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Abstract 

In this paper, a novel Landmarks Exploration Algorithm (LEA) is presented for 
accurate, reliable, and efficient indoor localization. It operates in two stages. The 
first stage intends to search for artificial Color-Coded Landmarks (CCLs) and 
store their locations. Extended Kalman Filter (EKF) is exploited in this stage for 
continually updating the states of the robot, while the camera, equipped with 
image processing MATLAB code, is used for the detection of landmarks. The 
second stage attempts to make the robot find a location such that the distance to 
the detected CCLs is directly measured using a proximity sensor. At this stage, a 
trilateration method is applied to localize the robot. This paper also proposes an 
approach to estimate the heading angle of the robot. These two stages contribute 
to making the robot reach the target as a final step. Furthermore, the LEA 
performs localization even that one or two CCLs are detected at the same time 
and also specific order of CCLs is not required. The LEA is implemented, 
examined, and evaluated inside the CoppeliaSim environment. The simulation 
results indicate that the LEA provides the robot with the ability to explore CCLs, 
achieve an accurate localization, and reach the target. 

Keywords: CoppeliaSim, Colour-coded landmarks/beacons, Image processing 
Localization, Trilateration. 
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1.  Introduction 
Robot technologies have rapidly developed in the last few decades. Hence, 
numerous concentrations have been paid to the autonomous navigation of mobile 
robot systems. However, there are yet many problems to be solved while making 
mobile robots more intelligent. One of these fundamental problems that a mobile 
robot frequently encounters is localization. The term “localization” refers to the 
ability of a mobile robot to localize itself within its environment [1]. In other terms, 
it refers to the position and orientation of a mobile robot within a certain coordinate. 
There are two notable kinds of localization: relative localization, which means that 
the robot has to find its position in a local reference frame, and global localization, 
which means that the robot tries to localize itself in a global reference frame [2]. 

Indoor localization has significantly gained importance in versatile applications 
such as transportation, logistics, surveillance, and warehouse which contains 
ambiguous areas and frequently changes [3]. Existing features can be insufficient 
for mobile robots to establish robust navigation behaviour in such an environment. 
Therefore, many practical applications rely on either passive or active artificial 
landmarks where they are placed throughout the robot trajectories to allow for 
precise localization [4, 5]. Although artificial landmarks are crucial for localization, 
they impose significant limits on how many landmarks can be placed. Therefore, 
the number and placement of landmarks can be optimized to be utilized by a 
localization algorithm of mobile robots. 

The development of the LEA is motivated by the fact that most of the works 
using the trilateration method require at least three landmarks to be detected at the 
same time and the distance to the three landmarks to localize the robot under some 
constraints. The LEA presents the solution to that restriction and can localize the 
robot even though one or two landmarks can be seen at the same time by utilizing 
the combination of the Trilateration and Kalman filter techniques. 

Over the past years, a broad range of approaches has been developed, examined, 
and applied to the problem of how to localize a mobile robot accurately. Many 
possible solutions have arisen with varying degrees of success. Han et al. [6] 
proposed a landmark-based particle localization algorithm (LPLA) using a vision 
sensor and it relies on at least two landmarks to localize the robot. In the same 
context, Betke and Gurvits [7] have used a number of landmarks to determine the 
pose of a robot using the position estimator.  

Zhou [8] has derived an algorithm from a nonlinear least-square trilateration 
formula to provide the best approximation solution when there is no intersection at 
the actual position among circles. This algorithm utilizes a number of reference 
points to optimally estimate a position. Sabattini et al. [9] have used a monocular 
camera for positioning a low-cost mobile robot. The distances between the robot 
and three landmarks are measured by converting an image of the environment into 
a bird’s eye view image. Then, the trilateration technique has applied using these 
distances to compute the robot’s pose. However, the light conditions influence the 
accuracy and there was a 7cm mean error in the measurements of the position. 

Moleski and Wilhelm [10] suggested a hybrid camera-LiDAR system for 
position estimation using the trilateration localization process. Four coloured 
landmarks have used to be identified by an RGB camera. This method was able to 
localize a vehicle with an 8cm error in 2D and a 261cm error in 3D. Unlike these 
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works which require three instantaneous landmarks to get an accurate estimation 
of the position, the proposed landmarks exploration algorithm (LEA) in this paper 
can localize a robot even if two or fewer landmarks are available. This can be done 
by exploiting the storing the locations of landmarks and odometry information. 

On the other hand, many researchers have paid a concentration to optimize the 
localization methods depending on landmarks deployment. Rupp and Levi [11] 
considered geometrical observations to find the landmark locations in an indoor 
environment. Landmark positions on the walls have been selected close to a given 
set of localization points. They utilized the definition and optimization of a 
confidence level describing the expected localization estimation error to optimally 
place landmarks.  

Marsland et al. [12] presented an automatic landmark selection algorithm that 
makes a mobile robot autonomously select notable landmarks without a pre-defined 
model of those landmarks. The approach utilizes a neural network to select 
landmarks by defining unexpected notable landmarks. Jourdan and Roy [13] 
minimized the average position error constrained in the sensor network by 
deploying a sensor network on the walls within the environment.  

Unlike these methods, Beinhofer et al. [14] modelled the noise of the sensors and 
actuators of the robot to determine the minimal number of landmarks that guarantee 
a limit on the maximum deviation of the robot from its desired trajectory within its 
environment with high confidence. Magnago et al. [15] considered a greedy 
placement algorithm. Their approach is based on finding the optimal placement and 
a minimum number of deployed landmarks by collecting data, from environment 
observations to build a large number of trajectories to localize the robot accurately. 
Furthermore, Magnago et al. [16] extended the nearly-optimal greedy landmark 
placement approach by relying on environment contextual information for landmarks 
deployment. However, the LEA does not require landmarks ordering or deploying in 
some special ways to estimate the pose. It explores landmarks and stores their 
position. While some of the aforementioned approaches use active landmarks, the 
suggested LEA uses artificial CCLs as a passive artificial landmark. Unlike active 
landmarks, passive CCLs are simple to be made. Additionally, they do not require 
any power-supply sources to stay operable for an indefinite time. 

In this paper, a novel landmarks exploration algorithm is proposed for mobile 
robot localization, which exploits EKF based dead reckoning, vision sensor, and 
the laser distance sensor to localize the robot. Many works in [17-19] have 
employed vision sensors for distance measurement. However, vision sensors are 
more sensitive to light, and colour interference could be a problem that affects the 
accuracy of distance measurement. Therefore, the laser distance sensor is used 
instead to determine a distance while the camera is only used for detecting the 
presence of landmarks.  

The LEA works as follows. Firstly, it starts an EKF based dead reckoning for 
continually updating the mobile robot pose. This stage aims to seek CCLs and 
storing their locations. A camera equipped with image processing MATLAB code 
is used to detect these CCs landmarks. Secondly, the previous step is employed to 
determine the location at which the robot can measure the distance to at least three 
visible CCs landmarks directly by a laser sensor. On that occasion, the algorithm 
employs a trilateration localization technique to localize the mobile robot 
accurately inside the CoppeliaSim  environment (formerly known as VREP, Virtual 
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Robot Experimentation Platform). This is crucial for the next step in which the 
robot pursues and reaches the target pose. In this respect, it is worth mentioning 
that the majority of localization based on trilateration methods needs to see at least 
three landmarks at the same time to correctly achieve localization as in [20-23]. 
However, the proposed LEA algorithm has the benefit of localizing the robot even 
without requiring seeing three landmarks at the same time. 

To work under more realistic circumstances, it is crucial to spot some environmental 
assumptions. Firstly, the mobile robot moves around on the flat ground. Secondly, the 
environment should be illuminated enough for the camera to work properly. 

The LEA has several characteristics that make it especially useful for mobile 
robot localization: 
• It is considered as a new efficient method that can precisely localize the robot. 
• It can also overcome the restrictions of the trilateration technique and it does 

not require landmarks ordering to achieve localization. 
• It includes improvement in the method of determining orientation in which 

became more simple, efficient, and low computational than other methods. 
• It can apply the trilateration technique and localize the robot without the need 

for three CCLs to be detected at the same time. 

The rest of this paper is concerted as follows: section 2 presents the Extended 
Kalman Filter and sensors fusion. Section 3 discusses the trilateration approach. 
The CCLs detection algorithm is introduced in section 4. LEA is explained in detail 
in section 5. Section 6 shows and discusses the results. Section 7 concludes the 
paper and features the next step to be followed. 

2. Modelling and pose estimation of a mobile robot 

2.1.  Mobile robot kinematic model 
Consider the following unicycle model of the mobile robot moving in a horizontal 
plane which is shown in Fig. 1. 
 �̇�𝑋 = ‖𝐯𝐯‖ cos 𝜃𝜃 
�̇�𝑌 = ‖𝐯𝐯‖ sin𝜃𝜃 
�̇�𝜃 = 𝜔𝜔 

(1) 

where ‖𝐯𝐯‖ and 𝜔𝜔 denote the desired speed and angular velocity of the robot and 𝜃𝜃 
is the angle between the x-axis of the global frame (𝐗𝐗) and the x-axis of the robot 
frame (𝐗𝐗R). 

If the robot is only permitted to move along its 𝐗𝐗R axis, then �̇�𝐗R = 𝐯𝐯 and �̇�𝐘R =
0 (𝑣𝑣𝑦𝑦 in Fig. 1 is not necessarily zero, i.e., in case of slip). Moreover, the desired 
wheels’ angular velocities (�̇�𝜙1, �̇�𝜙2, �̇�𝜙3)  can be obtained using the following 
equation [24]. 

�
�̇�𝜙1
ϕ2
�̇�𝜙3
� = 1

𝑟𝑟
�
√3 2⁄ −1 2⁄ 𝑙𝑙

0 1 𝑙𝑙
−√3 2⁄ −1 2⁄ 𝑙𝑙

� �
�̇�𝐗R
�̇�𝐘R
𝜔𝜔
�                                                                            (2) 

where r represents the radius of the wheel and 𝑙𝑙 represents the distance from the 
centre of the robot to the wheel. A low-level PI controller is then used to make the 
wheels’ motors track the desired angular velocities.  



Landmarks Exploration Algorithm for Mobile Robot  . . . . 3169 

 
 
Journal of Engineering Science and Technology           August 2021, Vol. 16(4) 

 

 
Fig. 1. Global frame and robot frame. 

2.2.  Extended Kalman filter 
The EKF is utilized in this work to continuously estimate the pose of the robot when 
it moves within the environment. The direct use of sensor data could lead to an 
accumulative error over time. To improve the quality of updating robot pose, sensor 
fusion technique can be applied by using dedicated sensors such as an encoder and 

Inertial Measurement Unit (IMU) contains a 3-axis gyroscope, accelerometer, 
and magnetometer. This can be done using the Kalman filter to correctly identifying 
the pose of a robot  [25]. The Kalman filter in its basic form consists of two steps: 
prediction and update. 

Suppose that measurements are received from the encoder and IMU at each 
sampling period 𝑇𝑇 (𝑇𝑇 =50ms is used in this paper). The measured IMU signals 
contain noises, especially during the robot motion, and biases and are assumed in 
the following form 
 𝑎𝑎𝑥𝑥𝑥𝑥 = 𝑎𝑎𝑥𝑥 + 𝑏𝑏𝑎𝑎𝑥𝑥 + 𝓌𝓌𝑎𝑎𝑥𝑥 
𝑎𝑎𝑦𝑦𝑥𝑥 = 𝑎𝑎𝑦𝑦 + 𝑏𝑏𝑎𝑎𝑦𝑦 + 𝓌𝓌𝑎𝑎𝑦𝑦 
𝜔𝜔𝑥𝑥 = 𝜔𝜔 + 𝑏𝑏𝜔𝜔 + 𝓌𝓌𝜔𝜔 

(3) 

where 𝑎𝑎𝑥𝑥𝑥𝑥 and 𝑎𝑎𝑦𝑦𝑥𝑥 denote the measured acceleration along the x-axis and y-axis 
of IMU respectively; 𝜔𝜔𝑥𝑥 is the measured angular velocity around the z-axis of the 
IMU; and 𝑏𝑏𝑎𝑎𝑥𝑥 , 𝑏𝑏𝑎𝑎𝑦𝑦  and 𝑏𝑏𝜔𝜔  are constant biases, i.e., �̇�𝑏𝑎𝑎𝑥𝑥 = �̇�𝑏𝑎𝑎𝑦𝑦 = �̇�𝑏𝜔𝜔 = 0 . The 
noises 𝓌𝓌𝑎𝑎𝑥𝑥, 𝓌𝓌𝑎𝑎𝑦𝑦 and 𝓌𝓌𝜔𝜔 have zero mean and normal distribution.  

The discrete model that describes the relationship between the robot position 
and acceleration and the robot orientation and angular velocity can be formulated 
based on Eqs. (1) and (3) as follows: 
𝐱𝐱[𝑘𝑘 + 1] = 𝐟𝐟(𝐱𝐱[𝑘𝑘],𝐮𝐮[𝑘𝑘])    (4) 
𝐳𝐳[𝑘𝑘] = 𝐻𝐻𝐱𝐱[𝑘𝑘] (5) 

where 𝐱𝐱[𝑘𝑘] = (𝑥𝑥[𝑘𝑘],𝑦𝑦[𝑘𝑘], vx[𝑘𝑘], vy[𝑘𝑘], 𝑏𝑏𝑎𝑎𝑥𝑥[𝑘𝑘], 𝑏𝑏𝑎𝑎𝑦𝑦[𝑘𝑘],𝜃𝜃[𝑘𝑘], 𝑏𝑏𝜔𝜔[𝑘𝑘] ), 
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𝐟𝐟[𝑘𝑘] =

⎝

⎜
⎜
⎜
⎜
⎜
⎛

𝑥𝑥[𝑘𝑘] + 𝑇𝑇‖𝐯𝐯[𝑘𝑘]‖ cos(𝜃𝜃[𝑘𝑘] + 𝛽𝛽[𝑘𝑘])
𝑦𝑦[𝑘𝑘] + 𝑇𝑇‖𝐯𝐯[𝑘𝑘]‖ sin(𝜃𝜃[𝑘𝑘] + 𝛽𝛽[𝑘𝑘])

vx[𝑘𝑘] + 𝑇𝑇(𝑎𝑎𝑥𝑥𝑥𝑥[𝑘𝑘] − 𝑏𝑏𝑎𝑎𝑥𝑥[𝑘𝑘])
vy[𝑘𝑘] + 𝑇𝑇(𝑎𝑎𝑦𝑦𝑥𝑥[𝑘𝑘] − 𝑏𝑏𝑦𝑦𝑥𝑥[𝑘𝑘])

𝑏𝑏𝑎𝑎𝑥𝑥[𝑘𝑘]
𝑏𝑏𝑎𝑎𝑦𝑦[𝑘𝑘]

𝜃𝜃[𝑘𝑘] + 𝑇𝑇(𝜔𝜔𝑥𝑥[𝑘𝑘] − 𝑏𝑏𝜔𝜔[𝑘𝑘])
𝑏𝑏𝜔𝜔[𝑘𝑘] ⎠

⎟
⎟
⎟
⎟
⎟
⎞

,   

𝐻𝐻 = �
1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 0 0 0 0 1 0

�,  

𝒛𝒛[𝑘𝑘] = (𝑥𝑥[𝑘𝑘], 𝑦𝑦[𝑘𝑘], 𝜃𝜃[𝑘𝑘])𝑇𝑇 , ‖𝐯𝐯[𝑘𝑘]‖ = �v𝑥𝑥[𝑘𝑘]2 + v𝑦𝑦[𝑘𝑘]2 , v𝑥𝑥[𝑘𝑘] and v𝑦𝑦[𝑘𝑘] are 
the robot velocities along 𝐗𝐗R and 𝐘𝐘R axes respectively, 𝛽𝛽[𝑘𝑘] = atan2(vy[𝑘𝑘], vy[𝑘𝑘]), 
and (𝑥𝑥[𝑘𝑘], 𝑦𝑦[𝑘𝑘],𝜃𝜃[𝑘𝑘]) are the robot pose relative to the global frame.  

The EKF or unscented Kalman filter method can be used to estimate the states 
of the aforementioned model. Note that the measurement vector   𝐳𝐳[𝑘𝑘] is obtained 
from encoder and magnetometer measurements for robot position and orientation 
respectively after proper sensors calibrations. 

3. Trilateration Approach 

3.1. The fundamental of trilateration 
Throughout the years, in terms of location purposes, the trilateration approach has 
been applied in many different systems. It has also been employed in robotics 
technology, especially in a mobile robot. The trilateration approach involves the 
determination of the robot position based on distance measurements. It can be used 
for indoor or outdoor localization.  Outdoor localization often uses the Trilateration 
approach with GPS to estimate the position [10]. While in indoor localization, the 
trilateration approach is applied with WiFi signal based [26], Bluetooth based  [27], 
RFID technology [28], and Hybrid Camera-LiDAR System [10]. In this paper, the 
Trilateration approach is applied using a camera and a laser distance sensor 
mounted properly on the robot. The purpose of a camera is to detect CCLs. In this 
process, the distance between the  mobile robot and the landmark can be measured 
using a laser distance sensor as shown in Fig. 2.  To obtain the position of the  mobile 
robot, the following three equations for the three circles are used: 

(𝑥𝑥 − 𝑥𝑥1)2 + (𝑦𝑦 − 𝑦𝑦1)2 = 𝑟𝑟12 

(𝑥𝑥 − 𝑥𝑥2)2 + (𝑦𝑦 − 𝑦𝑦2)2 = 𝑟𝑟22 
(𝑥𝑥 − 𝑥𝑥3)2 + (𝑦𝑦 − 𝑦𝑦3)2 = 𝑟𝑟32                                                                                     (6) 

where 𝑥𝑥1 , 𝑦𝑦1 , 𝑥𝑥2 , 𝑦𝑦2 , 𝑥𝑥3, 𝑦𝑦3  denote the coordinates of the landmarks in a global 
reference frame, 𝑟𝑟1, 𝑟𝑟2, 𝑟𝑟3 are the radii of circles representing the distances between 
the camera and landmarks and 𝑥𝑥, 𝑦𝑦 represent the robot position. 
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Fig. 2. Trilateration solution example at the intersection of three circles. 

To solve for the position (𝑥𝑥, 𝑦𝑦) of the robot, expand the squares of each of these 
three equations, then subtract the second equation from the first one and subtract 
the third equation from the second one to obtain  

𝑥𝑥 = 𝐶𝐶𝐶𝐶−𝐹𝐹𝐵𝐵
𝐶𝐶𝐸𝐸−𝐵𝐵𝐵𝐵

                                                                                                                        (7) 

𝑦𝑦 = 𝐶𝐶𝐵𝐵−𝐸𝐸𝐹𝐹
𝐵𝐵𝐵𝐵−𝐸𝐸𝐶𝐶

                                                                                                                             (8) 
where 𝐴𝐴 = (−2𝑥𝑥1 + 2𝑥𝑥2) , 𝐵𝐵 = (−2𝑦𝑦1 + 2𝑦𝑦2) , 𝐶𝐶 = 𝑟𝑟12 − 𝑟𝑟22 − 𝑥𝑥12 + 𝑥𝑥22 − 𝑦𝑦12 + 𝑦𝑦22 , 𝐷𝐷 =
(−2𝑥𝑥2 + 2𝑥𝑥3), 𝐸𝐸 = (−2𝑦𝑦2 + 2𝑦𝑦3) and 𝐹𝐹 = 𝑟𝑟22 − 𝑟𝑟32 − 𝑥𝑥22 + 𝑥𝑥32 − 𝑦𝑦22 + 𝑦𝑦32. 

The coordinates of landmarks relative to a global reference are deduced from 
the image processing technique. Additionally, the distance to the landmarks 
(𝑟𝑟1, 𝑟𝑟2, 𝑟𝑟3) are measured using a proximity sensor. Hereby, the x and y positions of 
the robot are computed depending on the abovementioned trilateration equations. 

3.2.  The restrictions of the trilateration approach: 
As mentioned in the previous section, at least three distinguishable landmarks must 
be seen by the robot to localize itself in a certain environment. However, the 
trajectories or areas of an environment with less than three visible landmarks are 
inadequate to precisely localize the robot. Even though those three landmarks are 
usually suitable for the implementation of robot localization, this is not applicable 
in some cases. In other terms, a robot cannot localize itself in a case when a robot 
and landmarks lie in the same circumference (in the case of the triangulation 
technique). This is because the intersection of the two arcs is another arc, not a 
point [30, 31]. Even in an obstacle-free area, a problem emerges when a landmark 
becomes between a robot and another landmark. In this paper, these common 
restrictions will be overcome by applying the proposed elegant algorithm, which 
will be explained in detail in Section 5. 

3.3.  Calculation of the robot orientation: 
For complete robot localization, the orientation should also be calculated. Although 
there are many ways to determine the orientation of a robot, the triangulation 
method with the help of landmarks is a proven technique. The majority of the many 
proposed triangulation approaches have several limitations such as requiring a 
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particular landmark ordering, having blind spots, or needing the triangle defined by 
the three landmarks to work. 

Improvements to those approaches arose, but in contrast, they increased 
complexity, or they were required to cope with certain spatial arrangements 
separately [30]. In this context, minimal modification is performed, and the 
following new method is proposed in this work to compute the orientation. This 
becomes possible by the benefit of combining the trilateration and the triangulation 
method, which makes it easy-to-implement, low computational cost, and it can 
work in any arrangement without depending on a certain landmark ordering. After 
applying the trilateration method. The following formula is used to determine the 
heading of the robot: 

𝜃𝜃𝑅𝑅 = 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎2(𝑦𝑦𝑖𝑖 − 𝑦𝑦, 𝑥𝑥𝑖𝑖 − 𝑥𝑥) − ∅𝑖𝑖 (9) 

where (𝑥𝑥𝑖𝑖, 𝑦𝑦𝑖𝑖) are the coordinates of a landmark 𝑖𝑖, (𝑥𝑥, 𝑦𝑦) are the coordinates of the 
robot obtained from equations (7) and (8) and ∅𝑖𝑖 is the angle between the robot and 
the landmark as shown in Fig. 3 (a). For further simplification, the LEA ensures to 
make the robot face the detected landmark, which means no difference angle 
between them, and thus ∅𝑖𝑖 is zero as shown in Fig. 3 (b). Consequently, the final 
version of the equation is quite simple: 

𝜃𝜃𝑅𝑅 = 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎2(𝑦𝑦𝑖𝑖 − 𝑦𝑦, 𝑥𝑥𝑖𝑖 − 𝑥𝑥) (10) 

 
Fig. 3. The Omni-robot locations among landmarks. 

4.  Color-Coded Landmark Detection 
This section focuses on the detection of the artificial CCLs which are based on the 
combination of three-square areas with two or three different colors assigned in-
line near each other. These colors are red, green, and blue. The selected number of 
square areas is perfect in the context of detecting the CCLs with  high reliability and 
fast response time. Moreover, it generates twenty-four CCLs. 

Each video frame is passed from the robot camera in CoppeliaSim to MATLAB 
which is employed to detect the CCLs. RGB colour space is used in this work 
because the segmentation of the needed colors is more profound than other colour 
spaces. Furthermore, it can provide a high-performance color detection without any 
conversion stage despite some undesired properties under imbalance illumination. 

RGB image can be separated into Red (R), Green (G), and Blue (B) components 
images with an intensity range of [0, 255] for each. The proposed framework of CCLs 
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detection is divided into three stages. In the first stage, each RGB channel is converted 
to a binary image based on a normalized intensity threshold in the range of [0, 1]. 
These binary channels are called BR, BG, and BB for the R, G, B components 
respectively. However, this thresholding method is not effective when the RGB 
image contains objects with colors that are produced from combining the high-
intensity values of RGB components. To solve this issue, a grayscale intensity image 
in the range of [0, 255] is subtracted from each of the RGB channels before converting 
these channels to binary. This grayscale intensity image is earned from the weighted 
method with a contribution of 29.89% red, 58.70% green, and 11.4% blue.  

The second stage is the image segmentation process. In this stage, a collection of 
pixel regions is produced for each binary image which leads to process only the 
important segments of the image instead of processing the entire image. The 
segmentation process is based on the region-growing method which has clear edges 
with good segmentation results. In this segmentation method, the neighboring pixels 
of the initial seed points are inspected according to an 8-connected neighborhood and 
calculated iteratively if the neighbors of the pixel need to be added to the region. Each 
region contains a collection of binary data called a Binary Large OBject (BLOB). 
BLOBs with a different number of pixels are held in each BR, BG, and BB channel 
depending on what the robot camera is seeing in the environment. Moreover, the 
small BLOBs which have fewer than P pixels are removed. 

In the third stage, a matrix of [x y] centroid coordinates for the BLOBs in the 
segmented BR, BG, and BB channels are computed. Then, the CCLs are detected 
based on the relationship among the centroids of three BLOBs. In other words, the 
CCL detection is dependent on the vertical adjacent among these BLOBs with 
acceptable tolerance (T pixels) and the vertical distances among the three BLOBs 
centroids. At the end of the third stage, the numeric values of the CCLs with their 
counts and centroids are returned to the CoppeliaSim with the assumption of Red =1, 
Green = 2, Blue = 3. The proposed method of CCLs detection is illustrated in Fig. 4. 

 

 
Fig. 4. The proposed CCL detection algorithm. 
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5. Landmarks Exploration Algorithm 

The following scenario is considered: the robot is required to move to a target pose 
or multiple targets relative to the global (room) frame and tackle some tasks  such 
as delivering materials, sensing, welding, etc. Additionally, the robot does not 
know its current pose  relative to the global frame. The robot must recognize its 
location relative to the global frame, not necessarily for the entire time, so that it 
can move to the target pose using its onboard sensors and EKF.  

The proposed landmark exploration algorithm (LEA) assumes the following: 1) 
the robot is equipped with a camera, or multiple cameras, mounted on the front side 
that detects the CCLs in 180ο range in front of the robot; 2) the robot has a distance 
sensor mounted in front of the robot (at the same position of the front-facing camera 
but shifted upward in the z-axis direction) which can measure the distance between 
the landmark and the robot; it can be a single beam laser, IR sensor or sonar sensor; 
3) the robot is equipped with an IMU and encoder to continually estimate its 
position and orientation using EKF; and iv) the environment is obstacles free; 
however, obstacle avoidance algorithm such as the one in [31] can be easily 
integrated with the LEA. 

The LEA starts after finding the first landmark. Finding the first landmark can 
be performed by making the robot follow a wall, moving in a zigzag pattern, or any 
other suitable method. Finding the first landmark is not the focus of this paper.  

Once the robot finds the first landmark, it stops and starts estimation using EKF 
with zero initial states. The EKF estimates the robot pose relative to the robot’s 
frame (𝐹𝐹𝑟𝑟) at the time it found the first landmark. The position of the first landmark 
relative to the frame 𝐹𝐹𝑟𝑟 can be readily calculated since the robot pose relative to 𝐹𝐹𝑟𝑟 
is known as follows: 1) the robot rotates until the landmark becomes in the middle 
of the image coming from the front-facing camera. This can be achieved as follows: 
if the image width, in pixels, is normalized and the landmark position (𝑃𝑃𝐿𝐿𝑖𝑖) in the 
image width is known from the image processing algorithm. Then, the following 
PID control law centers the landmark on the image of the front-facing camera 
 
𝜔𝜔 = 𝐾𝐾𝑝𝑝𝑒𝑒(𝑎𝑎) + 𝐾𝐾𝑑𝑑�̇�𝑒(𝑎𝑎) + 𝐾𝐾𝑖𝑖 � 𝑒𝑒(𝜏𝜏)

𝑡𝑡

0
𝑑𝑑𝜏𝜏   (11) 

where the error 𝑒𝑒(𝑎𝑎) = 0.5 −  𝑃𝑃𝐿𝐿𝑖𝑖; 2) the distance (𝑑𝑑𝐿𝐿1) between the landmark and 
the robot is measured by the distance sensor mounted above the front-facing 
camera. Thus, the position of the landmark 𝑃𝑃𝐿𝐿  relative to the frame 𝐹𝐹𝑟𝑟  can be 
calculated as 
 𝑃𝑃𝐿𝐿𝑥𝑥 = 𝑃𝑃𝑟𝑟𝑥𝑥 + 𝑑𝑑𝐿𝐿 cos 𝜃𝜃             
𝑃𝑃𝐿𝐿𝑦𝑦 = 𝑃𝑃𝑟𝑟𝑦𝑦 + 𝑑𝑑𝐿𝐿 sin𝜃𝜃 (12) 

where 𝑃𝑃𝑟𝑟  and 𝜃𝜃  is the robot position and orientation relative to the frame 𝐹𝐹𝑟𝑟 
respectively. The position 𝑃𝑃𝐿𝐿  and the extracted global position of the landmark 
from the CC are recorded and the robot will ignore the landmark if it sees it again. 

Once the position 𝑃𝑃𝐿𝐿1  and the global position of the first landmark are recorded 
and given that landmarks are positioned in a way such that for every landmark there 
is at least one landmark such that the distance between them is ≤ 2𝑑𝑑𝑥𝑥𝑎𝑎𝑥𝑥 where 
𝑑𝑑𝑥𝑥𝑎𝑎𝑥𝑥  is the maximum range of the distance sensor, the robot rotates 90ο CW or 
CCW using (11) with 𝑒𝑒(𝑎𝑎) = 𝜃𝜃𝑑𝑑 −  𝜃𝜃 , 𝜃𝜃𝑑𝑑 = 𝜃𝜃� + 𝜋𝜋 2⁄ , and 𝜃𝜃�  is the robot 
orientation at the time when the first landmark becomes at the centre of the image 
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of the camera. The robot then moves in a circular motion with a radius of 𝑑𝑑𝑥𝑥𝑎𝑎𝑥𝑥  
around the first landmark until it finds the second landmark.  

If the desired velocity vector to make the robot moves in a circular path is 
generated as follows 

 �
v𝑑𝑑𝑥𝑥
v𝑑𝑑𝑦𝑦� = �cos 𝜃𝜃� − sin𝜃𝜃�

sin𝜃𝜃� cos 𝜃𝜃�
� �𝑘𝑘 cos𝑤𝑤𝑎𝑎
𝑘𝑘 sin𝑤𝑤𝑎𝑎�    (13) 

where 𝜃𝜃� is the robot orientation at the time it finishes the 90ο rotation, 𝑘𝑘 > 0 and 
𝑤𝑤 denotes the angular frequency (𝑘𝑘 and 𝑤𝑤 are design parameters which can be 
tuned to make the robot move at the desired speed and the radius of the circle equal 
to 𝑑𝑑𝑥𝑥𝑎𝑎𝑥𝑥  respectively), then the desired angle 𝜃𝜃𝑑𝑑 and the desired speed ‖𝐯𝐯‖ = �̇�𝐗R 
(assuming �̇�𝐘R = 0)  of the robot can be determined using: 

𝜃𝜃𝑑𝑑 = atan2(v𝑑𝑑𝑦𝑦 , v𝑑𝑑𝑥𝑥) (14) 

�̇�𝐗R = �v𝑑𝑑𝑥𝑥2 + v𝑑𝑑𝑦𝑦2 = 𝑘𝑘  (15) 

𝜔𝜔 is calculated using (11) with 𝑒𝑒(𝑎𝑎) = 𝜃𝜃𝑑𝑑 −  𝜃𝜃. Then, �̇�𝐗R and 𝜔𝜔 are plugged into 
(2) to obtain the desired wheels’ angular velocities. 

Next, the same steps after finding the first landmark are repeated. If the robot 
detects the first landmark again while moving around the second landmark, it 
repeats the same steps as if it found a new landmark but without recording the 
position since it has already been recorded for the first time. The robot is then 
guaranteed to find the third landmark as per the arrangement of the landmarks as 
shown in Fig. 5 (the case where the distance between the landmark 1 and 2 is 
exactly equal to 2𝑑𝑑𝑥𝑥𝑎𝑎𝑥𝑥). 

 
Fig. 5. The case when the robot detects the  

first landmark again before the third landmark. 

At this point, the robot knows its position and the positions of three landmarks 
to the frame 𝐹𝐹𝑟𝑟. Now, it is straightforward to calculate the distance between the 
robot and each one of the three landmarks utilizing the distance formula between 
two points as follows 
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𝑑𝑑𝑖𝑖 = �(𝑃𝑃𝑟𝑟𝑥𝑥 − 𝑃𝑃𝐿𝐿𝑖𝑖𝑥𝑥)2 + (𝑃𝑃𝑟𝑟𝑦𝑦 − 𝑃𝑃𝐿𝐿𝑖𝑖𝑦𝑦)2,        i = 1,2,3                                           (16) 

To determine the robot's global position and orientation, eq (7), (8), and (10) are 
applied. However, the distances 𝑑𝑑𝑖𝑖, calculated based on the estimated robot’s position 
and orientation from EKF, are not accurate due to the error resulting from the EKF. 
Consequently, this leads to an error when calculating the robot’s global pose. 

To overcome this issue, the robot may find a position such that it can detect all 
three landmarks and directly measure the distance between the robot and the 
landmarks using the distance sensor. In this case, the EKF error is eliminated and 
the only purpose of the EKF is to enable the robot to find the position where it can 
detect the landmarks and measure the distance using the distance sensor. The 
existing of such a position is not always ensured because it depends on the 
landmarks’ arrangements. Provided that the positions 𝑃𝑃𝑟𝑟 ,𝑃𝑃𝐿𝐿1,𝑃𝑃𝐿𝐿2  and 𝑃𝑃𝐿𝐿3  are 
known, the necessary condition to find the position is that the distance between 
every two landmarks is  ≤ 2𝑑𝑑𝑥𝑥𝑎𝑎𝑥𝑥 .  The sufficient condition is determined as 
follows: 1) two circles with radii 𝑑𝑑𝑥𝑥𝑎𝑎𝑥𝑥  centred at any two landmarks are drawn and 
the two points of intersections are calculated. These intersection points represent 
the furthest point from the two landmarks by which the robot can measure the 
distance to them using the distance sensor, and 2) the distance between each 
intersection point and third landmark is calculated using the distance formula. If 
one of the distances is ≤ 𝑑𝑑𝑥𝑥𝑎𝑎𝑥𝑥, then the position is found (see Fig. 6). The robot 
then moves to that position and rotates until the camera detects a landmark and then 
use the PID control law (11) to centre the landmark in the image and measure the 
distance to it using the distance sensor. The latter step is repeated until the distances 
to the remaining landmarks are measured. 

 
Fig. 6. The sufficient condition for finding the position to measure the 

distance to the landmarks using a laser sensor. Points a and b represent the 
points of intersection of the two circles centred at landmarks 2 and 3. 

If the necessary condition is not met, i.e., 𝑑𝑑 > 𝑑𝑑𝑥𝑥𝑎𝑎𝑥𝑥 in Fig. 6, it is still possible 
to reduce the estimation error of the EKF. This can be achieved if the robot moves 
to the nearest middle point between any two landmarks and repeats the 
abovementioned steps to measure the distance to the two landmarks and determine 
the distance to the third landmark using (16). If there is a distance between any two 
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landmarks that is ≥ 𝑑𝑑𝑥𝑥𝑎𝑎𝑥𝑥 , the same steps are repeated when the necessary  
condition is not satisfied. After finding the robot’s global position, the robot ends 
the current EKF, starts a new one, and moves to the target position. The robot may 
start a new LEA and update its pose again if it detects a new landmark on its way 
to the target. This can occur if the target is too far from the position in which the 
robot knows its global position to reduce the error from the EKF. The pseudo-codes 
of the LEA is shown in Algorithm 1. 

Note that after finding the third landmark, the robot moves from its current 
position to the position in which it can measure the distances to the landmarks and 
from that position to the target pose as follows: 1) the robot first rotates by the angle 
𝛼𝛼 = 𝜑𝜑 − 𝜃𝜃 (see Fig. 1) using the PID control law (11) with 𝜃𝜃𝑑𝑑 = 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎2(𝑦𝑦𝑡𝑡𝑝𝑝 −

Algorithm 1 Landmarks Exploration Algorithm (LEA) 
1: if the first landmark is detected by one of the cameras, then 
2: stop the robot 
3: start EKF with zero initial states 
4: rotate the robot until the front-facing camera face the detected landmark 
5: measure and record the distance to the landmark using the distance sensor 

6: record the landmark position relative to current EKF coordinates and 
extract the global coordinates from the CC. 

7: rotate the robot 90ο CW or CCW randomly 

8: move the robot in a circular motion around the detected landmark until 
the next (second) landmark is detected 

9: execute steps 2,4,5,6,7, and 8 
10: if the first landmark is detected instead of the third one then 
11: execute steps 2,4,7, and 8 
12: end if 
13: execute steps 2,4,5, and 6 
14: if d12 ≤ 2𝑑𝑑𝑥𝑥𝑎𝑎𝑥𝑥  and d23 ≤ 2𝑑𝑑𝑥𝑥𝑎𝑎𝑥𝑥  and d13 ≤ 2𝑑𝑑𝑥𝑥𝑎𝑎𝑥𝑥then 

15: find the points of intersection of the two circles centered at any two 
landmarks with the radius of 𝑑𝑑𝑥𝑥𝑎𝑎𝑥𝑥  

16: calculate the distance from the points of intersection to the third 
landmark using the distance formula 

17:     if any of the distances ≤ 𝑑𝑑𝑥𝑥𝑎𝑎𝑥𝑥  then 

18:       move the robot to the point of intersection and execute steps 4 and 5 
for each of the three landmarks 

19:    else 

20:        move the robot to the nearest middle point between any two 
landmarks and execute steps 4 and 5 for each of the two landmarks 

21:        calculate the distance to the third landmark using the distance formula 
22:     end if 
23: else if there is a distance between any two landmarks that is ≤ 𝑑𝑑𝑥𝑥𝑎𝑎𝑥𝑥 
24:      execute steps 20 and 21 
25: else 

26:     calculate the distances to landmarks one and two using the distance 
formula 

27: end if 
28: calculate the global pose of the robot using (7), (8), and (10) 
29: return the global pose of the robot 
30: end if 



3178        M. N. Noaman et al. 

 
 
Journal of Engineering Science and Technology           August 2021, Vol. 16(4) 

 

𝑦𝑦𝑐𝑐𝑝𝑝 , 𝑥𝑥𝑡𝑡𝑝𝑝 − 𝑥𝑥𝑐𝑐𝑝𝑝) where �𝑦𝑦𝑐𝑐𝑝𝑝 , 𝑥𝑥𝑐𝑐𝑝𝑝� and (𝑦𝑦𝑡𝑡𝑝𝑝 , 𝑥𝑥𝑡𝑡𝑝𝑝) denote the cartesian coordinates for 
current and target robot positions respectively, and 2) the robot then moves to the 
target position using the following control law [32]. 

 �̇�𝐗R = 𝐾𝐾𝜌𝜌𝜌𝜌 cos𝛼𝛼 (17) 

where 𝐾𝐾𝜌𝜌 > 0 , 𝜌𝜌 = �(𝑥𝑥𝑡𝑡𝑝𝑝 − 𝑥𝑥𝑐𝑐𝑝𝑝)2 + (𝑦𝑦𝑡𝑡𝑝𝑝 − 𝑦𝑦𝑐𝑐𝑝𝑝)2 , and 𝛼𝛼 = 0  as per the first 
aforementioned robot rotation. Once the robot reaches the target position, it rotates 
to the target orientation (𝜃𝜃𝑡𝑡) using the PID control law (11) with 𝜃𝜃𝑑𝑑 = 𝜃𝜃𝑡𝑡. 

6.  Results and Discussion 
In this section, simulation studies by using the CoppeliaSim and MATLAB 
software are accomplished to validate the effectiveness of the proposed LEA. The 
mobile robot used in these studies is a three-wheeled omnidirectional robot whose 
dimensions and configuration are shown in Fig. 1. Two simulation scenarios are 
considered. In the two scenarios, the global frame is at the upper right corner of the 
room as shown in Fig. 7 where the red, green, and blue arrows represent the positive 
X, Y, and Z axes respectively. The robot is equipped with a camera that detects 
landmarks in 180ο range in front of the robot. The landmark detection algorithm is 
done inside MATLAB. The data transfer between CoppeliaSim and MATLAB is 
performed through a regular API. The camera’s maximum range in which the 
landmark can be detected is set to equal to 𝑑𝑑𝑥𝑥𝑎𝑎𝑥𝑥. The distance sensor used in the 
simulation is a single ray laser sensor with a maximum range of 3.5m. In both 
scenarios, the robot is initially at point A and is required to go to the target pose 
(1.5 m, 18 m, 180ο). The robot does not know its position nor orientation relative 
to the global frame at point A. The global position of landmarks 1 and 2 are 
(10m,7m) and (5.5 m, 8 m) respectively in the first and second scenario and the 
global position of landmark 3 is (8m,12.5m) in the first scenario and (12.5m,11.5m) 
in the second one. The PID parameters used in (11) are 0.25, 0.1 and 0.15 for 𝐾𝐾𝑝𝑝, 
𝐾𝐾𝑑𝑑 and 𝐾𝐾𝑖𝑖 respectively. The value of  𝐾𝐾𝜌𝜌 used in (17) is 0.2. 

In the first scenario which is shown in Fig. 7, the robot with an unknown pose 
starts moving forward (point A) as indicated by the blue arrow in front of the robot 
which always points to the current robot’s direction. The camera then detects 
landmark 1. The robot stops (point B), starts EKF with zero initial states, and rotates 
until landmark  1 becomes in the center of the image received from the camera using 
the control law (11).  After that, the robot measures the distance to the landmark, 
records its position relative to the current EKF coordinates using (12), and extracts 
and records the global coordinates of the landmark from the CC. Next, the robot 
rotates 90ο CW using (11) and begins rotating around landmark 1 using (13) until 
the camera spots landmark 2 (point C). The same aforementioned steps are repeated 
except starting an EKF one until the camera sees landmark 3 (point D). 

After finding three landmarks, the robot checks the necessary and sufficient 
conditions which are met in the first scenario case. Thereafter, the robot moves to 
the point of the two circles intersection (point E) using (11) and (17) and rotates 
until it positions landmark 1 in the center of the image using the control law (11) 
and measures the distance to landmark 1 using the distance sensor. The same steps 
are repeated for landmarks 2 and 3. Afterwards, the robot calculates its global 
position and orientation using (7), (8), and (10), ends the current EKF, starts a new 

https://www.coppeliarobotics.com/helpFiles/en/apisOverview.htm
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EKF with the computed global pose as an initial pose, and moves to the target using 
(11) and (17). It is worth noting that the global robot pose computed at point E is 
very accurate as shown in Table 1. This is due to that 1) the solution of the 
trilateration problem is unique and the error in the robot pose is due to the error in 
the distance sensor measurements (distance calculation in CoppeliaSim is very 
accurate) and 2) The estimation error of the EKF is eliminated since it is solely used 
to find the position in which the robot can measure the distance to the three 
landmarks using the distance sensor directly. The error in the robot poses when it 
reaches the target is shown in Table 1 as well. 

 
Fig. 7. The robot deploys LEA to reach the target pose in the first scenario. 

Table 1. The first scenario’s pose error. 

Scenario 1 Actual Pose - Determined Pose = Error 
 X (m) Y (m) 𝜃𝜃 (ο) 

Tri. pose 9.1050-9.1051=0.0001 8.8276-8.8258=0.0018 71.638-71.619=0.019 
Target pose 1.5000-1.5540=0.0540 18.000-18.076=0.0760 180.00-182.83=-0.283 

The second scenario shown in Fig. 8  is different from the first one as the 
distance between landmark 1 and 3 is greater than 𝑑𝑑𝑥𝑥𝑎𝑎𝑥𝑥 . The robot behaves in a 
similar way to the first scenario at points A, B, C. However, at point D the robot 
spots landmark 1 again before landmark 3. In this case, the robot repeats the same 
steps  when spotting  landmark  2 except  recording  the landmark position and 
extracting its global position from the CC since it has already been performed when 
the robot was at point B. 

The robot then detects landmark 3 at point E and the necessary condition is not 
satisfied in this scenario since d_23≥d_max. Thus, the robot moves to the nearest 
middle point between any two landmarks provided that the distance between them is 
≤d_max. Next, the robot measures the distance to landmarks 1 and 3 using the 
distance sensor in a similar way to the first scenario, whereas the distance to landmark 
2 is measured using the distance formula since it is out of the distance sensor range. 
The robot then finds its pose and moves to the target as in the first scenario. 

It can be observed that there is an error in the computed global pose at point F 
as shown in Table 2. This is because the distance to landmark 2 is computed based 
on the estimated position of the robot and landmark 2 using EKF. The error in the 
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robot poses when it reaches the target is shown in Table 2 as well. The error in 
estimating the robot pose in the second scenario could be eliminated if more 
restrictions of the landmark’s arrangement are set. Furthermore, the error when the 
robot reaches the target could be reduced if the landmarks are placed near the target. 

 
Fig. 8. The robot employs LEA to go to the target in the second scenario. 

Table 2. The second scenario’s pose error. 

Scenario 2 Actual Pose - Determined Pose = Error 
 X (m) Y (m) 𝜃𝜃 (ο) 

Tri. pose 9.3748-9.3274= 0.0474 11.510-11.587=-0.0770 214.70-216.119=-1.4190 
Target pose 1.5000-1.6010=-0.1010 18.000-18.132=-0.1320 180.00-184.880=-4.8800 

As a practical consideration, a value of less than 𝑑𝑑𝑥𝑥𝑎𝑎𝑥𝑥 is used in the landmark 
arrangement and the two circle intersection conditions. This is due to the estimation 
error ensuing from the EKF; consequently, the robot is not able to measure the 
distance, i.e., out of range, to the landmark if there is a small error in the computed 
intersection point.  

The accuracy of the EKF estimation can be calculated as follows. The exact 
robot pose is known at each simulation step because the LEA is implemented inside 
the CoppeliaSim and it is seamless to get the object pose when using it. Then, the 
exact and estimated robot paths can be plotted to visualize the estimation error. To 
reduce the estimation error, the process noise covariance matrix (𝑄𝑄 ) and the 
measurement noise covariance matrix (𝑅𝑅) can be manually tuned until the exact 
and estimated robot paths become close to each other. Alternatively, a performance 
index can be constructed as 

𝐽𝐽 = �‖𝑒𝑒𝑖𝑖‖2
𝑡𝑡𝑡𝑡

𝑡𝑡𝑖𝑖=𝑡𝑡0

= � 𝑒𝑒𝑖𝑖𝑇𝑇𝑒𝑒𝑖𝑖

𝑡𝑡𝑡𝑡

𝑡𝑡𝑖𝑖=𝑡𝑡0

 

where 𝑒𝑒𝑖𝑖 = �𝑥𝑥𝑖𝑖[𝑘𝑘] − 𝑥𝑥�𝑖𝑖[𝑘𝑘], 𝑦𝑦𝑖𝑖[𝑘𝑘] − 𝑦𝑦�𝑖𝑖[𝑘𝑘], 𝜃𝜃𝑖𝑖[𝑘𝑘] − 𝜃𝜃�𝑖𝑖[𝑘𝑘]�𝑇𝑇is the error vector of 
the estimated states (𝑒𝑒 = 𝑒𝑒𝑥𝑥𝑎𝑎𝑒𝑒𝑎𝑎 𝑠𝑠𝑎𝑎𝑎𝑎𝑎𝑎𝑒𝑒𝑠𝑠 − 𝑒𝑒𝑠𝑠𝑎𝑎𝑖𝑖𝑒𝑒𝑎𝑎𝑎𝑎𝑒𝑒𝑑𝑑 𝑠𝑠𝑎𝑎𝑎𝑎𝑎𝑎𝑒𝑒𝑠𝑠 ), 𝑎𝑎0  and 𝑎𝑎𝑡𝑡  are the 
initial and final discrete-time of the tuning interval respectively. Then, the tuning 
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of 𝑄𝑄 and 𝑅𝑅 matrices can be done using one of the optimization algorithms, e.g., 
genetic algorithm, to minimize that performance index.  

7.  Conclusion and Future Work 
The main contribution of this research was to provide a novel LEA. The LEA 
enabled a mobile robot equipped with a vision sensor to execute a systematic 
exploration of CCLs, obtain its pose, and then go to a certain target. EKF and 
trilateration methods were employed in the LEA. This algorithm is based upon 
detecting CCLs, store their location, find the best position among them to apply the 
trilateration method, and reach the target in the final step. Certain assumptions were 
pointed out to work in a practical and reasonable environment. The impressive 
CoppeliaSim Simulator in conjunction with MATLAB, for landmarks detection 
only, was used as the environment for testing and evaluating the LEA. Two 
scenarios were considered to show the capability of the LEA for robot pose 
estimation. Simulation results demonstrated the satisfactory performance of the 
LEA and successfully estimated the mobile robot pose. Future developments will 
focus on the implementation of the LEA in actual experiments. Moreover, the 
algorithm may be extended to avoid obstacles while performing localization. 

 

Nomenclatures 
  
𝑎𝑎𝑥𝑥𝑥𝑥 , 𝑎𝑎𝑦𝑦𝑥𝑥  The measured acceleration along the x-axis and y-axis of 

IMU respectively 
𝑏𝑏𝑎𝑎𝑥𝑥, 𝑏𝑏𝑎𝑎𝑦𝑦  𝑏𝑏𝜔𝜔 
𝑑𝑑𝑥𝑥𝑎𝑎𝑥𝑥  
𝑑𝑑𝑖𝑖  
𝐹𝐹𝑟𝑟 
𝑃𝑃𝐿𝐿𝑖𝑖  
𝑃𝑃𝑟𝑟  
𝓌𝓌𝑎𝑎𝑎𝑎, 𝓌𝓌𝑎𝑎𝑦𝑦 𝓌𝓌𝜔𝜔 
XR 
𝑥𝑥𝑖𝑖, 𝑦𝑦𝑖𝑖  
𝑥𝑥, 𝑦𝑦 
YR 
𝑦𝑦𝑐𝑐𝑝𝑝 , 𝑥𝑥𝑐𝑐𝑝𝑝 
𝑦𝑦𝑡𝑡𝑝𝑝 , 𝑥𝑥𝑡𝑡𝑝𝑝 
 

Basis in terms of x, y, and angular. 
The maximum range of the distance sensor 
The distance between a landmark i and the robot. 
Robot Frame 
Position of a landmark i. 
Robot position 
Noises in terms of x, y, and angular. 
X-axis of the robot frame 
Coordination of a Landmark i. 
Coordination of the robot. 
Y-axis of the robot frame 
The cartesian coordinates for the current robot position 
The cartesian coordinates for the target robot position 
 

Greek Symbols 
�̇�𝜙1, �̇�𝜙2, �̇�𝜙3 Angular velocities belong to Motors 1, 2, 3 
∅𝑖𝑖 Angle between a Landmark I and the robot 
𝜃𝜃𝑅𝑅 Angle of the robot 
𝜃𝜃𝑑𝑑 Desired Angle 
 
Abbreviations 

BLOB 
CCLs 
CCW 

Binary Large Object 
Colour code landmarks 
Counter clockwise 

CW Clockwise 
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EKF Extended Kalman Filter 
IMU 
LEA 

Inertial Measurement Unit  
Colour code landmarks 
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