
Journal of Engineering Science and Technology
Vol. 15, No. 5 (2020) 3142 - 3161
© School of Engineering, Taylor’s University

3142

GAMIPOG: A DETERMINISTIC GENETIC
MULTI-PARAMETER-ORDER STRATEGY FOR THE

GENERATION OF VARIABLE STRENGTH COVERING ARRAYS

M. I. YOUNIS

Department of Computer Engineering,
College of Engineering, University of Baghdad, Baghdad, Iraq

E-mail: younismi@coeng.uobaghdad.edu.iq

Abstract

This paper discusses the construction of a test data generation strategy for
variable strength covering array (VSCA). The complexity of a VSCA strategy
affects the scalability to support higher strength of coverage, the size of the
generated test suites, and the execution-time significantly. There are many
desired characteristics like the deterministic feature, supporting higher strength
of coverage, manageable test size, less order of complexity, and fast execution-
time. Implementing these conflict demands in a single strategy is very
challenging task. Facing these challenges, this paper proposes a deterministic
genetic multi-parameter-order strategy for generating VSCA called GAMIPOG.
GAMIPOG combined the one-test-at-a-time, one-parameter-at-a-time, and meta-
heuristics strategies to take advantage of them with a step-by-step example to
illustrate the concept. Besides, this paper reviews the state-of-the-art of the
VSCA strategies and provides a systematic analysis in a tabular form to discuss
the desired features and the similarities and differences among VSCAs strategies.
The practical results are so competitive as compared with the existing strategies
in terms of the test size. Moreover, the GAMIPOG has an intermediate order of
complexity, fast execution-time, and minimal test size in most cases. Finally,
during running the experiments, new upper bounds for VSCAs have been
reported by the GAMIPOG.

Keywords: Covering array, Combination testing, Genetic algorithm, Greedy
algorithm, t-way testing, VSCA.

GAMIPOG: A Deterministic Genetic Multi-Parameter-Order Strategy 3143

Journal of Engineering Science and Technology October 2020, Vol. 15(5)

1. Introduction
The downscale of low-cost, efficient component systems enables the developers to
adopt system integration. However, to ensure the reliability and the quality of these
systems has increased the need for systematic testing. Combinatorial testing acts as
an efficient black-box sampling strategy for generating test data for the system
under test (SUT). The generation process adopts the t-way combinatorial
interaction between parameters-values, (i.e., the values or levels for each
parameter) [1-3].

Combinatorial testing has a colourful history involve the strategies for
generating the test suite based on the strength of the coverage (named t-way). Most
of the researchers in this area focused on obtaining minimal size for covering array
(CA) of a certain t-way strength that covers the t-way tuples among parameters.
The size of CA increments significantly increases in t, which makes the testing so
expensive. However, researchers observed that not all parameters require higher
strength of interaction among them during the testing. Thus, in a system which has
some components equals to k, a technique is desired to build a CA for the strength
of coverage equals to t that contains the t-way tuples between k parameters and also
contains the ti-tuples (where ti > t) interactions among the subset of k parameters.
The term variable strength covering array symbolized as VSCA (N; t, k, (v1, v2,
vk), C) is used to notate such systems [2, 4, 5]. Where C is a subset of VSCA has a
variable strength of testing. For instance, a VSCA (10; 2, 211, {CA (3, 23)2}) is
shown in Fig. 1.

Fig. 1. The mathematical notations example

for combinatorial VSCA (10; 2, 211, {CA (3, 23)2).

In this VSCA, the size is ten test cases and covers all 2-way tuples interaction
between the components. When there are n identical sub covering arrays where t,
k, and v are fixed, the CAs can be symbolized as CA (t, v k) n. In our example, VSCA
(10; 2, 211, {CA (3, 23)2}) contains two sub-disjoint CAs, each of them contains the
3-way tuples among three parameters with two values for each parameter as

3144 M. I. Younis

Journal of Engineering Science and Technology October 2020, Vol. 15(5)

depicted in Fig. 1. The “*” symbol is known as “don’t care” that can be assigned
to any value (either 0 or 1).

Recent studies and surveys [1-3] have reported that there are more than 100
strategies exist in the literature. Most of these strategies generate CAs. However,
only a limited number of these strategies owned the feature for generating the
VSCAs. The VSCA strategies are extensively divided into computational-based
and the search-based software testing (SBST) strategies. Computational algorithms
use the greedy approach to build the VSCA by adopting either one-test-at-a-time
(OTAT) [6-11] approach or one-parameter-at-a-time (OPAT) approach [8, 12, 13].
In the OTAT approach, the strategy adds one row to the test suite. While in the
OPAT approach, the strategy adds one column to the test suite to cover the most
tuples, followed by the OTAT approach if there are still more tuples. The SBST
strategies use meta-heuristic techniques to find near minimal-size solutions for
combinatorial testing [14-20]. Meta-heuristic techniques look for feasible solutions
over a large set [16, 21]. Another classification is for the combinatorial strategies
whether they are deterministic or non-deterministic. A non-deterministic strategy
adopts a random search for parameter-values, (i.e., the values or levels for the
parameter. For this reason, by running the algorithm multiple times, it generates
sometimes minimal testing size). However, the practical testing requires to generate
a deterministic test suite; especially, for fault identification and localization [3].
More recently, Moura et al. reported a new methodology to generate VSCA based
on hyper graphs to identify the dependent events in theory [22]. One common
feature among VSCA strategies is that they combine the priority of ti and t tuples
during the tuples' space generation and the test suite generation. Consequently, this
may lead to an over fitting problem, i.e., undesired computation.

Nevertheless, developing these algorithms it is considered as an NP-Complete
problem [2, 3]. Furthermore, finding a minimal test size is considered as an NP-
Hard problem [3]. The complexity of a VSCA strategy affects the scalability to
support higher strength of coverage, the size of the generated test suites, and the
execution-time significantly. There are many desired characteristics besides the
deterministic feature, supporting higher strength of coverage, manageable test
size, less order of complexity, and fast execution-time. Implementing these
conflict demands in a single strategy is very challenging task. Facing these
challenges, this paper proposes a deterministic genetic multi-parameter-order
strategy for generating VSCA called GAMIPOG. The GAMIPOG is a genetic
hybrid strategy that works in a step-wise-refinement approach by breaking the
problem into sub-problems and finds a global solution by merging these solutions
in iterative steps. In other words, the genetic layer performs domain reduction
(simplifying the problem’s domain to make it more solvable). Unlike existing
strategies, the purpose of the genetic layer is to break the tie between the higher
strength sub-arrays and the base strength by giving the priority to ti tuples to be
covered in the first rows during the generation of the VSCA, i.e., at the beginning.
The genetic hybrid layer consists of two algorithms: A Deterministic Multi-
Parameter-Order Genetic Algorithm (GA) and an OPAT algorithm. The Modified
Input Parameter Order General (MIPOG) [23-25] algorithm has been selected as
a readymade component to facilitate generating the sub-solutions under the
control of the genetic layer.

To ficitate the implementation, this work selects the Modified Input Parameter
Order General (MIPOG) [23-25] algorithm as a readymade component to facilitate

GAMIPOG: A Deterministic Genetic Multi-Parameter-Order Strategy 3145

Journal of Engineering Science and Technology October 2020, Vol. 15(5)

the generation of the sub-solutions under the control of the genetic layer. In short,
the MIPOG search for a possible extension by adding parameter-value in OPAT
fashion followed by vertical expansion if necessary in OTAT fashion during the
generating of the sub-solutions. Integrating these components altogether yields
GAMIPOG (Genetic-Multi-Parameter-Order-Algorithm/MIPOG).

The organization for remaining sections for this paper is as follows. Section
2 describes the proposed GAMIPOG strategy with an illustrative example.
Section 3 addresses the scope and the validation of the study. Also, this section
discusses the trends and the complexities of the VSCA strategies in a tabular
form. Section 4 describes the benchmarking experiments to evaluate the
GAMIPOG strategy, compare it against other VSCA strategies, and state the
contribution of this paper. Finally, Section 5 states the conclusion and gives some
possible avenues for future research.

2. The GAMIPOG Strategy
The genetic process of the GAMIPOG strategy involves three phases:
• The initialization phase, the parents.
• Selection phase.
• The chromosomes’ production (Population) phase.

In the initialization phase, the genetic layer orders the MIPOG algorithm to
generate the search space by producing the Parents’ lists and the desired features
lists (Children). The parents’ selection phase gives priority to the longest
chromosomes, i.e., with the highest strength of coverage among the tuples to be
the parents of the first generation in the population. After selecting the parents,
the chromosome production is performed simply by taking the first genes from
the first parent and search the most suitable genes from the second parent
exhaustively that maximizing the coverage of the desired features, (i.e., calculate
the fitness score). The fitness score is the number of uncovered t-way tuples
inside the candidate chromosome. After finding the desired chromosome from
the other parent(s), the genes are combined to produce the chromosome (the test
case). Next, this chromosome is appended to the population's list (test suite).
Finally, the covered genes are deleted from the parents' list as well as from the
desired features lists, i.e., reduce the search space). These operations are
iteratively done until the parents’ lists are empty. Likewise, the parent selection
is repeated and the Children with the highest chromosomes’ length are selected
to be the parents for the next generation. These operations are iteratively done
until the termination condition is achieved, i.e., the search space is empty). After
breaking the tie among the variable strength parameters, the MIPOG generates
the test suite on the base strength for the remaining parameters. The GAMIPOG
process is shown in Fig. 2.

For clarity and demonstration of the GAMIPOG strategy, we return to the
example given in the previous section, to show how to generate the test suite and
identify N for the VSCA (N; 2, 211, {CA (3, 23)2}). To facilitate the illustration,
assume further that the names of the parameters (the columns in Fig. 1); in order,
are ABCDEFGHIJK respectively. Each parameter-value represents a gene. Each
row represents a chromosome (test case).

3146 M. I. Younis

Journal of Engineering Science and Technology October 2020, Vol. 15(5)

Fig. 2. The GAMIPOG algorithm.

The genetic layer identifies two sub-CAs each with strength equals three and
consists of three parameters with two values each. First the Genetic layer order the
MIPOG to generate two sub-solutions ,(i.e., CA {8; 3, 23} and CA {8; 3, 23)) for the
parameters ABC and DEF respectively, i.e., the 3-way parents’ lists. These two sub-
solutions act as two halves of chromosomes’ that need to be combined in the genetic
layer. Likewise, the MIPOG generates the features Children’s lists (in our working
example, the 2-way tuples for the parameters: AD, AE, AF, BD, BE, BF, CD, CE,
and CF). Notably, the intertwined desired features, (i.e., (AB, AC, and BC), (DE, DF,
and EF)) are not generated by the MIPOG because they are already covered by the
first Parent’s lists (ABC) and second Parent’s lists (DEF), respectively. Thus, the
MIPOG generates the search space (tuples) under the control of the genetic layer to
prevent the MIPOG from generating undesired tuples. The Population list is empty.
At this point, the initialization phase is finished. The selection phase selects ABC and
DEF as first and second Parents, respectively (each of them has chromosome length
equals 3) as depicted in the first half of Fig. 3.

The chromosome production phase starts by selecting the first genes, i.e., “000”
from the first parent and searches iteratively the genes from the other parent, records
the fitness score. The first candidate solution is “000000”. The fitness score is nine
because this candidate chromosome covers one tuple in each Child list (shown in red
color). All other candidate chromosomes, (i.e., “000001”, “000010”, and “000111“)
have the same fitness score that is not greater than the first recorded score. Therefore,
the first candidate is the desired chromosome (test case). The Genetic process
appends the generated chromosome to the population list (test suite) and deletes the
covered genes from the search space (Parents’ and Childs’ lists). Likewise, the first

1. Algorithm Genetic Multi-Parameter Order {
// Initialization phase
//Splitting the domains

2. Identify the Parents’ strength of coverage (ti) and the base strength of
coverage (t)
// Building the search space

3. Generate the Parents’ lists by MIPOG, (i.e., CAs >t)
4. Generate the Children’s lists by MIPOG, (i.e., CAs =t)
5. Let’s ts be the test suite (Population list)
6. While (Search space is not empty) {

// Parents Selection Phase
7. Select Parents’ Lists that have the maximum chromosomes’ length
 //Chromosome Production Phase
8. While (First Parent’s list is not empty) {

a. Select the first genes from the first Parent’s list
b. Select the remaining genes from the other Parent(s)’ list(s) by

appending them to the first genes according to the fitness score.
c. Append the desired chromosome to ts.

 // Reduce Search Space
d. Delete the covered tuples from the Search Space
e. } // While

9. }// While
// Working for remaining parameters with base t

10. Initialize the MIPOG with ts
11. For each of the remaining parameters do the horizontal extension and the

vertical expansion.
12. Return ts
13. }//Algorithm

GAMIPOG: A Deterministic Genetic Multi-Parameter-Order Strategy 3147

Journal of Engineering Science and Technology October 2020, Vol. 15(5)

genes, (i.e., “001”) from the first parent are combined with the seventh genes, (i.e.,
“111”) from the second parent to produce the desired chromosome, (i.e., “001111”),
shown in green color, and so forth. Notably, the last two test cases selected in first-
in-first-out fashion because all the 2-way tuples are covered in the previous iteration.
Thus, the result of the genetic process is the population list witch is VSCA (8; 2, 26,
{CA (3, 23)2} as shown in the second half of Fig. 3.

The population size is eight (the first eight rows and the first six columns in Fig.
1). At this point, the genetic layer assists the MIPOG to deal with multi-parameter-
order, i.e., performs the generation of the test suite in 6-parameters-at-a-time fashion.
Whilst, the MIPOG assists the genetic layer by providing the search space. Instantly,
the genetic layer passes the population list to the MIPOG. Considering the remaining
parameters, i.e., GHIJK, the MIPOG continues in its normal operations in OPAT
fashion with the based strength of coverage (t=2). For the parameter G, the MIPOG
generates the 2-way tuples space, (i.e., AG, BG, CG, DG, EG, and FG) and searches
for the most suitable gene-value (either 0 or 1) that has the maximum fitness score
during the horizontal extension, appends the winner gene to test case, (i.e., extends
the chromosome by appending the G’s-value). After the horizontal extension, the
tuples' space is empty. As such, there is no vertical expansion. the resulted population
list is symbolized by VSCA (8; 2, 27, {CA (3, 23)2}) (the first eight rows and the first
seven columns in Fig. 1). Likewise, the size of the population’s size invariants when
extended by the parameters H, I, and J (the 8th till the 10th columns in Fig. 1). For
the parameter K in the last iteration, after the horizontal extension, there are two non-
covered tuples. These two tuples cannot be combined during the vertical expansion;
therefore, these two tuples are added to the population list as two test cases in OTAT
fashion (the last two rows in Fig. 1). The resulted VSCA (10; 2, 211, {CA (3, 23)2}) is
the desired test suite and N equals ten.

Fig. 3. The genetic process for constructing the VSCA (8; 2, 26, {CA (3, 23)2}).

3148 M. I. Younis

Journal of Engineering Science and Technology October 2020, Vol. 15(5)

3. The Trends of the VSCA Strategies
The scope of this research is to consider the strategies that have the feature for
generating the VSCA. These valuable strategies have different features as
combinatorial minimization strategies. Manageable test size is one of the common
interesting and competitive features. Fortunately, this desired feature is not a
function of the running environment and execution-time and can be observed or
taken from the literature. In contrast, the execution-time is a function of the
complexity, the running environment, and the data structure. It was worth nothing
to compare the running time from the literature. However, the complexity of these
strategies is also important to be considered to estimate the running-time. In
general, a deterministic strategy generates the test-suite in a single run and doesn't
need to store the seeds or the test-suite, while a non-deterministic strategy requires
that. Another important feature is the scalability of a higher strength of coverage
for the interesting configurations now; we look at the interesting features and
tabulated these features in Table 1. We start our discussion from the highest
complexity and record the features during the interpretation.

Table 1. Summary of the trends of state-of-the-art VSCA strategies.

Examples of the SBST that support the generating of the VSCA are Simulated
Annealing (SA) [4], Ant Colony Strategy (ACS) [17], Variable Strength Particle
Swarm Test-suites Generation (VSPSTG) [18], Harmony Search Strategy (HSS)
[20], Artificial Bee Colony (ABC) [21], the random Genetic Algorithm (r-GA) also
called PairwiseGen [2], Hybrid Artificial Bee Colony (HABC) [26], tuned Genetic
Strategy (GS) [27], and Modified Greedy Strategy (MGS) [28]. These strategies
are non-deterministic. SBST strategies have many similarities. The objective of
these strategies is to optimize the test size for the SUT. Unlike computational
strategies, running the SA, r-GA, HSS, ABC, VSPSTG, and ACS requires tuning
the parameters of the adopted strategy to avoid the local minimum during the test
suite generation such that generated test-suite near minimum in size.

The SA starts with a random large array until finding an initial solution. Next,
an exhaustive binary search is done to exchange the tuples based on the probability
of occurrence to eliminate the weakest test case, (i.e., reduce the size by one).
Iteratively, the SA repeats this process until finding a feasible solution. The best

GAMIPOG: A Deterministic Genetic Multi-Parameter-Order Strategy 3149

Journal of Engineering Science and Technology October 2020, Vol. 15(5)

solution has been recorded after 10 runs with distinct seeds [4]. After finding the
base covering array, the SA tries to include the sub-array by doing the
transformation of the SA algorithm, if not success, add the tuples and increment the
size by one until covering all the tuples of sub-array(s). Thus, the approach in the
implementation of the SA is to produce one-test-suite-at-a-time. The complexity of
this implementation is extremely high. The SA dominant the minimum test size in
most cases in the literature. However, the published results are restricted for small
strength of coverage, i.e., t ≤ 3.

The trend in the implementation of the r-GA strategy is to simplify the
complexity of the SA a little bit to support the higher strength of coverage. The r-
GA strategy starts from well-known size from the published results in the literature
and adopting the genetic process. The genetic process in the r-GA implementation
involves four steps, namely: initial population, selection, crossover, and mutation
[2]. The initial population depends on the probability of the occurrence for each
parameter-value. The size of the population is taken from the best well-known
results. After the initialization of the population list, the multipoint cross-over
selection for each chromosome is performed greedily randomly to increase the
fitness and change the weak genes also randomly to gain more covered tuples. This
process is repeated iteratively for all test cases until all tuples are covered, in this
case, the r-GA strategy tries to reduce the size of the population by one and repeat
the process until finding a more optimal solution if success. In short, the population
list is the desired test suite. The best solution recorded after 30 runs with distinct
seeds [2]. The complexity of this implementation is extremely high. Similar to r-
GA, the GS is considered another variant of implementation of random Genetic
algorithm with different parameters tuning. The tuned version of the GA is capable
to achieve higher strength of coverage, up to t = 12 for the VSCA generation and
requires 10 runs with distinct seeds [27]. In addition, the GS does not require
knowing the desired size in advance. Thus, the complexity of this implementation
is very high. On the other hand, the current implementation of the GS is supported
the generation of VSCA when the sub-array has uniform values of parameters.

The trend in the implementations of HSS, MGS, ACS, HABC, VSPSTG, and
ABC is to reduce the complexity further by adopting the OTAT approach. The best
solution has been recorded after 30 [20], 30 [28], 20 [17], 20 [26], and 10 [18] runs
with distinct seeds for HSS, MGS, ACS, HABC, and VSPSTG strategies,
respectively. Regarding the ABC strategy, the best solution has been recorded after
20 runs for t ≤ 4 and 5 runs for t > 4 [21]. Thus, the complexity of these
implementations is very high. Like SA, ACS supports the generation of the VSCA
for t ≤ 3. The r-GA, MGS, VSPSTG, HABC, and ABC strategies support the
generation of VSCAs up to t ≤ 6. Whilst, the HS strategy is dominant the supporting
of very high strength of coverage (up to t = 15).

Unlike SBTS strategies that need an initial feasible solution, computational
strategies work in the reverse direction. They build the test suite from scratch.
Moreover, they don’t need parameters tuning. The strategies that adopt OTAT need
to generate all the tuples to be covered before generating the test suite. For this
reason, the complexity of these strategies is high. Examples of the strategies that
adopted the OTAT approach are Pairwisely Independence Combinatorial Test data
generator (PICT) [6], The IBM’s Intelligent Test Case Handler (ITCH) [7], the
Density Algorithm by Random Order (DA-RO) and the Density Algorithm by
Fixing Order (DA-FO) [8, 9], the Test Vector Generator (TVG) [10], and Test Suite

3150 M. I. Younis

Journal of Engineering Science and Technology October 2020, Vol. 15(5)

Generator (TSG) [11]. The PICT, ITCH, DA-RO, DA-FO, and TSG strategies are
deterministic. TVG is a non-deterministic tool. The PICT, ITCH, and TVG tools
support generating VSCAs for t ≤ 6. While, for TSG, DAFO, and DARO are
supports generating VSCAs for t ≤ 3. PICT is a valuable tool provided by
Microsoft. The trend in the PICT implementation is to maximize the occurrence of
the sub-CAs to be tested fully [6]. For this reason, the PICT tool has been reported
to produce undesirable test size as a minimization strategy for generating VSCAs
[2], [17-21]. Like PICT, ITCH has been reported to generate undesirable test size
for generating VSCAs [18]. The Density Algorithm has been reported to generate
satisfactory test size [20]. Both TSG and TVG strategies generate a manageable
test suite [11].

The strategies that adopt the OPAT is approach for Generating VSCAs are
Parameter Order (ParaOrder) [8] and Automated Combinatorial Test for Software
(ACTS) [12, 13]. Both ParaOrder and ACTS strategies are deterministic. ACTS
generates the VSCA using IPOG (Input Parameter Order General) option from
the tool and supports the strength of coverage for t ≤ 6. While, ParaOrder supports
generating VSCAs for t ≤ 3. Thus, the complexity of these implementations is
intermediate. Notably, when the authors [2], [17-28] mentioned the execution-
time in their environments, the OPAT strategies dominant the shortest execution-
time significantly.

Now, we can discuss the trend in the proposed deterministic GAMIPOG
strategy. Unlike the abovementioned VSCAs strategies, the genetic layer gives
priority to the ti tuples to be generated and be covered first. The generation of tuples
is controlled by the genetic layer to overcome the over fitting problem and to
simplify the search space by eliminating the covered t-tuples during the
initialization phase. The genetic layer also determines the number of parameters be
covered by simply involve the parameters for ti tuples to be covered by the
proposed deterministic multi-parameter-order GA in the OTAT approach. Since,
the complexity of the OTAT is high, and to make the search space deterministic,
the sub-CAs and the base t-tuples are generated by the deterministic MIPOG in
OPAT fashion. Besides, the selection of ti-tuples is done by selecting the first ti-
tuples from the first parent instead of searching the exhaustively first Parents’ list.
When generating the VSCA that contains both tuples, it is extended or even
expanded by the MIPOG for the reaming parameters in the base strength. Unlike
SBST, the GAMIPOG is a simple implementation of the genetic process aimed to
have a deterministic feature. As such, the GAMIPOG has an intermediate level of
complexity. In a nutshell, Table 1 gives a summary of the trends of state-of-the-art
VSCA strategies and the desired features for the proposed GAMIPOG. To
investigate more whether or not the desired features are implemented and to
evaluate The GAMIPOG and compare it with the strategies we should adopt the
same standard benchmarking experiments in the next section.

4. Results and Discussion
This section evaluates the GAMIPOG strategy and compares it against other
computational strategies, (i.e., DA-FO, DA-RO, ParaOrder, TVG, TSG, and
ACTS) and SBST strategies, (i.e., SA, r-GA, ACS, VSPSTG, ABC, and HSS).
Both PICT and ITCH tools are excluded because they have been reported to
produce undesirable test sizes. Four benchmarking experiments are conducted to
support different configurations with higher strength of coverage. The first three

GAMIPOG: A Deterministic Genetic Multi-Parameter-Order Strategy 3151

Journal of Engineering Science and Technology October 2020, Vol. 15(5)

experiments are proposed in [4] and adopted also in [2, 8, 9, 11, 17, 21] and
expanded in [18, 20] for some interesting configurations. Partially, these three
experiments are adopted in [26-28]. While the forth experiment proposed in [18]
and also expanded in [20] and adopted by some researchers. Among the
abovementioned strategies, the TVG, and ACTS tools are available from the
websites. Thus, they are run side-by-side with the GAMIPOG during the
experimentations. Notably, these tools are implemented using the Java
programming language. The running environment is a laptop with Windows 10
operating system, 8 GB of RAM, and 2.2 GHz CoreI7-2670QM CPU.

The objectives these four experiments to construct VSCAs, namely: VSCA (N;
2, 315, {C}), VSCA (N; 2, 320, 102, {C}), VSCA (N; 2, 43, 53, 62, {C}), and VSCA
(N; 2, 101, 91, 81, 71, 61, 51, 41, 31, 21, {C}) and compare the generated test size
generated by the VSCA strategies. We added the configuration {C=CA (6, 43, 53)}
to the third experiment to study the behaviour of the GAMIOPG. The results of the
other strategies are taken from the literature as indicated by its corresponding
reference in the column. The results for running these experiments are tabulated in
Tables 2 to 5. In these tables, the not available results are denoted by “NA” indicate
that the test size is missing from the literature. The cells marked ‘–’ indicate that
the algorithm does not run this configuration. The dashed cells present a minimal
test size to facilitate the comparison.

Now, we start our comparison with other strategies. At the glance, due to the
NP-Hardness problem, there is no single strategy dominant minimal test size for all
configurations Therefore, the minimal test size for the interesting configurations
has been recorded one-by-one. A Question is normally raised why some strategies
have the same generating test size?

What is interesting in these tables is that the size of the higher strength of
coverage in the configurations, (i.e., the sub-arrays many-times drive the size of the
generated test suite). This phenomenon can be observed in the following cases:
referring to Table 2, the configurations CA (3, 33), CA (3, 33)2, CA (3, 33)3, and CA
(3, 34) have test size equals to 27, (i.e., 3*3*3) which is quite sufficient to include
the base arrays of strength 2 when increasing the number of parameters (marked by
the dashed cells). A similar observation is also valid for the configurations CA (4,
34), CA (4, 35)2, CA (5, 35), and the remaining configurations for (t ≥ 6). For these
test sizes the generated sizes are unreservedly minimal, i.e., can’t be reduced further
due to the mathematical prove. Such cases can be found in Table 3 for (t ≥ 4), Table
4 for all dashed cells except the configurations Ө, CA (3, 43, 53, 61), and CA (3, 43,
53, 62), and Table 5 for all dashed cells except the configurations Ө and CA (3, 41,
31, 21). We dashed these configurations by green colour to facilitate further
discussion. All these optimal, i.e., more manageable test suites are generated
successfully by the GMIPOG except one in Table 4, i.e., C= CA (3, 43, 52) which
acts as a counter-example and will be discussed later as far as the optimal results
generation is concerned.

Referring to Table 2, for small strength of coverage, (i.e., t < 4), Both SA and
r-GA generate minimal test size for t=2, (i.e., {C= Ө}) in the first row. As discussed
previously, unlike other strategies, these strategies setup the desired size before the
running of the experiments and the complexity of exhaustive search during the
search is extremely high as mentioned previously. For this reason, it is expected to
produce minimal results. Thus, both SA and r-GA outperform other strategies in

3152 M. I. Younis

Journal of Engineering Science and Technology October 2020, Vol. 15(5)

terms of test size. However, the other strategies (except the ParaOrder) produced a
comparative result with less order of complexity. The result obtained from the
ParaOrder is undesirable. This row signifies the requirement of an undesirable
feature of extremely high computing which will be one avenue for future work to
design an alternative algorithm.

Table 2. Comparison for test size for VSCA (N, 2, 315, {C}).

The second row is more interesting, (i.e., C= CA (3, 33)) that most of the
strategies are produce the optimal results and GS, DARO, and DAFO strategies
generate very competitive sizes, but seems to subject to local maximum when
combined the priority of t and ti tuples during the generating VSCA. Here, we
should make a deep argument when considering the complete performance based
on both the test size and complexity. We can say that since the size is optimal,
GAMIOPG, ACTS, and ParaOrder outperform both DARO and DAFO
significantly, because GAMIOPG, ACTS, and ParaOrder have less test size with
less order of complexity. TSG outperforms DARO and DAFO. While, GAMIOPG,
ACTS, and ParaOrder outperform TSG, even though they are deterministic and
produce the optimal test size, because of the order of complexity. Now, we can
stress the NP-Hard problem more, by considering the complexity of comparison
between deterministic and non-deterministic strategies. Since the deterministic
strategies required only once run to produce the results, they outperform the non-
deterministic strategies. For instance, it is unfair to compare both DARO and

GAMIPOG: A Deterministic Genetic Multi-Parameter-Order Strategy 3153

Journal of Engineering Science and Technology October 2020, Vol. 15(5)

DAFO performance with non-deterministic strategies without mentioning the
complexity and the cost of running the experiments.

The TVG strategy outperforms both DARO and DAFO strategies under the cost
of running the experiment for the same configuration 10 times. From this
perspective, TSG outperforms TVG even though they have the same order of
complexity. As such, GAMIOPG, ACTS, and ParaOrder outperform TVG
significantly based on the order of complexity and non-deterministic feature for the
TVG tool. More to the point, by looking at Table 6, we see that both GAMIOPG
and ACTS outperform the TVG strategy significantly in the execution-time for a
single run. While the total time for the TVG can be estimated to be ten times the
recorded time. It is harder to compare the performance even between SBST
strategies with a very high order of complexity. Besides they are non-deterministic
strategies, they required parameters tuning for the search algorithm, different
iterations, and different numbers of running, different initial solutions. When
comparing the performance with extremely hard strategies, the difficulty increases
because of these strategies required to estimate the desired size while other
strategies built the test suite from scratch. Based on this perspective, we can say
that GAMIOPG, ACTS, ParaOrder, TSG, and TVG outperform significantly both
the strategies with a very high order of complexity ,i.e., MSG, HABC, HSS, ABC,
VSPSTG, and ACS and with an extremely high order of complexity ,i.e., r-GA and
SA. Likewise, the strategies with a very high order of complexity outperform both,
r-GA and SA. Based on this argument we will discuss the remaining results to
shortness the discussion especially for the configurations that have been
highlighted by the green colour.

In the third and fourth rows, GAMIPOG outperforms the other strategies as far as
the test size and overall all performance is concerned. Here, it seems both ACTS and
ParaOrder are subject to a local minimum when giving the same priority to the mixing
tuples. This point is valid in many cases that the GAMIPOG produces less test size.

Similarly, for the next row in Table 2, (i.e., C= CA (3, 34)). Both GAMIPOG
and ParaOrder outperform other strategies as far as the performance and test size
are concerned. In the next row, (i.e., C= CA (3, 35)), SA, r-GA, and ABC dominant
the minimal test size. The ABC strategy outperforms SA and r-GA as far as the
complexity is concerned. The other SBST, (i.e., HACS, GS, MGS, ACS, VSPSTG,
HSS, and GAMIPOG) generate more comparable results and outperform the
remaining computational strategies as far as to test size is concerned. Regarding the
performance, GAMIPOG outperforms the other computational strategies as far as
both the complexity and test size are concerned.

The configuration (CA (3, 34), CA (3, 35), CA (3, 36)) is very interesting. The
SA strategy dominant the minimal test size while both the r-GA and ACS produce
more competitive results. The HABC, ABC and TVG strategies produced
undesirable test size for this configuration. The interesting point is that Para Order
outperformed both ACTS and GAMIPOG in the term of generated test size. It is
interesting to discuss this. In this case, the GAMIPOG generates the test suite in
pure simplified OTAT, i.e., 15 parameters-at-a-times because there are three
parents. A close look at the execution-time for this configuration we see it is near
the time of when the CA (3, 310). As such, there are two design alternatives to
minimize the test size for this case. The first one is to re-design and re-implement
the MIPOG to deal with VSCA. The second design is to re-implement the genetic

3154 M. I. Younis

Journal of Engineering Science and Technology October 2020, Vol. 15(5)

layer to select two parents only at a time, i.e., give the superiority to the parameter
order after the strength of coverage during the Parent selection phase. The
interesting point is that the test size generated by the GMIPOG is outperformed by
other computational OTAT strategies.

For the configurations (CA (3, 36), CA (3, 37)) the SA dominants the minimal
test sizes while SBST strategies generate competitive results with a different order
of complexity. In the case of (CA (3, 39)), both the HABC and the SA strategies
dominant the minimal test size. Here, the HABC outperformed the SA as far as the
overall complexity is concerned; the same observation is valid for the remaining
SBST strategies. However, this observation cannot be generalized since the next
row, i.e., CA (3, 315) the SA also generates minimal test size while DARO generates
more competitive results and outperformed the remaining strategies. As discussed
previously the GAMIPOG keeps the parameter order invariants when they have the
same strength of coverage. For this reason, the result same as DAFO in this case.
Addressing varying-parameter order is as interesting as an alternative design for
future investigations.

It is clear that SA dominant the minimal test size for some configurations under
the extremely high complexity cost. However, there is a lack of supporting higher
strength of coverage for the valuable strategies as tabulated in Table 1. As such, we
cannot compare the test sizes generated by them and our comparison is restricted to
compare the remaining strategies. The GMIPOG dominant the unreservedly minimal
sizes when generating the VSCA for the configuration CA (4, 35) and outperformed
other strategies as far as the test size is concerned beyond the order of complexity.
Notably, the other strategies may subject to a local minimum when generating the
base tuples and combining the mixed coverage during the fitness functions
computing. For the configurations (CA (4, 34), CA (5, 35), and CA (6, 36)) all the
strategies that support the generation of VSCA for (t>3, t<7) are generated
unreservedly minimal sizes under the different cost of complexity. The MGS strategy
dominant the minimal test size for the configuration CA (4, 37) with competitive
results from the other strategies. The GAMIPOG outperformed significantly other
strategies as far as the test size is concerned for the configuration CA (5, 37).

Both GAMIPOG and HSS strategies, unlike other strategies, are scaled well to
provide optimal sizes for t > 6 up to t=15, i.e., unreservedly minimal. While the GS
strategy provide optimal sizes for t > 6 up to t=12. Unlike the valuable GS and HSS
strategies which require a higher order of complexity, the GAMIPOG generates the
test suites in the lower order of complexity with fast execution-time. This is
stemmed from the fact that when increasing the strength of the coverage of the sub-
CAs the more likely to provide sufficient space to include the base-array to provide
optimal test-suites. This observation signifies the GAMIPOG approach. Unlike GS,
both HSS and GAMIPOG strategies have excellent performance as optimization
strategies for these cases and have been supported disjoint sub-array in the
configuration. This is also the case for the results in Tables 3 to 6.

Referring to Table 3, the results of the ABC, HABC, GS, and MGS strategies
are missing, as such, we cannot compare with them more. In the first row, The
GAMIPOG, ParaOrder, DAFO, DARO, TSG, ACS, r-GA and SA strategies
generate the same unreservedly minimal test size in different orders of complexity.
While the other strategies are generating competitive results. In the second row the,
DARO, TSG, ACS, r-GA and SA strategies generate the same unreservedly

GAMIPOG: A Deterministic Genetic Multi-Parameter-Order Strategy 3155

Journal of Engineering Science and Technology October 2020, Vol. 15(5)

minimal test size in different order of complexity. Also, other strategies are
generating competitive results. From this observation, it is evident that a third
design alternative is possible by making the deterministic GA generates the test
suite in a pure OTAT manner. The third row is very interesting; SA dominant the
minimal test size, GAMIPOG is more competitive than other strategies. The other
strategies seem to have subjected to over fitting problems when combining the
priority and may generate the intertwined tuples during the test case generating,
and for this case, generate undesirable test size. We cannot compare with the other
strategies that have not to support t >3. For (t > 3, t < 6) GAMIPOG, ACTS, TVG,
HSS, VPSTG, and r-GA generate unreservedly minimal test size under the different
cost of complexity. While both GAMIPOG and HSS generate unreservedly
minimal test size for t > 6 under the different cost of complexity.

Sometimes the size of the base array is more than the size of the sub-CAs, this
is also an interesting phenomenon that can be observed in the following cases:
referring to Table 3, the configurations CA Ө, and CA (3, 320) have test size equals
to 100 which can be determined from the base strength of the VSCA, i.e., 10*10).
We can also find such cases in Table 4 for the configuration Ө and Table 5 for the
configurations Ө and CA (3, 41, 31, 21). We dashed these configurations by red
colour to distinguish them. Also, for these test sizes, the generated sizes are
unreservedly minimal. For the other cases, we remain the cells of configurations
without highlighting where the sizes more than the size of CAs but there is no
mathematical prove due to the NP-hard problem, we see more verities in terms of
test size for these sizes. In many of these cases, GMIPOG generates optimal results.
Notably, that is the answer why the minimization strategies may share the same test
size even though; they have different approaches and different implementations due
to the aforementioned NP-Complete problem. Based on these observations, we will
discuss the results.

Table 3. Comparison for test size for VSCA (N; 2, 320, 102, {C}).

3156 M. I. Younis

Journal of Engineering Science and Technology October 2020, Vol. 15(5)

Referring to Table 4, the results of the GS strategy are missing, as such, we
cannot compare with it more. In the first row (CA = (Ө)) the SA strategy dominant
the unreservedly minimal test size while the r-GA and the TSG strategies provide
more competitive results as far as the test size is concerned. All strategies generate
competitive results for the configurations (CA (3, 43), (CA (3, 43), CA (3, 53)), and
CA (3, 51, 62)), most of them generate unreservedly minimal size with a different
order of complexity. For the remaining configurations (i.e., CA (3, 43, 52), CA (3,
43, 53, 61), and CA (3, 43, 53, 62)) the SA again dominant the minimal test size
generation while both the TVG and the ParaOrder strategies generate undesired test
size. For the configurations (CA (3, 43, 53, 62), and CA (3, 43, 53, 61)) both the ACS
and the GAMIPOG strategies provide more competitive results to the SA. In the
last configuration ,i.e., CA (3, 43, 53, 62) both the TSG and the GAMIPOG strategies
provide more competitive results to the SA as far as the test size is concerned with
a different order of complexity.

For (t > 3, t <=5) we continue our comparison for the strategies supporting these
strength of coverage. The GMIPOG outperformed the other strategies because it
generates generate unreservedly minimal size for all the interesting configurations.
For the configurations (CA (4, 43, 52) and CA (5, 43, 53)) the GMIPOG strategy
dominant the generate unreservedly minimal size and outperformed the other
strategies significantly. For the other cases, all the strategies generate the same sizes
with a different order of complexity. To study the behaviour of the GAMIPOG for
(t=6) we added the configuration CA (6, 43, 53) to this standard experiment which
is not been addressed by the other researchers. So, the result is restricted to the
available tools. The GAMIPOG, ACTS, and TVG generate the unreservedly
minimal size for this configuration. Lastly, for the configuration CA (7, 43, 53, 62)
both GAMIPOG and HSS are scaled-well and have been generated the
unreservedly minimal size for this configuration.

Table 4. Comparison for test size for VSCA (N; 2, 43, 53, 62, {C}).

Referring to Table 5, the GMIPOG outperformed the other strategies in the sense
that it always generates the unreservedly minimal sizes for these configurations.
Moreover, the GAMIPOG dominant the minimal test size for the configuration CA

GAMIPOG: A Deterministic Genetic Multi-Parameter-Order Strategy 3157

Journal of Engineering Science and Technology October 2020, Vol. 15(5)

(3, 101, 91, 81, 71) and outperform the other strategies significantly while both HSS
and r-GA produced a more competitive size than other strategies for this case.

Table 5. Comparison for test size for

VSCA (N; 2,101, 91, 81, 71, 61, 51, 41, 31, 21, {C}).

Regarding the execution-time, referring to Table 6, since the GMIPOG, ACTS,
and TVG strategies have been implemented using Java programming language, and
have been running on the same computer. However, they have a different data
structure and programming methodology. We can observe the execution-time and
stress the need for the deterministic feature. It clear both ACTS and GAMIPOG
strategies outperformed the TVG strategy significantly as far as the execution-time
is concerned. Moreover, both of them generate the test size in a single run while
due to the non-deterministic feature for the TVG strategy it requires to run 10 times.
As such, the total execution time for the TVG is about 10 times the recorded time
for it. What is interesting in this table, our approach may lead not just to optimize
the test size, it often reduces the execution time. When selecting the parents, and
don’t generate the intertwined features that already covered, the execution-time is
lower than the base time. For instance, the time required to generate the base array,
i.e., C= Ө is more than the time required for generating the VSCA for the
configuration CA (3, 33)2. However, when the number of parameters increased for
the GA algorithm, it may lead to more execution-time as discussed previously.
Overall, both ACTS and GAMIPOG have very competitive execution-time.

In general, the GAMIPOG strategy unlike other minimization strategies, give
the priority to the ti-tuple to be included generated and included first. Unlike other
SBST strategies, it is deterministic and does not require parameters tuning with an
intermediate level of complexity. The GAMIPOG strategy like other SBST
strategies outperformed other computational strategies in most cases as far as the
test size is concerned and provides competitive results. Like the ACTS tool,
dominant the fast execution-time feature. Like the HSS and GS strategies, the
GMIPOG strategy supports generating the test suite for high strength of coverage.
Finally, the GAMIPOG contributes to find six minimal size for VSCA, namely:
VSCA (81; 2, 315, {CA (4, 35)}), VSCA (427; 2, 315, {CA (5, 37)}) from Table 2,

3158 M. I. Younis

Journal of Engineering Science and Technology October 2020, Vol. 15(5)

VSCA (400; 2, 43, 53, 62, {CA (4, 43, 52)}), (2000; 2, 43, 53, 62, {CA (5, 43, 53)}),
(8000; 2, 43. 53, 62, {CA (6, 43, 53)}), from Table 4, and VSCA (720; 2, 101, 91, 81
71, 61, 51, 41, 31, 21, {CA (3,101 91 8171)}) from Table 5. These new upper bounds
for VSCA are shown in bold font in their corresponding cells.

Table 6. Execution-time (in seconds) for generating VSCA (N; 2, 315, {C}).
{C} TVG ACTS GAMIPOG
Ө 0.047 0.016 0.018

CA(3, 33) 0.061 0.008 0.017
CA(3, 33)2 0.064 0.021 0.017
CA(3, 33)3 0.061 0.021 0.017
CA(3, 34) 0.078 0.011 0.009
CA(3, 35) 0.091 0.024 0.020
CA(3, 34),
CA(3, 35),
CA(3, 36)

0.236 0.009 0.064

CA(3, 36) 0.139 0.012 0.016
CA(3, 37) 0.153 0.023 0.031
CA(3, 39) 0.298 0.021 0.027
CA(3, 315) 0.532 0.051 0.063
CA(4, 34) 2.01 0.019 0.016
CA(4, 35) 0.19 0.012 0.017
CA(4, 37) 0.78 0.014 0.024
CA(5, 35) 0.61 0.016 0.025
CA(5, 37) 3.6 0.054 0.049
CA(6, 36) 1.34 0.091 0.058
CA(7, 37) - - 0.061
CA(8, 38) - - 0.062
CA(9, 39) - - 0.063

CA(10, 310) - - 0.064
CA(11, 311) - - 0.074
CA(12, 312) - - 0.077
CA(13, 313) - - 0.083
CA(14, 314) - - 0.093

5. Conclusions
This paper has been presented and evaluated a hybrid strategy called GAMIPOG.
The GAMIPOG is a novel deterministic search-based-minimization strategy with
an intermediate order of complexity and scales-well to support higher strength of
coverage with fast execution time. Besides, this paper has been reported the trends
of the VSCA strategies and mentioned the similarities and differences between the
GAMIPOG and other strategies. The genetic layer consists of two algorithms: A
Deterministic Multi-Parameter-Order Genetic Algorithm (GA) and the Modified
Input Parameter Order General (MIPOG). The GA algorithm is a tuneless
deterministic search-based algorithm that gives priority to the tuples during the test
case generation. The experiments conducted show that the investigations directed
demonstrate that the GAMIPOG, in most cases, outperforms the existing strategies
in terms of VSCA sizes (except SA for small strength, (i.e., t < =3). Besides, the
practical results reported outcomes of new upper bounds for VSCA. Again, the
GAMIPOG hits many faces for the same coin.

During the evaluation, some results are not optimal as far as the test size is
concerned and some design alternatives have been discussed. As such, there are
multiple avenues for future research. One avenue is to re-design and re-implement
the MIPOG to support the VSCA. Another avenue is to make different design

GAMIPOG: A Deterministic Genetic Multi-Parameter-Order Strategy 3159

Journal of Engineering Science and Technology October 2020, Vol. 15(5)

alternatives to select the parent’s out-of-order, based on the density of the
parameter-values and the strength of coverage, compare these variants in terms of
complexity and size. Of course, under more cost of complexity, one of the target
avenues is to study variant deterministic opportunities to investigate the genetic
layer to make global optimization of the generated test suites in this paper by
considering the non-minimal results as an initial population to be minimized in one-
test-suite-at-a-time approach.

.

Nomenclatures

C Configuration
k Number of components (parameters)
n Number of an identical sub covering arrays
N Size (number of rows in a covering array)
t Strength of coverage
ti ti-tuples
ts Test set
v Number of levels (values)

Greek Symbols
Ө Phi, empty set.

Abbreviations

ABC Artificial Bee Colony
ACS Ant Colony Strategy
ACTS Automated Combinatorial Test for Software
CA Covering Array
DA Density Algorithm
DA-RO Density Algorithm by Random Order
DA-FO Density Algorithm by Fixing Order
GA Genetic Algorithm
GAMIPOG Genetic Multi-Parameter-Order-Algorithm/MIPOG
GS Genetic Strategy
HABC Hybrid Artificial Bee Colony
HSS Harmony Search Strategy
IPOG Input Parameter Order General
ITCH IBM’s Intelligent Test Case Handler
MGS Modified Greedy Strategy
MIPOG Modified Input Parameter Order General
NP Non-deterministic Polynomial
OPAT One-Parameter-At-A-Time
OTAT One-Test-At-A-Time
ParaOrder Parameter Order
PICT Pairwisely Independence Combinatorial Test Data Generator
PSO Particle Swarm Optimization
r-GA Random Genetic Algorithm
SA Simulated Annealing
SBST Search-Based Software Testing
SUT System Under Test

3160 M. I. Younis

Journal of Engineering Science and Technology October 2020, Vol. 15(5)

TSG Test Suite Generator
TVG Test Vector Generator
VSCA Variable Strength Coverage Array
VSPSTG Variable Strength Particle Swarm Test-suites Generation

References
1. Khalsa, S.K.; and Labich, Y. (2014). An orchestrated survey of available

algorithms and tools for combinatorial testing. 2014 IEEE 25th International
Symposium on Software Reliability Engineering (ISSRE). Naples, Italy, 323-334.

2. Bansal, P.; Sabharwal, S.; Mittal, N.; and Arora, S. (2015). Construction of variable
strength covering array for combinatorial testing using a greedy approach to
genetic algorithm. E-Informatica Software Engineering Journal, 9(1), 87-105.

3. Younis, M.I. (2019). MVSCA: Multi-valued sequence covering array. Journal
of Engineering, 25(11), 82-91.

4. Cohen, M.B.; Gibbons, P.B.; Mugridge, W.B.; Colbourn, C.J.; and Collofello,
J.S. (2003) A variable strength interaction testing of components. Proceedings
of the 27th Annual International Conference on Computer Software and
Applications, 413-418.

5. Raaphorst, S.; Moura, L.; and Stevens, B. (2018). Variable strength covering
arrays. Journal of Combinatorial Design, 26(9), 417-438.

6. Czerwonka, J. (2006) Pairwise testing in real world: practical extensions to test
case generator. Proceedings of 24th Pacific Northwest Software Quality
Conference, 419-430.

7. Hartman, A.; Klinger, T.; and Raskin, L. (2005). WHITCH: IBM intelligent test
configuration handler. Technical Report, IBM and Watson Research Laboratories.

8. Wang, Z.; Xu, B.; and Nie, C. (2008). Greedy heuristic algorithms to generate
variable strength combinatorial test suite. The Eighth International Conference
on Quality Software, 155-160.

9. Wang, Z.; and He, H. (2013). Generating variable strength covering array for
combinatorial software testing with greedy strategy. Journal of Software,
8(12), 3173-3181.

10. Arshem, J. (2019). TVG download web page. Retrieved December 25, 2019,
from http://sourceforge.net/projects/tvg.

11. Abdullah, S.A.; Soh, Z.H.; and Zamli, K.Z. (2013). Variable strength
interaction for t-way test generation strategy. International Journal of
Advances in Soft Computing and Its Applications, 5(3), 65-74.

12. Forbes, M.; Lawrence, J.; Lei, Y.; Kacker, R.N.; and Kuhn, D.R.(2008).
Refining the in-parameter-order strategy for constructing covering arrays.
Journal of Research of the National Institute of Standards and Technology,
113(5), 287-297.

13. Yu, L.; Lei, Y.; Kacker, R.N.; and Kuhn D.R. (2013). ACTS: a combinatorial
test generation tool. IEEE Sixth International Conference on Software Testing,
Verification and Validation (ICST), 370-375.

14. Ali, S.; Briand, L.C.; Hemmati, H.; and Panesar, W.R.K. (2010). A systematic
review of the application and empirical investigation of search-based test case
generation. IEEE Transactions on Software Engineering, 36(6), 742-762.

GAMIPOG: A Deterministic Genetic Multi-Parameter-Order Strategy 3161

Journal of Engineering Science and Technology October 2020, Vol. 15(5)

15. Garvin, B.J.; Cohen, M.B.; and Dwyer, M.B. (2011). Evaluating
improvements to a meta-heuristic search for constrained interaction testing.
Empirical Software Engineering. 16(1), 61-102.

16. Blum, C.; and Roli, A. (2003). Metaheuristics in combinatorial optimization:
overview and conceptual comparison. ACM Computing Surveys, 35(3), 268-308.

17. Chen, X.; Gu, Q.; Li, A.; and Chen, D. (2009). Variable strength interaction
testing with an ant colony system approach. The APSEC’09. Asia-Pacific
Software Engineering Conference, 160-167.

18. Ahmed, B.S.; and Zamli K.Z. (2011). A variable strength interaction test suites
generation strategy using particle swarm optimization. Journal of Systems and
Software, 84(12), 2171-2185.

19. Cai, L.; Zhang, Y.; and Ji, W. (2018). Variable strength combinatorial test data
generation using enhanced bird swarm algorithm. IEEE/ACIS International
Conference on Software Engineering, Artificial Intelligence, Networking and
Parallel/Distributed Computing (SNPD), 391-398.

20. Alsewari, A.R.A. ; and Zamli, K.Z. (2012). Design and implementation of a
harmony-search-based variable-strength t-way testing strategy with constraints
support. Information and Software Technology, 54(6), 553-568.

21. Alazzawi, A.K.; Rais, H.M.; and Basri, S. (2019). ABCVS: an artificial bee
colony for generating variable t-way test sets. International Journal of
Advanced Computer Science and Applications, 10(4), 259-274.

22. Moura, L.; Raaphorst, S.; and Stevens, B. (2019). Upper bounds on the sizes
of variable strength covering arrays using the lovasz local lemma. Theoretical
Computer Science, 800, 146-154.

23. Younis, M.I. (2011). MIPOG: a parallel t-way minimization strategy for
combinatorial testing. Ph.D. Thesis, School of Electrical and Electronics
Engineering, Universiti Sains Malaysia, Penang, Malaysia.

24. Younis, M.I.; and Zamli, K.Z. (2010). MC‐MIPOG: a parallel t-way test
generation strategy for multicore systems. ETRI Journal, 32(1), 73-83.

25. Younis, M.I.; and Zamli, K.Z. (2011). MIPOG an efficient t-way
minimization strategy for combinatorial testing. International Journal of
Computer Theory and Engineering (IJCTE), 3(3), 388-397.

26. Alazzawi, A.K.; Rais, H.M.; and Basri, S. (2020). HABC: hybrid artificial bee
colony for generating variable t-way test sets. Journal of Engineering Science
and Technology (JESTEC), 15(2), 746-767.

27. Esfandyari, S.; and Rafe, V. (2018). A tuned version of genetic algorithm for
efficient test suite generation in interactive t-way testing strategy. Information
and Software Technology, 94, 165-185.

28. Homaid, A.A.B.A.; Alsweari, A.A.; Zamli, K.Z.; and Alsariera, Y.A. (2018).
Adapting the elitism on the greedy algorithm for variable strength
combinatorial test cases generation. IET Software, 13(4), 286-294.

