 
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Fig. 3. Dynamic connections in reservoir unit. 

Equations (12-15) indicates the time window movement. The predicted RUL from 
the RNN model will be the normalised value ( )(_ tOnorm ) over time period t. The 

range of )(_ tOnorm is [0, π] where π is the maximum life duration of the component.  

5. Connections through Lateral Inhibitions in Reservoir unit 
The classical ESN use fixed connections to activate neurons in the reservoir unit 
[46]. By exploring the competitive learning scenario as in Self Organising Maps 
(SOM), the ESN can form lateral connections following Mexican hat function [47]. 
The primary hyperparameter is the number of neurons in the reservoir unit. The 
work considers a nominal count of 100 reservoir neurons. In the recurrent SOM, 
the Best Matching Unit (BMU) that correlate with the input vector i(n) is formed 
according to the Eq. (16). 

hh wnwinhidni ∀−=− },)(min{)()(  (16) 

where hw  is the weight vector. Reservoir excitation functions are responsible for 
updating the weights of the neurons in the reservoir unit. This updating is done in 
correlation with the BMU according to Mexican hat function, which does equal 
approximations to the matched neurons. 

𝑟𝑟_𝑒𝑒𝑒𝑒(𝑛𝑛) = 𝑒𝑒𝑒𝑒𝑒𝑒( −�ℎ𝑖𝑖𝑑𝑑𝑖𝑖−𝐵𝐵𝐵𝐵𝑈𝑈𝑖𝑖 ‖2

𝜗𝜗
) (17) 
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The excitation level (r_ex(n)) is estimated using Eq. (17). ϑ is the factor that 
limits the spread of inhibiting the lateral connections. Weight updating process is 
in accordance with Eq. (18). 

)(_1 nexrww nn α+≈+     (18) 

The term α plays a chief role in convergence of weight in next iteration which 
in other words resolves vanishing and exploding gradients problem. Thus, the 
dynamic connections inside the reservoir units are established based on the 
coherence of the weight vector based on the input. The proposed methodology of 
RUL prediction in the training phase is given in Fig. 4. 

 
Fig. 4. Remaining Useful Life (RUL) estimation in training phase. 

6.  Experimental Study 

The methodology proposed in this paper is evaluated on a PRONOSTIA, a 
benchmarked dataset containing vibration and temperature readings from 
degradation signals of bearings [48] whose experimental set up is shown in Fig. 5. 
This dataset is more realistic comprising of data samples with inner race, outer race, 
cage and ball failures of the bearings.  

The dataset characterizes the operational profile of the bearings till run-time-to-
failure. The vibration signals are measured with 4kN radial force at a rotatory speed 
of 1800 rpm. 2 types of sensors are deployed over the test bed for capturing 
vibration and temperature readings. 

2 accelerometers (devices that record the vibration signals) are orthogonally 
placed at outer race of the bearings along vertical and horizontal axes. Type 
DYTRAN 3035B accelerometer is used to record the vibrations. The temperature 
sensor (RTD-Resistance Temperature Detector PT100) is installed in a hole in 
proximity to the outer bearing’s ring. The AC motor in the experimental set up runs 
with a power of 250W with a rotational speed of 2830 rpm. The bearing test bed 
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has a shaft that drives the inner race of the bearing. The vibration sensors are 
positioned at right angles through the accelerometers mounted in horizontal and 
vertical plane. Each sample set of vibration signal has 2560 data points with 
sampling rate of 10s at duration of 0.1s and the sampling frequency of temperature 
is 10Hz. The RUL of the bearing is estimated from amplitude of the signals. This 
dataset contains data collected from ball bearings with outer race diameter of 
32mm, inner race diameter of 20 mm and thickness of 7 mm. The bearing is said 
to operate in failure profile if its vibrational amplitude exceeds 20g (1g = 9.8m / 
s2). The degradation of the bearings happens naturally without external fault 
induction. Fig. 6. shows the normal and worn-out bearing. The vibrational pattern 
depends on the type of bearing used and on the operating condition. Hence there is 
no uniformity in the degradation nature of the bearings under test. 

 
Fig. 5. Experimental system. 

 
Fig. 6. Normal and degraded bearings. 
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17 bearings are subjected to the following three Operating Conditions (OC) and 
their signals were recorded as shown in Table 1. The test and training data details 
are given in Table 2. 

Table 1. Operating conditions of bearings. 
Operating condition Load (N) Speed (rpm) 

OC1 4000 1800 
OC2 4200 1650 
OC3 5000 1500 

Table 2. Training and test dataset. 
Data sets OC1 OC2 OC3 

Training set Bearing1_1 Bearing2_1 Bearing3_1 
Bearing1_2 Bearing2_2 Bearing3_2 

Test set 

Bearing1_3 Bearing2_3 Bearing3_3 
Bearing1_4 Bearing2_4  
Bearing1_5 Bearing2_5  
Bearing1_6 Bearing2_6  
Bearing1_7 Bearing2_7  

The raw vibration signals are providing pool of useful features, which are to be 
extracted. The raw vibrational signal of bearing1_1 shown in Fig. 7 indicates that 
the amplitude of the signal increases gradually and has seen its peak value at the 
end. Studies reveal that frequency range of faulty bearing is {-30g to 30g}, which 
is relatively very high than that of normal bearing [49]. The vibrational signals can 
be seen as potential pool of features. Some of the prominent features that could be 
extracted from the vibrational data is summarised in Fig. 8. 

 
Fig. 7. Raw vibration signal. 
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(a) 
Amplitude. 

 

(b) K Factor 
measured by 

horizontal 
accelerometer. 

 

(c) K Factor 
measured by 

vertical 
accelerometer. 

 

(d) Crest 
factor by 

horizontal 
accelerometer 

(×104). 
 

(e) Crest 
factor by 
vertical 

accelerometer 
(×104). 

 

Fig. 8. (a-e) Signal analysis of PRONOSTIA 
(X axis: Time in seconds × 106, Y axis: Acceleration in m/s2 ). 

It is evident from Fig. 8 that extracting features from exploratory dataset like 
PRONOSTIA is challenging because of the following signal properties: i) nonlinearity 
ii) highly unstable iii) low resolution of signal frequency iv) non periodic. The 
degradation of the bearings is seen as evolution of faults over the lifetime of the 
bearings. Hence accurate and precise features are pedestal for building of RUL 
prediction system. In this view, deep learning algorithms fit as natural solutions for 
domains where manual feature engineering is a challenging task. The proposed RAD 
algorithm-based RUL prediction relies on deep learning methodology, which has built-
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in feature engineering that manifests two-fold felicity: it eradicates the effort to learn or 
extract features and does not overpass the features. The model shown in Fig. 9 is 
developed with different testing and training phases to reduce computation time.  

 
Fig. 9. Operations in training and testing 
phase in estimation of RUL using RAP. 

In the training phase, the ESN network trains the exemplar points formed from 
RAP clustering in a time scaled fashion. On the other hand, the testing phase draws 
a distinction by treating raw data points through a time window to form exemplar 
points. This imposes superior chance for the model to vintage better accuracy at 
reasonably reduced training. The testing phase witnesses windowing technique 
prior to the formation of exemplar points to provide adequate evidence. The 
analysis of the data points was carried out with static window size of 10.  

Exploration of the experimental results 
The run to failure acceleration data of the bearings has 6 datasets (Bearing1_1, 
Bearing2_1, Bearing3_1, Bearing1_2, Bearing2_2, Bearing3_2) for training the 
model. The signal analysis of Bearing1_1 shown in Fig. 10 portrays that the 
acceleration of signals is more focussed towards negative direction. The dense 
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nature of the plot is a clear indication of the richness of the dataset. The signals of 
Bearing 1_1 (training) and Bearing 1_3 (test) shows gradual fault progress.  

 
Fig. 10. Data distribution of Bearing1_1. 

The test dataset (Bearing1_3,Bearing1_4, Bearing1_5, Bearing1_6,Bearing1_7, 
Bearing2_3, Bearing2_4,Bearing2_5, Bearing2_6, Bearing2_7, Bearing3_3) 
comprises of acceleration degradation signals. The vibrational signals are recorded 
from origin till total faulty condition. The degradation behaviour of the bearings is 
non-monotonic without any uniformity in their distribution. The analysis of fault 
development of Bearing 1_5 and Bearing 1_6 exhibits initial swift degradation but 
tend to be steady in later stages. On the other hand, Bearing1_7 and Bearing 1_8 
shows persistent degradation pattern in the run-to-failure lifecycle. 

The experimental results of the bearings in training phase do not adhere to any 
common pattern. Some of them showed a trend in degradation stage (Bearing 1_1) 
while others were characterized by high feature values leading to sudden failures. 
So, the validation of the estimated RUL (RULE) by the proposed methodology is 
done by quantifying their accuracy score (AC), Percent Error (PerEri) and final 
score (SC) in accordance with IEEE PHM 2012 challenge [48] and they are 
described as Eq. (19, 20, 21).  
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Table 3 illustrates the performance of the proposed methodology employing 
RAP algorithm for natural grouping of vibrational data of the test bearing set as 
mentioned in Table 2. The negative error values portrayed by Bearing1_5, Bearing 
2_4 and Bearing 2_7 are the results of overestimates of RULE. Furthermore, the 
prediction result of the proposed methodology is compared with other state of art 
techniques [23, 50]. The proposed RAP clustered RUL prediction model has much 
low error estimates (PerEri), which gives a direct implication that the model learns 
better from the raw vibration signals, since there is no overlooking of significant 
features. Also, the time window scaling of raw vibration signals in training phase 
and exemplar points in testing phase lowers the computational overhead of ESN. 
Results of detailed comparisons are tabulated as Table 4. Though the results of the 
proposed methodology exhibit promising results, it is still competitive. 

Table 3. Actual vs. predicted RUL. 
Bearing dataset Actual RUL (s) Predicted RUL (s) PerEri Ac 

Bearing1_3 5730 4561 20.406 0.05 
Bearing1_4 2900 2761 4.79 0.51 
Bearing1_5 1610 1723 -7.01 2.64 
Bearing1_6 1460 1258 13.83 0.14 
Bearing1_7 7570 7283 3.79 0.59 
Bearing2_3 7530 6853 8.99 0.28 
Bearing2_4 1390 1423 -2.37 1.38 
Bearing2_5 3090 2642 14.49 0.13 
Bearing2_6 1290 1101 14.65 0.13 
Bearing2_7 580 651 -12.24 5.45 
Bearing3_3 820 761 7.19 0.36 

Score (SC) 1.06 

Table 4. Comparative analysis of proposed 
methodology with state of art techniques. 

Bearing 
dataset 

Percent error (PerEri) 
Qian et 
al. [13] 

Boccato et 
al. [47] 

Maass et 
al. [46] 

Ali et al. 
[19] 

Proposed 
method 

Bearing1_3 -0.34 -31.76 -1.04 43.28 20.40 
Bearing1_4 5.60 62.55 -20.94 62.06 4.79 
Bearing1_5 100 -136.03 -278.26 -22.98 -7.01 
Bearing1_6 28.08 -32.88 19.18 21.23 13.83 
Bearing1_7 -19.55 -11.09 -7.13 17.83 3.79 
Bearing2_3 -20.18 44.22 10.49 37.84 8.99 
Bearing2_4 8.63 -55.4 51.8 -19.42 -2.37 
Bearing2_5 23.30 68.61 28.8 54.36 14.49 
Bearing2_6 58.91 -51.94 -20.93 -13.95 14.65 
Bearing2_7 5.17 -68.97 44.83 -55.17 -12.24 
Bearing3_3 40.24 -21.96 -3.66 3.65 7.19 

Average 
PerEri 20.89 -21.33 -20.31 11.70 6.04 

7. Conclusion and Future Work 
Prediction of RUL is a key factor to schedule preventive maintenance in industries. 
The proposed methodology analyses raw vibrational signal in its natural perspective 
to estimate the RUL of bearings. There are 2 major contributions in this work: To 
begin with, RAP clustered RUL prediction model scales down the vibrational signal 
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by clustering them through message passing. Finally, the lateral dynamic connections 
inside the reservoir unit are established based on the temporal exemplars formed from 
RAP clusters. Validation of the model shows its sovereignty over the state of art 
models. The built model is very generic and robust, thus captivating the industrial 
researchers to deploy transfer learning to predict the RUL of sophisticated equipment 
and higher order mechanical systems with data fusion mechanisms. In addition to 
this, setting the failure threshold and dynamic scaling of time window are subjective 
matter of interest in prognosis of RUL. This methodology with few domains specific 
modifications can be used to classify the health state of the equipment under study by 
constructing health metric from the predicted RUL. 
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