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Abstract 

This paper discusses the construction of a test data generation strategy for 
variable strength covering array (VSCA). The complexity of a VSCA strategy 
affects the scalability to support higher strength of coverage, the size of the 
generated test suites, and the execution-time significantly. There are many 
desired characteristics like the deterministic feature, supporting higher strength 
of coverage, manageable test size, less order of complexity, and fast execution-
time. Implementing these conflict demands in a single strategy is very 
challenging task. Facing these challenges, this paper proposes a deterministic 
genetic multi-parameter-order strategy for generating VSCA called GAMIPOG.  
GAMIPOG combined the one-test-at-a-time, one-parameter-at-a-time, and meta-
heuristics strategies to take advantage of them with a step-by-step example to 
illustrate the concept. Besides, this paper reviews the state-of-the-art of the 
VSCA strategies and provides a systematic analysis in a tabular form to discuss 
the desired features and the similarities and differences among VSCAs strategies. 
The practical results are so competitive as compared with the existing strategies 
in terms of the test size. Moreover, the GAMIPOG has an intermediate order of 
complexity, fast execution-time, and minimal test size in most cases. Finally, 
during running the experiments, new upper bounds for VSCAs have been 
reported by the GAMIPOG. 

Keywords: Covering array, Combination testing, Genetic algorithm, Greedy 
algorithm, t-way testing, VSCA. 
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1.  Introduction 
The downscale of low-cost, efficient component systems enables the developers to 
adopt system integration. However, to ensure the reliability and the quality of these 
systems has increased the need for systematic testing. Combinatorial testing acts as 
an efficient black-box sampling strategy for generating test data for the system 
under test (SUT). The generation process adopts the t-way combinatorial 
interaction between parameters-values, (i.e., the values or levels for each 
parameter) [1-3]. 

Combinatorial testing has a colourful history involve the strategies for 
generating the test suite based on the strength of the coverage (named t-way). Most 
of the researchers in this area focused on obtaining minimal size for covering array 
(CA) of a certain t-way strength that covers the t-way tuples among parameters. 
The size of CA increments significantly increases in t, which makes the testing so 
expensive. However, researchers observed that not all parameters require higher 
strength of interaction among them during the testing. Thus, in a system which has 
some components equals to k, a technique is desired to build a CA for the strength 
of coverage equals to t that contains the t-way tuples between k parameters and also 
contains the ti-tuples (where ti > t) interactions among the subset of k parameters. 
The term variable strength covering array symbolized as VSCA (N; t, k, (v1, v2, 
vk), C) is used to notate such systems [2, 4, 5]. Where C is a subset of VSCA has a 
variable strength of testing. For instance, a VSCA (10; 2, 211, {CA (3, 23)2}) is 
shown in Fig. 1. 

 
Fig. 1. The mathematical notations example  

for combinatorial VSCA (10; 2, 211, {CA (3, 23)2). 

In this VSCA, the size is ten test cases and covers all 2-way tuples interaction 
between the components. When there are n identical sub covering arrays where t, 
k, and v are fixed, the CAs can be symbolized as CA (t, v k) n. In our example, VSCA 
(10; 2, 211, {CA (3, 23)2}) contains two sub-disjoint CAs, each of them contains the 
3-way tuples among three parameters with two values for each parameter as 
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depicted in Fig. 1. The “*” symbol is known as “don’t care” that can be assigned 
to any value (either 0 or 1). 

Recent studies and surveys [1-3] have reported that there are more than 100 
strategies exist in the literature. Most of these strategies generate CAs. However, 
only a limited number of these strategies owned the feature for generating the 
VSCAs. The VSCA strategies are extensively divided into computational-based 
and the search-based software testing (SBST) strategies. Computational algorithms 
use the greedy approach to build the VSCA by adopting either one-test-at-a-time 
(OTAT) [6-11] approach or one-parameter-at-a-time (OPAT) approach [8, 12, 13]. 
In the OTAT approach, the strategy adds one row to the test suite. While in the 
OPAT approach, the strategy adds one column to the test suite to cover the most 
tuples, followed by the OTAT approach if there are still more tuples. The SBST 
strategies use meta-heuristic techniques to find near minimal-size solutions for 
combinatorial testing [14-20]. Meta-heuristic techniques look for feasible solutions 
over a large set [16, 21]. Another classification is for the combinatorial strategies 
whether they are deterministic or non-deterministic. A non-deterministic strategy 
adopts a random search for parameter-values, (i.e., the values or levels for the 
parameter. For this reason, by running the algorithm multiple times, it generates 
sometimes minimal testing size). However, the practical testing requires to generate 
a deterministic test suite; especially, for fault identification and localization [3]. 
More recently, Moura et al. reported a new methodology to generate VSCA based 
on hyper graphs to identify the dependent events in theory [22]. One common 
feature among VSCA strategies is that they combine the priority of ti and t tuples 
during the tuples' space generation and the test suite generation. Consequently, this 
may lead to an over fitting problem, i.e., undesired computation. 

Nevertheless, developing these algorithms it is considered as an NP-Complete 
problem [2, 3]. Furthermore, finding a minimal test size is considered as an NP-
Hard problem [3]. The complexity of a VSCA strategy affects the scalability to 
support higher strength of coverage, the size of the generated test suites, and the 
execution-time significantly. There are many desired characteristics besides the 
deterministic feature, supporting higher strength of coverage, manageable test 
size, less order of complexity, and fast execution-time. Implementing these 
conflict demands in a single strategy is very challenging task. Facing these 
challenges, this paper proposes a deterministic genetic multi-parameter-order 
strategy for generating VSCA called GAMIPOG. The GAMIPOG is a genetic 
hybrid strategy that works in a step-wise-refinement approach by breaking the 
problem into sub-problems and finds a global solution by merging these solutions 
in iterative steps. In other words, the genetic layer performs domain reduction 
(simplifying the problem’s domain to make it more solvable). Unlike existing 
strategies, the purpose of the genetic layer is to break the tie between the higher 
strength sub-arrays and the base strength by giving the priority to ti tuples to be 
covered in the first rows during the generation of the VSCA, i.e., at the beginning. 
The genetic hybrid layer consists of two algorithms: A Deterministic Multi-
Parameter-Order Genetic Algorithm (GA) and an OPAT algorithm. The Modified 
Input Parameter Order General (MIPOG) [23-25] algorithm has been selected as 
a readymade component to facilitate generating the sub-solutions under the 
control of the genetic layer. 

To ficitate the implementation, this work selects the Modified Input Parameter 
Order General (MIPOG) [23-25] algorithm as a readymade component to facilitate 
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the generation of the sub-solutions under the control of the genetic layer. In short, 
the MIPOG search for a possible extension by adding parameter-value in OPAT 
fashion followed by vertical expansion if necessary in OTAT fashion during the 
generating of the sub-solutions. Integrating these components altogether yields 
GAMIPOG (Genetic-Multi-Parameter-Order-Algorithm/MIPOG). 

The organization for remaining sections for this paper is as follows. Section 
2 describes the proposed GAMIPOG strategy with an illustrative example. 
Section 3 addresses the scope and the validation of the study. Also, this section 
discusses the trends and the complexities of the VSCA strategies in a tabular 
form. Section 4 describes the benchmarking experiments to evaluate the 
GAMIPOG strategy, compare it against other VSCA strategies, and state the 
contribution of this paper. Finally, Section 5 states the conclusion and gives some 
possible avenues for future research. 

2.  The GAMIPOG Strategy 
The genetic process of the GAMIPOG strategy involves three phases:  
• The initialization phase, the parents. 
• Selection phase. 
• The chromosomes’ production (Population) phase. 

In the initialization phase, the genetic layer orders the MIPOG algorithm to 
generate the search space by producing the Parents’ lists and the desired features 
lists (Children). The parents’ selection phase gives priority to the longest 
chromosomes, i.e., with the highest strength of coverage among the tuples to be 
the parents of the first generation in the population. After selecting the parents, 
the chromosome production is performed simply by taking the first genes from 
the first parent and search the most suitable genes from the second parent 
exhaustively that maximizing the coverage of the desired features, (i.e., calculate 
the fitness score). The fitness score is the number of uncovered t-way tuples 
inside the candidate chromosome. After finding the desired chromosome from 
the other parent(s), the genes are combined to produce the chromosome (the test 
case). Next, this chromosome is appended to the population's list (test suite). 
Finally, the covered genes are deleted from the parents' list as well as from the 
desired features lists, i.e., reduce the search space). These operations are 
iteratively done until the parents’ lists are empty. Likewise, the parent selection 
is repeated and the Children with the highest chromosomes’ length are selected 
to be the parents for the next generation. These operations are iteratively done 
until the termination condition is achieved, i.e., the search space is empty). After 
breaking the tie among the variable strength parameters, the MIPOG generates 
the test suite on the base strength for the remaining parameters. The GAMIPOG 
process is shown in Fig. 2. 

For clarity and demonstration of the GAMIPOG strategy, we return to the 
example given in the previous section, to show how to generate the test suite and 
identify N for the VSCA (N; 2, 211, {CA (3, 23)2}). To facilitate the illustration, 
assume further that the names of the parameters (the columns in Fig. 1); in order, 
are ABCDEFGHIJK respectively. Each parameter-value represents a gene. Each 
row represents a chromosome (test case). 
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Fig. 2. The GAMIPOG algorithm. 

The genetic layer identifies two sub-CAs each with strength equals three and 
consists of three parameters with two values each. First the Genetic layer order the 
MIPOG to generate two sub-solutions ,(i.e., CA {8; 3, 23} and CA {8; 3, 23)) for the 
parameters ABC and DEF respectively, i.e., the 3-way parents’ lists. These two sub-
solutions act as two halves of chromosomes’ that need to be combined in the genetic 
layer. Likewise, the MIPOG generates the features Children’s lists (in our working 
example, the 2-way tuples for the parameters: AD, AE, AF, BD, BE, BF, CD, CE, 
and CF). Notably, the intertwined desired features, (i.e., (AB, AC, and BC), (DE, DF, 
and EF)) are not generated by the MIPOG because they are already covered by the 
first Parent’s lists (ABC) and second Parent’s lists (DEF), respectively. Thus, the 
MIPOG generates the search space (tuples) under the control of the genetic layer to 
prevent the MIPOG from generating undesired tuples. The Population list is empty. 
At this point, the initialization phase is finished. The selection phase selects ABC and 
DEF as first and second Parents, respectively (each of them has chromosome length 
equals 3) as depicted in the first half of Fig. 3. 

The chromosome production phase starts by selecting the first genes, i.e., “000” 
from the first parent and searches iteratively the genes from the other parent, records 
the fitness score. The first candidate solution is “000000”. The fitness score is nine 
because this candidate chromosome covers one tuple in each Child list (shown in red 
color). All other candidate chromosomes, (i.e., “000001”, “000010”, and “000111“) 
have the same fitness score that is not greater than the first recorded score. Therefore, 
the first candidate is the desired chromosome (test case). The Genetic process 
appends the generated chromosome to the population list (test suite) and deletes the 
covered genes from the search space (Parents’ and Childs’ lists). Likewise, the first 

1. Algorithm Genetic Multi-Parameter Order { 
// Initialization phase 
//Splitting the domains 

2. Identify the Parents’ strength of coverage (ti) and the base strength of 
coverage (t) 
// Building the search space 

3. Generate the Parents’ lists by MIPOG, (i.e., CAs >t) 
4. Generate the Children’s lists by MIPOG, (i.e., CAs =t) 
5.  Let’s ts be the test suite (Population list) 
6. While (Search space is not empty) { 

// Parents Selection Phase 
7. Select Parents’ Lists that have the maximum chromosomes’ length 
      //Chromosome Production Phase  
8. While (First Parent’s list is not empty) { 

a.  Select the first genes from the first Parent’s list 
b.  Select the remaining genes from the other Parent(s)’ list(s) by 

appending them to the first genes according to the fitness score. 
c.  Append the desired chromosome to ts. 

                           // Reduce Search Space   
d. Delete the covered tuples from the Search Space 
e. } // While 

9. }// While 
// Working for remaining parameters with base t 

10. Initialize the MIPOG with ts  
11. For each of the remaining parameters do the horizontal extension and the 

vertical expansion.  
12. Return ts 
13. }//Algorithm 
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genes, (i.e., “001”) from the first parent are combined with the seventh genes, (i.e., 
“111”) from the second parent to produce the desired chromosome, (i.e., “001111”), 
shown in green color, and so forth. Notably, the last two test cases selected in first-
in-first-out fashion because all the 2-way tuples are covered in the previous iteration. 
Thus, the result of the genetic process is the population list witch is VSCA (8; 2, 26, 
{CA (3, 23)2} as shown in the second half of Fig. 3. 

The population size is eight (the first eight rows and the first six columns in Fig. 
1). At this point, the genetic layer assists the MIPOG to deal with multi-parameter-
order, i.e., performs the generation of the test suite in 6-parameters-at-a-time fashion. 
Whilst, the MIPOG assists the genetic layer by providing the search space. Instantly, 
the genetic layer passes the population list to the MIPOG. Considering the remaining 
parameters, i.e., GHIJK, the MIPOG continues in its normal operations in OPAT 
fashion with the based strength of coverage (t=2). For the parameter G, the MIPOG 
generates the 2-way tuples space, (i.e., AG, BG, CG, DG, EG, and FG) and searches 
for the most suitable gene-value (either 0 or 1) that has the maximum fitness score 
during the horizontal extension, appends the winner gene to test case, (i.e., extends 
the chromosome by appending the G’s-value). After the horizontal extension, the 
tuples' space is empty. As such, there is no vertical expansion. the resulted population 
list is symbolized by VSCA (8; 2, 27, {CA (3, 23)2}) (the first eight rows and the first 
seven columns in Fig. 1). Likewise, the size of the population’s size invariants when 
extended by the parameters H, I, and J (the 8th till the 10th columns in Fig. 1). For 
the parameter K in the last iteration, after the horizontal extension, there are two non-
covered tuples. These two tuples cannot be combined during the vertical expansion; 
therefore, these two tuples are added to the population list as two test cases in OTAT 
fashion (the last two rows in Fig. 1). The resulted VSCA (10; 2, 211, {CA (3, 23)2}) is 
the desired test suite and N equals ten. 

 
Fig. 3. The genetic process for constructing the VSCA (8; 2, 26, {CA (3, 23)2}). 
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3. The Trends of the VSCA Strategies  
The scope of this research is to consider the strategies that have the feature for 
generating the VSCA. These valuable strategies have different features as 
combinatorial minimization strategies. Manageable test size is one of the common 
interesting and competitive features. Fortunately, this desired feature is not a 
function of the running environment and execution-time and can be observed or 
taken from the literature. In contrast, the execution-time is a function of the 
complexity, the running environment, and the data structure. It was worth nothing 
to compare the running time from the literature. However, the complexity of these 
strategies is also important to be considered to estimate the running-time. In 
general, a deterministic strategy generates the test-suite in a single run and doesn't 
need to store the seeds or the test-suite, while a non-deterministic strategy requires 
that. Another important feature is the scalability of a higher strength of coverage 
for the interesting configurations now; we look at the interesting features and 
tabulated these features in Table 1. We start our discussion from the highest 
complexity and record the features during the interpretation. 

Table 1. Summary of the trends of state-of-the-art VSCA strategies. 

Examples of the SBST that support the generating of the VSCA are Simulated 
Annealing (SA) [4], Ant Colony Strategy (ACS) [17], Variable Strength Particle 
Swarm Test-suites Generation (VSPSTG) [18], Harmony Search Strategy (HSS) 
[20], Artificial Bee Colony (ABC) [21], the random Genetic Algorithm (r-GA) also 
called PairwiseGen [2], Hybrid Artificial Bee Colony (HABC) [26], tuned Genetic 
Strategy (GS) [27], and Modified Greedy Strategy (MGS) [28]. These strategies 
are non-deterministic. SBST strategies have many similarities. The objective of 
these strategies is to optimize the test size for the SUT. Unlike computational 
strategies, running the SA, r-GA, HSS, ABC, VSPSTG, and ACS requires tuning 
the parameters of the adopted strategy to avoid the local minimum during the test 
suite generation such that generated test-suite near minimum in size. 

The SA starts with a random large array until finding an initial solution. Next, 
an exhaustive binary search is done to exchange the tuples based on the probability 
of occurrence to eliminate the weakest test case, (i.e., reduce the size by one). 
Iteratively, the SA repeats this process until finding a feasible solution.  The best 
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solution has been recorded after 10 runs with distinct seeds [4]. After finding the 
base covering array, the SA tries to include the sub-array by doing the 
transformation of the SA algorithm, if not success, add the tuples and increment the 
size by one until covering all the tuples of sub-array(s). Thus, the approach in the 
implementation of the SA is to produce one-test-suite-at-a-time. The complexity of 
this implementation is extremely high. The SA dominant the minimum test size in 
most cases in the literature. However, the published results are restricted for small 
strength of coverage, i.e., t ≤ 3. 

The trend in the implementation of the r-GA strategy is to simplify the 
complexity of the SA a little bit to support the higher strength of coverage. The r-
GA strategy starts from well-known size from the published results in the literature 
and adopting the genetic process. The genetic process in the r-GA implementation 
involves four steps, namely: initial population, selection, crossover, and mutation 
[2]. The initial population depends on the probability of the occurrence for each 
parameter-value. The size of the population is taken from the best well-known 
results. After the initialization of the population list, the multipoint cross-over 
selection for each chromosome is performed greedily randomly to increase the 
fitness and change the weak genes also randomly to gain more covered tuples. This 
process is repeated iteratively for all test cases until all tuples are covered, in this 
case, the r-GA strategy tries to reduce the size of the population by one and repeat 
the process until finding a more optimal solution if success. In short, the population 
list is the desired test suite. The best solution recorded after 30 runs with distinct 
seeds [2]. The complexity of this implementation is extremely high. Similar to r-
GA, the GS is considered another variant of implementation of random Genetic 
algorithm with different parameters tuning. The tuned version of the GA is capable 
to achieve higher strength of coverage, up to t = 12 for the VSCA generation and 
requires 10 runs with distinct seeds [27]. In addition, the GS does not require 
knowing the desired size in advance. Thus, the complexity of this implementation 
is very high. On the other hand, the current implementation of the GS is supported 
the generation of VSCA when the sub-array has uniform values of parameters. 

The trend in the implementations of HSS, MGS, ACS, HABC, VSPSTG, and 
ABC is to reduce the complexity further by adopting the OTAT approach. The best 
solution has been recorded after 30 [20], 30 [28], 20 [17], 20 [26], and 10 [18] runs 
with distinct seeds for HSS, MGS, ACS, HABC, and VSPSTG strategies, 
respectively. Regarding the ABC strategy, the best solution has been recorded after 
20 runs for t ≤ 4 and 5 runs for t > 4 [21]. Thus, the complexity of these 
implementations is very high. Like SA, ACS supports the generation of the VSCA 
for t ≤ 3. The r-GA, MGS, VSPSTG, HABC, and ABC strategies support the 
generation of VSCAs up to t ≤ 6. Whilst, the HS strategy is dominant the supporting 
of very high strength of coverage (up to t = 15). 

Unlike SBTS strategies that need an initial feasible solution, computational 
strategies work in the reverse direction. They build the test suite from scratch. 
Moreover, they don’t need parameters tuning. The strategies that adopt OTAT need 
to generate all the tuples to be covered before generating the test suite. For this 
reason, the complexity of these strategies is high. Examples of the strategies that 
adopted the OTAT approach are Pairwisely Independence Combinatorial Test data 
generator (PICT) [6], The IBM’s Intelligent Test Case Handler (ITCH) [7], the 
Density Algorithm by Random Order (DA-RO) and the Density Algorithm by 
Fixing Order (DA-FO) [8, 9], the Test Vector Generator (TVG) [10], and Test Suite 



3150         M. I. Younis 

 
 
Journal of Engineering Science and Technology          October 2020, Vol. 15(5) 

 

Generator (TSG) [11]. The PICT, ITCH, DA-RO, DA-FO, and TSG strategies are 
deterministic. TVG is a non-deterministic tool. The PICT, ITCH, and TVG tools 
support generating VSCAs for t ≤ 6. While, for TSG, DAFO, and DARO are 
supports generating VSCAs for t ≤ 3. PICT is a valuable tool provided by 
Microsoft. The trend in the PICT implementation is to maximize the occurrence of 
the sub-CAs to be tested fully [6]. For this reason, the PICT tool has been reported 
to produce undesirable test size as a minimization strategy for generating VSCAs 
[2], [17-21]. Like PICT, ITCH has been reported to generate undesirable test size 
for generating VSCAs [18]. The Density Algorithm has been reported to generate 
satisfactory test size [20]. Both TSG and TVG strategies generate a manageable 
test suite [11]. 

The strategies that adopt the OPAT is approach for Generating VSCAs are 
Parameter Order (ParaOrder) [8] and Automated Combinatorial Test for Software 
(ACTS) [12, 13]. Both ParaOrder and ACTS strategies are deterministic. ACTS 
generates the VSCA using IPOG (Input Parameter Order General) option from 
the tool and supports the strength of coverage for t ≤ 6. While, ParaOrder supports 
generating VSCAs for t ≤ 3. Thus, the complexity of these implementations is 
intermediate. Notably, when the authors [2], [17-28] mentioned the execution-
time in their environments, the OPAT strategies dominant the shortest execution-
time significantly. 

Now, we can discuss the trend in the proposed deterministic GAMIPOG 
strategy. Unlike the abovementioned VSCAs strategies, the genetic layer gives 
priority to the ti tuples to be generated and be covered first. The generation of tuples 
is controlled by the genetic layer to overcome the over fitting problem and to 
simplify the search space by eliminating the covered t-tuples during the 
initialization phase. The genetic layer also determines the number of parameters be 
covered by simply involve the parameters for ti tuples to be covered by the 
proposed deterministic multi-parameter-order GA in the OTAT approach. Since, 
the complexity of the OTAT is high, and to make the search space deterministic, 
the sub-CAs and the base t-tuples are generated by the deterministic MIPOG in 
OPAT fashion. Besides, the selection of ti-tuples is done by selecting the first ti-
tuples from the first parent instead of searching the exhaustively first Parents’ list. 
When generating the VSCA that contains both tuples, it is extended or even 
expanded by the MIPOG for the reaming parameters in the base strength. Unlike 
SBST, the GAMIPOG is a simple implementation of the genetic process aimed to 
have a deterministic feature. As such, the GAMIPOG has an intermediate level of 
complexity. In a nutshell, Table 1 gives a summary of the trends of state-of-the-art 
VSCA strategies and the desired features for the proposed GAMIPOG. To 
investigate more whether or not the desired features are implemented and to 
evaluate The GAMIPOG and compare it with the strategies we should adopt the 
same standard benchmarking experiments in the next section. 

4.  Results and Discussion 
This section evaluates the GAMIPOG strategy and compares it against other 
computational strategies, (i.e., DA-FO, DA-RO, ParaOrder, TVG, TSG, and 
ACTS) and SBST strategies, (i.e., SA, r-GA, ACS, VSPSTG, ABC, and HSS). 
Both PICT and ITCH tools are excluded because they have been reported to 
produce undesirable test sizes. Four benchmarking experiments are conducted to 
support different configurations with higher strength of coverage. The first three 
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experiments are proposed in [4] and adopted also in [2, 8, 9, 11, 17, 21] and 
expanded in [18, 20] for some interesting configurations. Partially, these three 
experiments are adopted in [26-28]. While the forth experiment proposed in [18] 
and also expanded in [20] and adopted by some researchers. Among the 
abovementioned strategies, the TVG, and ACTS tools are available from the 
websites. Thus, they are run side-by-side with the GAMIPOG during the 
experimentations. Notably, these tools are implemented using the Java 
programming language. The running environment is a laptop with Windows 10 
operating system, 8 GB of RAM, and 2.2 GHz CoreI7-2670QM CPU. 

The objectives these four experiments to construct VSCAs, namely: VSCA (N; 
2, 315, {C}), VSCA (N; 2, 320, 102, {C}), VSCA (N; 2, 43, 53, 62, {C}), and VSCA 
(N; 2, 101, 91, 81, 71, 61, 51, 41, 31, 21, {C}) and compare the generated test size 
generated by the VSCA strategies. We added the configuration {C=CA (6, 43, 53)} 
to the third experiment to study the behaviour of the GAMIOPG. The results of the 
other strategies are taken from the literature as indicated by its corresponding 
reference in the column. The results for running these experiments are tabulated in 
Tables 2 to 5. In these tables, the not available results are denoted by “NA” indicate 
that the test size is missing from the literature. The cells marked ‘–’ indicate that 
the algorithm does not run this configuration. The dashed cells present a minimal 
test size to facilitate the comparison. 

Now, we start our comparison with other strategies. At the glance, due to the 
NP-Hardness problem, there is no single strategy dominant minimal test size for all 
configurations Therefore, the minimal test size for the interesting configurations 
has been recorded one-by-one. A Question is normally raised why some strategies 
have the same generating test size? 

What is interesting in these tables is that the size of the higher strength of 
coverage in the configurations, (i.e., the sub-arrays many-times drive the size of the 
generated test suite). This phenomenon can be observed in the following cases: 
referring to Table 2, the configurations CA (3, 33), CA (3, 33)2, CA (3, 33)3, and CA 
(3, 34) have test size equals to 27, (i.e., 3*3*3) which is quite sufficient to include 
the base arrays of strength 2 when increasing the number of parameters (marked by 
the dashed cells). A similar observation is also valid for the configurations CA (4, 
34), CA (4, 35)2, CA (5, 35), and the remaining configurations for (t ≥ 6). For these 
test sizes the generated sizes are unreservedly minimal, i.e., can’t be reduced further 
due to the mathematical prove. Such cases can be found in Table 3 for (t ≥ 4), Table 
4 for all dashed cells except the configurations Ө, CA (3, 43, 53, 61), and CA (3, 43, 
53, 62), and Table 5 for all dashed cells except the configurations Ө and CA (3, 41, 
31, 21). We dashed these configurations by green colour to facilitate further 
discussion. All these optimal, i.e., more manageable test suites are generated 
successfully by the GMIPOG except one in Table 4, i.e., C= CA (3, 43, 52) which 
acts as a counter-example and will be discussed later as far as the optimal results 
generation is concerned. 

Referring to Table 2, for small strength of coverage, (i.e., t < 4), Both SA and 
r-GA generate minimal test size for t=2, (i.e., {C= Ө}) in the first row. As discussed 
previously, unlike other strategies, these strategies setup the desired size before the 
running of the experiments and the complexity of exhaustive search during the 
search is extremely high as mentioned previously. For this reason, it is expected to 
produce minimal results. Thus, both SA and r-GA outperform other strategies in 
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terms of test size. However, the other strategies (except the ParaOrder) produced a 
comparative result with less order of complexity.  The result obtained from the 
ParaOrder is undesirable. This row signifies the requirement of an undesirable 
feature of extremely high computing which will be one avenue for future work to 
design an alternative algorithm. 

Table 2. Comparison for test size for VSCA (N, 2, 315, {C}). 

The second row is more interesting, (i.e., C= CA (3, 33)) that most of the 
strategies are produce the optimal results and GS, DARO, and DAFO strategies 
generate very competitive sizes, but seems to subject to local maximum when 
combined the priority of t and ti tuples during the generating VSCA.  Here, we 
should make a deep argument when considering the complete performance based 
on both the test size and complexity. We can say that since the size is optimal, 
GAMIOPG, ACTS, and ParaOrder outperform both DARO and DAFO 
significantly, because GAMIOPG, ACTS, and ParaOrder have less test size with 
less order of complexity. TSG outperforms DARO and DAFO. While, GAMIOPG, 
ACTS, and ParaOrder outperform TSG, even though they are deterministic and 
produce the optimal test size, because of the order of complexity.  Now, we can 
stress the NP-Hard problem more, by considering the complexity of comparison 
between deterministic and non-deterministic strategies. Since the deterministic 
strategies required only once run to produce the results, they outperform the non-
deterministic strategies. For instance, it is unfair to compare both DARO and 
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DAFO performance with non-deterministic strategies without mentioning the 
complexity and the cost of running the experiments. 

The TVG strategy outperforms both DARO and DAFO strategies under the cost 
of running the experiment for the same configuration 10 times. From this 
perspective, TSG outperforms TVG even though they have the same order of 
complexity. As such, GAMIOPG, ACTS, and ParaOrder outperform TVG 
significantly based on the order of complexity and non-deterministic feature for the 
TVG tool. More to the point, by looking at Table 6, we see that both GAMIOPG 
and ACTS outperform the TVG strategy significantly in the execution-time for a 
single run. While the total time for the TVG can be estimated to be ten times the 
recorded time. It is harder to compare the performance even between SBST 
strategies with a very high order of complexity. Besides they are non-deterministic 
strategies, they required parameters tuning for the search algorithm, different 
iterations, and different numbers of running, different initial solutions. When 
comparing the performance with extremely hard strategies, the difficulty increases 
because of these strategies required to estimate the desired size while other 
strategies built the test suite from scratch. Based on this perspective, we can say 
that GAMIOPG, ACTS, ParaOrder, TSG, and TVG outperform significantly both 
the strategies with a very high order of complexity ,i.e., MSG, HABC, HSS, ABC, 
VSPSTG, and ACS and with an extremely high order of complexity ,i.e., r-GA and 
SA. Likewise, the strategies with a very high order of complexity outperform both, 
r-GA and SA. Based on this argument we will discuss the remaining results to 
shortness the discussion especially for the configurations that have been 
highlighted by the green colour. 

In the third and fourth rows, GAMIPOG outperforms the other strategies as far as 
the test size and overall all performance is concerned. Here, it seems both ACTS and 
ParaOrder are subject to a local minimum when giving the same priority to the mixing 
tuples. This point is valid in many cases that the GAMIPOG produces less test size. 

Similarly, for the next row in Table 2, (i.e., C= CA (3, 34)). Both GAMIPOG 
and ParaOrder outperform other strategies as far as the performance and test size 
are concerned. In the next row, (i.e., C= CA (3, 35)), SA, r-GA, and ABC dominant 
the minimal test size. The ABC strategy outperforms SA and r-GA as far as the 
complexity is concerned. The other SBST, (i.e., HACS, GS, MGS, ACS, VSPSTG, 
HSS, and GAMIPOG) generate more comparable results and outperform the 
remaining computational strategies as far as to test size is concerned. Regarding the 
performance, GAMIPOG outperforms the other computational strategies as far as 
both the complexity and test size are concerned. 

The configuration (CA (3, 34), CA (3, 35), CA (3, 36)) is very interesting. The 
SA strategy dominant the minimal test size while both the r-GA and ACS produce 
more competitive results. The HABC, ABC and TVG strategies produced 
undesirable test size for this configuration. The interesting point is that Para Order 
outperformed both ACTS and GAMIPOG in the term of generated test size.  It is 
interesting to discuss this. In this case, the GAMIPOG generates the test suite in 
pure simplified OTAT, i.e., 15 parameters-at-a-times because there are three 
parents. A close look at the execution-time for this configuration we see it is near 
the time of when the CA (3, 310). As such, there are two design alternatives to 
minimize the test size for this case. The first one is to re-design and re-implement 
the MIPOG to deal with VSCA. The second design is to re-implement the genetic 
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layer to select two parents only at a time, i.e., give the superiority to the parameter 
order after the strength of coverage during the Parent selection phase. The 
interesting point is that the test size generated by the GMIPOG is outperformed by 
other computational OTAT strategies. 

For the configurations (CA (3, 36), CA (3, 37)) the SA dominants the minimal 
test sizes while SBST strategies generate competitive results with a different order 
of complexity. In the case of (CA (3, 39)), both the HABC and the SA strategies 
dominant the minimal test size. Here, the HABC outperformed the SA as far as the 
overall complexity is concerned; the same observation is valid for the remaining 
SBST strategies. However, this observation cannot be generalized since the next 
row, i.e., CA (3, 315) the SA also generates minimal test size while DARO generates 
more competitive results and outperformed the remaining strategies. As discussed 
previously the GAMIPOG keeps the parameter order invariants when they have the 
same strength of coverage. For this reason, the result same as DAFO in this case. 
Addressing varying-parameter order is as interesting as an alternative design for 
future investigations. 

It is clear that SA dominant the minimal test size for some configurations under 
the extremely high complexity cost. However, there is a lack of supporting higher 
strength of coverage for the valuable strategies as tabulated in Table 1. As such, we 
cannot compare the test sizes generated by them and our comparison is restricted to 
compare the remaining strategies. The GMIPOG dominant the unreservedly minimal 
sizes when generating the VSCA for the configuration CA (4, 35) and outperformed 
other strategies as far as the test size is concerned beyond the order of complexity. 
Notably, the other strategies may subject to a local minimum when generating the 
base tuples and combining the mixed coverage during the fitness functions 
computing. For the configurations (CA (4, 34), CA (5, 35), and CA (6, 36)) all the 
strategies that support the generation of VSCA for (t>3, t<7) are generated 
unreservedly minimal sizes under the different cost of complexity. The MGS strategy 
dominant the minimal test size for the configuration CA (4, 37) with competitive 
results from the other strategies. The GAMIPOG outperformed significantly other 
strategies as far as the test size is concerned for the configuration CA (5, 37). 

Both GAMIPOG and HSS strategies, unlike other strategies, are scaled well to 
provide optimal sizes for t > 6 up to t=15, i.e., unreservedly minimal. While the GS 
strategy provide optimal sizes for t > 6 up to t=12. Unlike the valuable GS and HSS 
strategies which require a higher order of complexity, the GAMIPOG generates the 
test suites in the lower order of complexity with fast execution-time. This is 
stemmed from the fact that when increasing the strength of the coverage of the sub-
CAs the more likely to provide sufficient space to include the base-array to provide 
optimal test-suites. This observation signifies the GAMIPOG approach. Unlike GS, 
both HSS and GAMIPOG strategies have excellent performance as optimization 
strategies for these cases and have been supported disjoint sub-array in the 
configuration. This is also the case for the results in Tables 3 to 6. 

Referring to Table 3, the results of the ABC, HABC, GS, and MGS strategies 
are missing, as such, we cannot compare with them more. In the first row, The 
GAMIPOG, ParaOrder, DAFO, DARO, TSG, ACS, r-GA and SA strategies 
generate the same unreservedly minimal test size in different orders of complexity. 
While the other strategies are generating competitive results. In the second row the, 
DARO, TSG, ACS, r-GA and SA strategies generate the same unreservedly 
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minimal test size in different order of complexity. Also, other strategies are 
generating competitive results. From this observation, it is evident that a third 
design alternative is possible by making the deterministic GA generates the test 
suite in a pure OTAT manner. The third row is very interesting; SA dominant the 
minimal test size, GAMIPOG is more competitive than other strategies. The other 
strategies seem to have subjected to over fitting problems when combining the 
priority and may generate the intertwined tuples during the test case generating, 
and for this case, generate undesirable test size. We cannot compare with the other 
strategies that have not to support t >3. For (t > 3, t < 6) GAMIPOG, ACTS, TVG, 
HSS, VPSTG, and r-GA generate unreservedly minimal test size under the different 
cost of complexity. While both GAMIPOG and HSS generate unreservedly 
minimal test size for t > 6 under the different cost of complexity.  

Sometimes the size of the base array is more than the size of the sub-CAs, this 
is also an interesting phenomenon that can be observed in the following cases: 
referring to Table 3, the configurations CA Ө, and CA (3, 320) have test size equals 
to 100 which can be determined from the base strength of the VSCA, i.e., 10*10). 
We can also find such cases in Table 4 for the configuration Ө and Table 5 for the 
configurations Ө and CA (3, 41, 31, 21). We dashed these configurations by red 
colour to distinguish them. Also, for these test sizes, the generated sizes are 
unreservedly minimal. For the other cases, we remain the cells of configurations 
without highlighting where the sizes more than the size of CAs but there is no 
mathematical prove due to the NP-hard problem, we see more verities in terms of 
test size for these sizes. In many of these cases, GMIPOG generates optimal results. 
Notably, that is the answer why the minimization strategies may share the same test 
size even though; they have different approaches and different implementations due 
to the aforementioned NP-Complete problem. Based on these observations, we will 
discuss the results. 

Table 3. Comparison for test size for VSCA (N; 2, 320, 102, {C}). 
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Referring to Table 4, the results of the GS strategy are missing, as such, we 
cannot compare with it more. In the first row (CA = (Ө)) the SA strategy dominant 
the unreservedly minimal test size while the r-GA and the TSG strategies provide 
more competitive results as far as the test size is concerned. All strategies generate 
competitive results for the configurations (CA (3, 43), (CA (3, 43), CA (3, 53)), and 
CA (3, 51, 62)), most of them generate unreservedly minimal size with a different 
order of complexity. For the remaining configurations (i.e., CA (3, 43, 52), CA (3, 
43, 53, 61), and CA (3, 43, 53, 62)) the SA again dominant the minimal test size 
generation while both the TVG and the ParaOrder strategies generate undesired test 
size. For the configurations (CA (3, 43, 53, 62), and CA (3, 43, 53, 61)) both the ACS 
and the GAMIPOG strategies provide more competitive results to the SA. In the 
last configuration ,i.e., CA (3, 43, 53, 62) both the TSG and the GAMIPOG strategies 
provide more competitive results to the SA as far as the test size is concerned with 
a different order of complexity. 

For (t > 3, t <=5) we continue our comparison for the strategies supporting these 
strength of coverage. The GMIPOG outperformed the other strategies because it 
generates generate unreservedly minimal size for all the interesting configurations. 
For the configurations (CA (4, 43, 52) and CA (5, 43, 53)) the GMIPOG strategy 
dominant the generate unreservedly minimal size and outperformed the other 
strategies significantly. For the other cases, all the strategies generate the same sizes 
with a different order of complexity. To study the behaviour of the GAMIPOG for 
(t=6) we added the configuration CA (6, 43, 53) to this standard experiment which 
is not been addressed by the other researchers. So, the result is restricted to the 
available tools. The GAMIPOG, ACTS, and TVG generate the unreservedly 
minimal size for this configuration. Lastly, for the configuration CA (7, 43, 53, 62) 
both GAMIPOG and HSS are scaled-well and have been generated the 
unreservedly minimal size for this configuration. 

Table 4. Comparison for test size for VSCA (N; 2, 43, 53, 62, {C}). 

Referring to Table 5, the GMIPOG outperformed the other strategies in the sense 
that it always generates the unreservedly minimal sizes for these configurations. 
Moreover, the GAMIPOG dominant the minimal test size for the configuration CA 
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(3, 101, 91, 81, 71) and outperform the other strategies significantly while both HSS 
and r-GA produced a more competitive size than other strategies for this case. 

Table 5. Comparison for test size for  

VSCA (N; 2,101, 91, 81, 71, 61, 51, 41, 31, 21, {C}). 

Regarding the execution-time, referring to Table 6, since the GMIPOG, ACTS, 
and TVG strategies have been implemented using Java programming language, and 
have been running on the same computer. However, they have a different data 
structure and programming methodology. We can observe the execution-time and 
stress the need for the deterministic feature. It clear both ACTS and GAMIPOG 
strategies outperformed the TVG strategy significantly as far as the execution-time 
is concerned.  Moreover, both of them generate the test size in a single run while 
due to the non-deterministic feature for the TVG strategy it requires to run 10 times. 
As such, the total execution time for the TVG is about 10 times the recorded time 
for it. What is interesting in this table, our approach may lead not just to optimize 
the test size, it often reduces the execution time. When selecting the parents, and 
don’t generate the intertwined features that already covered, the execution-time is 
lower than the base time. For instance, the time required to generate the base array, 
i.e., C= Ө is more than the time required for generating the VSCA for the 
configuration CA (3, 33)2. However, when the number of parameters increased for 
the GA algorithm, it may lead to more execution-time as discussed previously. 
Overall, both ACTS and GAMIPOG have very competitive execution-time. 

In general, the GAMIPOG strategy unlike other minimization strategies, give 
the priority to the ti-tuple to be included generated and included first. Unlike other 
SBST strategies, it is deterministic and does not require parameters tuning with an 
intermediate level of complexity. The GAMIPOG strategy like other SBST 
strategies outperformed other computational strategies in most cases as far as the 
test size is concerned and provides competitive results. Like the ACTS tool, 
dominant the fast execution-time feature. Like the HSS and GS strategies, the 
GMIPOG strategy supports generating the test suite for high strength of coverage.  
Finally, the GAMIPOG contributes to find six minimal size for VSCA, namely: 
VSCA (81; 2, 315, {CA (4, 35)}), VSCA (427; 2, 315, {CA (5, 37)}) from Table 2, 
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VSCA (400; 2, 43, 53, 62, {CA (4, 43, 52)}), (2000; 2, 43, 53, 62, {CA (5, 43, 53)}), 
(8000; 2, 43. 53, 62, {CA (6, 43, 53)}), from Table 4, and VSCA (720; 2, 101, 91, 81 
71, 61, 51, 41, 31, 21, {CA (3,101 91 8171)}) from Table 5. These new upper bounds 
for VSCA are shown in bold font in their corresponding cells. 

Table 6. Execution-time (in seconds) for generating VSCA (N; 2, 315, {C}). 
{C} TVG ACTS GAMIPOG 
Ө 0.047 0.016 0.018 

CA(3, 33) 0.061 0.008 0.017 
CA(3, 33)2 0.064 0.021 0.017 
CA(3, 33)3 0.061 0.021 0.017 
CA(3, 34) 0.078 0.011 0.009 
CA(3, 35) 0.091 0.024 0.020 
CA(3, 34), 
CA(3, 35), 
CA(3, 36) 

0.236 0.009 0.064 

CA(3, 36) 0.139 0.012 0.016 
CA(3, 37) 0.153 0.023 0.031 
CA(3, 39) 0.298 0.021 0.027 
CA(3, 315) 0.532 0.051 0.063 
CA(4, 34) 2.01 0.019 0.016 
CA(4, 35) 0.19 0.012 0.017 
CA(4, 37) 0.78 0.014 0.024 
CA(5, 35) 0.61 0.016 0.025 
CA(5, 37) 3.6 0.054 0.049 
CA(6, 36) 1.34 0.091 0.058 
CA(7, 37) - - 0.061 
CA(8, 38) - - 0.062 
CA(9, 39) - - 0.063 

CA(10, 310) - - 0.064 
CA(11, 311) - - 0.074 
CA(12, 312) - - 0.077 
CA(13, 313) - - 0.083 
CA(14, 314) - - 0.093 

5.  Conclusions 
This paper has been presented and evaluated a hybrid strategy called GAMIPOG. 
The GAMIPOG is a novel deterministic search-based-minimization strategy with 
an intermediate order of complexity and scales-well to support higher strength of 
coverage with fast execution time. Besides, this paper has been reported the trends 
of the VSCA strategies and mentioned the similarities and differences between the 
GAMIPOG and other strategies. The genetic layer consists of two algorithms: A 
Deterministic Multi-Parameter-Order Genetic Algorithm (GA) and the Modified 
Input Parameter Order General (MIPOG). The GA algorithm is a tuneless 
deterministic search-based algorithm that gives priority to the tuples during the test 
case generation. The experiments conducted show that the investigations directed 
demonstrate that the GAMIPOG, in most cases, outperforms the existing strategies 
in terms of VSCA sizes (except SA for small strength, (i.e., t < =3). Besides, the 
practical results reported outcomes of new upper bounds for VSCA. Again, the 
GAMIPOG hits many faces for the same coin. 

During the evaluation, some results are not optimal as far as the test size is 
concerned and some design alternatives have been discussed. As such, there are 
multiple avenues for future research. One avenue is to re-design and re-implement 
the MIPOG to support the VSCA. Another avenue is to make different design 
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alternatives to select the parent’s out-of-order, based on the density of the 
parameter-values and the strength of coverage, compare these variants in terms of 
complexity and size. Of course, under more cost of complexity, one of the target 
avenues is to study variant deterministic opportunities to investigate the genetic 
layer to make global optimization of the generated test suites in this paper by 
considering the non-minimal results as an initial population to be minimized in one-
test-suite-at-a-time approach. 

. 

Nomenclatures 
 
C Configuration 
k Number of components (parameters) 
n Number of an identical sub covering arrays 
N Size (number of rows in a covering  array) 
t Strength of coverage  
ti ti-tuples 
ts Test set 
v Number of levels (values) 
 
Greek Symbols 
Ө Phi, empty set. 
 
Abbreviations 

ABC Artificial Bee Colony 
ACS Ant Colony Strategy 
ACTS Automated Combinatorial Test for Software  
CA Covering Array  
DA Density Algorithm 
DA-RO Density Algorithm by Random Order 
DA-FO Density Algorithm by Fixing Order 
GA Genetic Algorithm 
GAMIPOG Genetic Multi-Parameter-Order-Algorithm/MIPOG 
GS Genetic Strategy 
HABC Hybrid Artificial Bee Colony 
HSS Harmony Search Strategy 
IPOG Input Parameter Order General 
ITCH IBM’s Intelligent Test Case Handler  
MGS Modified Greedy Strategy 
MIPOG Modified Input Parameter Order General 
NP Non-deterministic Polynomial 
OPAT One-Parameter-At-A-Time 
OTAT One-Test-At-A-Time 
ParaOrder Parameter Order 
PICT Pairwisely Independence Combinatorial Test Data Generator 
PSO Particle Swarm Optimization 
r-GA Random Genetic Algorithm 
SA Simulated Annealing 
SBST Search-Based Software Testing 
SUT System Under Test  
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TSG Test Suite Generator 
TVG Test Vector Generator 
VSCA Variable Strength Coverage Array  
VSPSTG Variable Strength Particle Swarm Test-suites Generation 
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