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Abstract 

This article presents an implementation of a cellular parallel genetic algorithm 
and a local optimization heuristic to solve the Quadratic Assignment Problem 
(QAP). First, we implemented a cellular model that combines the most 
representative characteristics of the population in the Genetic Algorithm, later, 
we resort to a greedy 2- opt heuristic optimization which performs a meticulous 
genetic exploitation of the spaces previously explored by the Genetic Algorithm. 
Our algorithm was completely implemented with CUDA on a Graphical 
Processing Unit (GPU), where a GPU grid represents the population of the 
Genetic Algorithm (GA), a GPU block represents each particular individual 
(chromosome) of the population, and each GPU thread represents a gene of such 
a chromosome. The problems examined correspond to prominent instances of the 
QAPLIB library. Our algorithm solves these problems efficiently. 

Keywords: Greedy 2-opt local search heuristics, Graphical processing unit (GPU), 
Parallel genetic algorithm, Quadratic assignment problem (QAP). 
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1.  Introduction 
The QAP consists in assigning, one by one, a set of n facilities in a set of n locations 
so as to minimize the flow between the facilities and the distances between the 
locations. The QAP is considered a strongly NP-Hard problem [1] and it is a general 
model of other NP-Hard combinatorial problems [2]. 

Several methods have been used to resolve QAP- instances; Branch & Bound 
is perhaps the most outstanding exact method [2, 3], but it is inappropriate in 
large-size QAP-instances. An alternative in the solution of the QAP are methods 
like metaheuristics based on population - Ant Colony Optimization (ACO) [4], 
Particle Swarm Optimization (PSO) [5], Genetic Algorithms (GA) [6], among 
others - generally combined with meta heuristics based on trajectories - local 
search techniques (LS) [7, 8], Tabu Search (TS) [9, 10], Simulated Annealing 
(SA) [11], among others. Parallel models of the previous metaheuristics have 
been more efficient in the QAP-instances solution [12, 13]. These models have 
been implemented in recent years on multicore architectures or GPUs, 
significantly reducing the execution time [14-16]. The CUDA computing 
platform is the most popular development tool nowadays to program on GPUs. 
CUDA is a C language with SIMD extensions for programming without taking 
into account graphic programming concepts, which were necessary with 
interfaces such as DirectX or OpenGL [17]. 

The performance of our algorithm is measured by executing some reference 
instances of different sizes present in the standard QAPLIB library. This library 
includes information on such instances (distance and flow matrices) as well as the 
best known solution to date [18]. 

This article is organized as follows: Chapter 2 presents a related works. Chapter 
3 presents a background on QAP, Parallel Genetic Algorithms, Local Search 
Heuristics (greedy 2-opt), and GPUs. Chapter 4 presents our algorithm. Chapter 5 
explains the experiments and the results obtained. Finally, Chapter 6 highlights 
conclusions and future works. 

2.  Related Work 
Mohassesian and Karasfi [16] present an algorithm with a balanced dispersion of 
the solutions in the search space of the problem. They also perform 10 executions 
on each problem, each with two 220 iterations. The algorithm is executed on CPU. 

Tsutsui [19] implemented ACO on a PC with a 4 GPUs array. An islands model, 
where each colony resides in a GPU and individuals are interchanged through the 
CPU following 4 different procedures, is followed. All the algorithm data is localized 
in the global memory of the GPU, but the flow and distance matrices are located in 
the texture memory. For the first procedure, in the islands model, two independent 
executions are made, when an ACO in a GPU finds an acceptable solution, then the 
algorithm ends, there is no interchange of information. The second procedure is elitist, 
the best solution found from the 4 GPUs is distributed to the remaining that did not 
obtain that solution and replaces the worst. The third uses an annealing model, the 
best solution in the GPU g replaces the worst solution in the GPU (g+1)mod4. The 
last procedure is elitism with massive annealing connection, the best solution of each 
GPU/island, with some other solutions are distributed to the other 3 GPUs. The best 
results are obtained with the last procedure. They also develop a Master-Slave 
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implementation with only one colony of m individuals (m varies between 1 and 150) 
runs on the CPU and distributes m/4 individuals in each one of the GPUS. A Tabu 
Search is carried out on each GPU. 

Luong et al. [14] based their work on three approaches: the first is to distribute, in 
an efficient manner, a Local Search process between GPU and CPU. The second, 
consist in making an adequate relation between a neighbour of one current solution and 
each GPU thread. The third, to efficiently optimize the data transfer between GPU 
memory hierarchies, handling their capacity limitations. The CPU-GPU 
communication is performed through the VRAM of the GPU. Here the input data (flow 
and distance matrices) as well as the coding of the solutions of the problem are stored. 
Given that the global memory is slow, a new implementation is made on the texture 
memory as an optimization alternative for the storing and access to the problem’s input 
data. They argue that an important way to drastically reduce the CPU-GPU data transfer 
(which represents the greatest obstacle in the GPU performance) can be achieved by 
moving the complete Local Search process to the GPU. 

In another work, Tsutsui and Fujimoto [15] implement a coarse grain parallel 
genetic algorithm, where each sub-population is hosted in the shared memory of 
each block of threads and evolves in parallel on each one of these blocks (30 blocks 
of 128 threads were used). In a block, each individual is implemented as an 
independent thread. The QAP flow and distance matrices data are stored in the 
constant memory of the GPU. After a certain number of generations, individuals in 
the subpopulations are mixed in the host and then put in the GPU global memory 
(VRAM). Each multiprocessor selects an unprocessed block and copies the GPU 
individuals from the global memory to the shared memory, 500 generations are 
made and the evolved individuals are copied again to the VRAM, this process 
continues until all of the blocks are processed, then, all individuals are copied to 
the host memory and mixed. The process is repeated until a certain stop criterion. 
In this implementation there is no individuals interchange among blocks. The 
algorithm ends when one of those subpopulations finding an “acceptable” solution. 
The size of the QAP instances varies between 25 and 50. 

Tsutsui and Fujimoto [20] proposed a parallel genetic algorithm with 
independent executions. The base of this evolutionary model for the QAP on GPU 
is exactly the same of the immediately previous one, except that here it is 
considered a restart strategy, that is, it “mutates” individuals with the best solution 
to avoid premature stagnation but leaving also a certain quantity of the best found 
up to the moment. 

Chaparala et al. [21] implemented a 2-opt local search heuristic over the GPU, 
configuring different thread numbers per block. 

Semlali et al. [22] presented a hybrid algorithm that combines chicken swarm 
optimization and Greedy randomized adaptive search procedures, in order to find a 
better initial population. The implementation was in GPU, and each instance was 
tested 20 times, each with 100 iterations. 

Mohammadi et al. [23] proposed a parallel genetic algorithm on GPU. The 
authors combine the previous and current populations (the latter obtained by 
crossover and mutation) and obtain a new one, half of it through a deterministic 
fitness and the other half randomly. Each problem was executed 20 times. The 
authors do not report the number of iterations used in each execution. 
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Szwed et al. [24] implemented on OpenCL a massively parallel multi-swarm 
algorithm, which can be executed in independent swarms or with migrations. The 
authors highlight the fact that they can process large populations thanks to 
parallelism. They do not show algorithm execution times for all problems. 
Instances sc64a and tai60b were solved in 71 and 2220 iterations respectively - too 
many compared with our algorithm. 

3.  Background 

3.1. Quadratic assignment problem (QAP) 
The QAP is an outstanding problem of optimization that has served as a model to 
describe some problems of distribution and communication of scientific scope 
[2]. The QAP consists in assigning, one by one, a set of n facilities in a set of n 
locations so as to minimize the flow between the facilities and the distances 
between the locations. 

The original formulation of the QAP consists in finding a permutation σ 
such that: 

min
𝜎𝜎∈𝑆𝑆𝑛𝑛

∑ ∑ 𝑓𝑓𝑖𝑖𝑖𝑖
𝑛𝑛−1
𝑖𝑖=0

𝑛𝑛−1
𝑖𝑖=0 𝑑𝑑𝜎𝜎(𝑖𝑖)𝜎𝜎(𝑖𝑖)                                                                             (1) 

where F = fij is a flow matrix, D = dkl is a distance matrix (both F and D have a n x 
n size), and 𝑆𝑆𝑛𝑛={𝜎𝜎 | 𝜎𝜎 ∶ 𝑁𝑁 → 𝑁𝑁}, where N={0,1, …, n-1} (it is often said that n is 
the QAP size). Each individual product fij dσ(i)σ(j) of the previous Eq. (1) is the cost 
of assigning facility σ(i) to location i, and facility σ(j) to location j. 

Figure 1 shows an example of a QAP-instance of size n = 5. In the example of 
the Fig.1, σ = (1,2,3,0) with 

cost(𝜎𝜎) = ∑ ∑ 𝑓𝑓𝑖𝑖𝑖𝑖
4
𝑖𝑖=0

4
𝑖𝑖=0 𝑑𝑑𝜎𝜎(𝑖𝑖)𝜎𝜎(𝑖𝑖) = 222                                                      (2) 

 
Fig. 1. Example of a QAP-instance of size n = 5. 

Another equivalent formulation is the trace formulation; this consists in finding 
a permutation matrix X (associated with the permutation σ above) such that: 

min trace(𝐹𝐹𝐹𝐹𝐷𝐷𝑡𝑡𝐹𝐹𝑡𝑡)                                                                                      (3) 
Subject to ∑ 𝑥𝑥𝑖𝑖𝑖𝑖  = 1, 0 ≤ 𝑖𝑖 ≤ 𝑛𝑛 − 1𝑛𝑛−1

𝑖𝑖=0  
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           ∑ 𝑥𝑥𝑖𝑖𝑖𝑖 = 1, 0 ≤ 𝑖𝑖 ≤ 𝑛𝑛 − 1𝑛𝑛−1
𝑖𝑖=0  

𝑥𝑥𝑖𝑖𝑖𝑖 ∈  {0, 1},    0 ≤ 𝑖𝑖, 𝑖𝑖 ≤ 𝑛𝑛 − 1 

where Eq. (3) is appropriate to be implemented in a vector device such as a GPU [25]. 

3.2. Parallel genetic algorithm 

Parallel Genetic Algorithms in addition to significantly reducing the execution 
time in comparison with a simple genetic algorithm, consider each individual as 
a computationally independent unit and explore the search space for the problem 
more appropriately. There are several models of Parallel Genetic Algorithms, and 
they only differ in how individuals (or sub-populations) interact within a 
population, with the Master-Slave, Islands, and Cellular models being the best 
known [26, 27]. The latter is the model implemented in this work. 

Cellular model. The individuals of the population are distributed one by one in 
each cell of a two-dimensional mesh. The fitness of each individual is 
simultaneously evaluated and the crossover genetic operator for each individual 
occurs locally within a previously defined neighbourhood. With this model, a 
diffusion of information between individuals from different regions of the search 
space of the problem can be performed. 

3.3. Local search heuristics 

These methods consist in finding an optimal solution in a neighbourhood of an 
initial solution. The solution found updates the initial solution and the process 
continues until no better solution is found. 

Greedy 2-opt Local Search Heuristics. For the QAP, these heuristic orderly 
interchanges all pairs of components of an initial permutation (all possible facilities 
on each of the locations). As the permutation improves (permutation with better 
cost), this updates the previous permutation. 

3.4. Graphic processing unit (GPU) 
Graphic processing unit or GPU is a dedicated coprocessor. Due to its independent 
RAM, GPU has high parallel processing capacity. This unit can use the NVidia’s 
unified computing device architecture (CUDA); it becomes a programming 
language that is an extension of C / C ++, whose procedures run in parallel 
following the SIMD programming paradigm in the Flynn’s taxonomy [28]. The 
programming language CUDA has largely improved; it makes it possible to 
develop generic applications (GPGPU) [29] - mobile phones, tablets and laptops; 
Conquering Disease, Improving Diagnoses, and Scientific Innovation - thanks to 
numerous cores that a GPU offers. Genetic algorithms are inherently parallel in 
nature, so they are favourable to be implemented in GPU but considering the 
challenge of how to adequately handle the access to the device memory. 

4. Proposed Approach 
The approach presented in this paper is a cellular parallel genetic algorithm 
(exposed in its initial phase in [30]) improved from the use of the Mutation and 
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Transposition genetic operators and a Greedy 2-opt local optimization heuristic. 
Our algorithm was implemented completely on GPU. 

In our implementation a permutation σ = (σ(0), σ(1),…, σ(n-1)) of the QAP is 
individual (chromosome) of the Genetic Algorithm and corresponds to a GPU 
block; each component σ(i), 0 ≤ i ≤ n-1 it interpret that facility σ(i) assigned to 
location i) is a gene on that chromosome and corresponds to a GPU thread. The 
population of the Genetic Algorithm is a GPU grid. 

The initial population is size 64 and each individual is randomly generated 
simultaneously in each shared memory space of each GPU block in a 8 × 8 two-
dimensional GPU grid; the size of the population is maintained throughout the 
algorithm. Figure 2 shows this configuration on the GPU. 

The flow and distance matrices are stored in the constant memory space of the 
GPU in order to accelerate the calculations. 

The evaluation of the individual fitness of the population was made with the 
trace formulation for the QAP. This formulation uses the multiprocessing features 
of the GPU better. Matrix products are calculated by using a two-dimensional GPU 
grid of size 8 x n2 where each GPU block consists of n one-dimensional GPU 
threads. Each row of the GPU grid represents the linearized permutation matrix of 
each individual of the population. That is, each GPU block is a row of such 
matrices. These rows are housed in the corresponding shared memory spaces of 
each GPU block to accelerate operations. 

For the implementation of the selection operator in GPU, we obtain a permuted 
population  from the current population P, therefore,  𝑃𝑃� = 𝐹𝐹 ∗ 𝑃𝑃,  where X is a 
permutation matrix associated with a random permutation of the set {0,1,…,63}. 

The binary tournament is carried out simultaneously at the block level between 
the corresponding individuals of the populations P and 𝑃𝑃.�  Individuals with better 
fitness make up an intermediate population. 

The crossover is a Modified Order Crossover (MOX) [19]. For the implementation 
in GPU a permuted population is obtained in the same way as before, but in this case 
the permutation matrix X is derived from a permutation θ = (θ(0), θ(1),…, θ(63)) the 
set {0,1,…,63} from a specific topology of neighbourhoods; θ(i) represents the couple 
with the best fitness in the neighbourhood of the individual i, 0 ≤ i ≤ 64 It is here where 
the cellular parallel genetic model is applied. We consider two different neighbourhood 
topologies. These are:  
• Topology 4n (or Von Neumann neighbourhood; see Fig. 3). 
• Topology 8n (or Moore neighbourhood; see Fig. 4). 

The meshes that represent these topologies are toroidal. The offspring is 
obtained between the corresponding individuals of each block of the current and 
permuted population. This procedure is per- formed for all individuals 
simultaneously. The offspring will only replace the individual of the current 
population in the corresponding block if their fit- ness is better or equal to the 
current individual’s fitness (replacement of neutral mutants). 
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Fig. 2. Population in GPU. 

  
Fig. 3. Topology 4n. Fig. 4. Topology 8n. 

The probability of crossover for each of the individuals is 0.6 throughout the 
algorithm. At this moment we identify the best individual of the current population, and 
then reincorporate it after applying the genetic mutation and transposition operators. 

The mutation is an Exchange Mutation (EM) [19] and applied to each 
individual of the current population simultaneously (i.e., in each GPU block) 
with a probability of 0.01. 

Transposition consists in inverting the genes of a substring (random) of the 
chromosome that represents each individual. This operator is also applied 
simultaneously at the block level and it has a probability of 0.4 for all 
individuals. The probabilities of mutation and transposition do not change 
throughout the algorithm. 

The best individual previously identified is reincorporated into the population. 
This is done in order to avoid losing important genetic material obtained before 
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applying the mutation and transposition operators, i.e., our implementation 
develops a strategy based on elitism. 

Now, to further exploit the regions explored by the Genetic Algorithm, we use 
a local optimization heuristic. Applied heuristics is a greedy 2-opt search.  

For this heuristic, the current individual evaluates the 𝑛𝑛(𝑛𝑛 − 1)/2 swaps (all 
pairwise exchanges of all possible facilities on each of the locations) Fig. 5 shows 
the case for a QAP-instance of size n = 5. 

 
Fig. 5. 10 possible 2-opt swaps for a QAP of size n = 5. 𝒇𝒇𝒊𝒊 is the i-th facility. 

This heuristic leads the search more quickly to areas that have not been 
exploited, since immediately a better individual is found, this replaces the current 
individual (of course, fitness is also updated); and continues to be applied on the 
individual updated in the next swap; by contrast, with the basic 2-opt heuristic that 
replaces the current individual (and its fitness) with the best solution found only 
after making all possible exchanges. 

The Greedy 2-opt local search takes advantage of the elitist parallel GA 
which prevents return to optimal local solutions already visited; that is, our 
cellular parallel GA is an efficient perturbation technique for Greedy 2-opt local 
search. Bashiri and Karimi in [31] compare several local search methods (2-
opt, 2-opt Greedy, 3-opt and 3-opt Greedy) to solve the QAP. For them, the 
Greedy 2-opt local heuristic is the least efficient as the implementation lacks a 
perturbation technique. 

This heuristic is implemented with a matrix type formulation (Eq. (4)) to take 
advantage of the benefits of the GPU. 

∆𝑖𝑖𝑖𝑖= �𝑓𝑓𝑖𝑖𝑖𝑖 − 𝑓𝑓𝑖𝑖𝑖𝑖��𝑑𝑑𝜎𝜎(𝑖𝑖)𝜎𝜎(𝑖𝑖) − 𝑑𝑑𝜎𝜎(𝑖𝑖)𝜎𝜎(𝑖𝑖)� 
+(𝐹𝐹𝑖𝑖∙ − 𝐹𝐹𝑖𝑖∙) ∙ ((𝐷𝐷𝐹𝐹𝑡𝑡)𝜎𝜎(𝑖𝑖)∙ − (𝐷𝐷𝐹𝐹𝑡𝑡)𝜎𝜎(𝑖𝑖)∙) 
+(𝐹𝐹∙𝑖𝑖 − 𝐹𝐹∙𝑖𝑖) ∙ ((𝐹𝐹𝐷𝐷)∙𝜎𝜎(𝑖𝑖)∙ − (𝐹𝐹𝐷𝐷)∙𝜎𝜎(𝑖𝑖))                                                      (4) 

where, ∆𝒊𝒊𝒊𝒊 compute the change in the fitness value after a pair-wise exchange (i, j 
facilities that are exchanged). 

The current individual is updated with the first individual found such that ∆𝑖𝑖𝑖𝑖<
0. The greedy 2-opt heuristic continues on the individual updated in the next swap. 

The operator ∙ interprets an internal product, fij = fji = 0 in the second and third 
additions of the Eq. (3). 𝐹𝐹𝑘𝑘∙ is the row k of the matrix 𝐹𝐹, and 𝐹𝐹∙𝑘𝑘 is the column k of 
the matrix 𝐹𝐹. 
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This Eq. (3) is evaluated in 𝑂𝑂(𝑛𝑛) operations for all possible 𝑂𝑂(𝑛𝑛2) swaps. The 
cost with Koopmans-Beckmann's original formulation (Eq. (1)) requires 𝑂𝑂(𝑛𝑛2) 
operations. Algorithm 1 presents our model implemented completely on GPU. 

Algorithm 1. Hybrid Parallel Algorithm implemented on GPU. 

for each GPU block 𝑖𝑖 in the GPU grid, in parallel do 
Assign a random individual 

end for 
generation number ← 1 
while termination condition not met do 

for each individual 𝑖𝑖, in parallel do 
Fitness 
Select a different individual 𝑘𝑘 
if 𝑘𝑘 is better than 𝑖𝑖 then 

Assign 𝑘𝑘 to 𝑖𝑖 
end if 
Select an individual 𝑘𝑘 in the neighbouring of 𝑖𝑖 
Produce an offspring from 𝑖𝑖 and 𝑘𝑘 
if the offspring is better than 𝑖𝑖 then 

Assign the offspring to 𝑖𝑖 
end if 

end for 
To identify the best individual so far 
for each individual 𝑖𝑖, in parallel do 

Mutate 
Transpose 

end for 
To reincorporate the best individual 
for each individual 𝑖𝑖, in parallel do 

Apply greedy 2-opt local optimization heuristic 
end for 
generation number ← generation number + 1 

end while 

5. Experiments and Results Obtained 
For testing purposes, a custom CUDA program was written. The algorithms were 
run on an Intel®CoreTMi7 - 4700HQ CPU @ 2.40GHz, RAM 8 GB and GPU 
NVidia GeForce GTX 760M. This device has 64 kB of constant memory, therefore 
the maximum size of QAP instances to consider is 90, because 2 x 902 x (4 bytes) 
≤ 64 kB (two matrices of integers - flow and distance). 

Ten different instances contained in the standard QAPLIB library [18] were 
examined, these are: 
• Els19: “The data describe the distances of nineteen different facilities of a 

hospital and the flow of patients between those locations”. It is the only 
instance of this type of problems 

• Esc64: “This example stem from an application in computer science, from the 
testing of self-testable sequential circuits. The amount of additional hardware 



Hybrid of Cellular Parallel Genetic Algorithm and Greedy 2-Opt Local . . . . 3091 

 
 
Journal of Engineering Science and Technology          October 2020, Vol. 15(5) 
 

for the testing should be minimized”. It is the second largest instance of this 
type of problems. 

• Had20: “The distance matrix represents Manhattan distances of a connected 
cellular complex in the plane while the entries in the flow matrix are                
drawn uniformly from the interval [1, 𝑛𝑛]”. It is the largest instance of this type 
of problems. 

• Kra32: “The instances contain real world data and were used to plan                            
the Klinikum Regensburg in Germany”. It is the largest instance of this type 
of problems. 

• Nug30: “The distance matrix contains Manhattan distances of rectangular 
grids. The solution was found by applying a branch and bound algorithm”. It 
is the largest instance of this type of problems. 

• Scr20: “The distances of these problems are rectangular”. It is the largest 
instance of this type. 

• Tai35b: “This problem is asymmetric and randomly generated”. It is the sixth 
largest in- stance of this type of problems. 

• Tai40b: “This problem is asymmetric and randomly generated”. It is the fifth 
largest in- stance of this type of problem. 

• Tai60b: “This problem is asymmetric and randomly generated”. It is the third 
largest in- stance of this type of problem. 

• Tho40: “The distances of this instance are rectangular”. It is the second largest 
instance of this type of problems. 

The number in the name of each instance indicates the size of the problem. Ten 
tests were done for each QAP-instance with respect to each of the two topologies 
cited in the previous section; each test consisted of one hundred iterations. The 
probability rates of the genetic operators were tuned to achieve the maximum 
performance of the algorithm. 

To compare the results of our implementation in GPU, a sequential genetic 
algorithm was implemented in CPU with the same characteristics of our parallel 
algorithm. Of course, the implementation in CPU does not consider any topology 
of neighbourhoods; the crossover takes place from a random permutation. Ten tests 
were also done for each QAP-instance, each with one hundred iterations. 

Table 1 shows the performance of our Hybrid Parallel Algorithm for problems 
Els19, Esc64a, and Had20, in relation to the number of iterations in which the 
optimal solution was found in the executions for each topology. Our Hybrid Parallel 
Algorithm always found the optimal solution for these three problems independent 
of these configurations. 

Table 2 shows the performance of our Hybrid Parallel Algorithm (median and 
median absolute deviation) for the remaining seven instances - Kra32, Nug30, 
Scr20, Tai35b, Tai40b, Tai60b, and Tho40 - in relation to the solutions found in 
the executions for each topology.  

Table 3 shows some results referenced by other researchers mentioned above 
on the QAP-instances considered. 
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Table 1. Performance of our Hybrid Parallel Algorithm  
in GPU versus performance of a CPU implementation. 

QAP Topology 4n Topology 8n CPU 
Els19 5.5±1.5 6±2 7±3 
Esc64a 1±0 1±0 1±0 
Had20 4±1 3±1 6.5±2.5 

Value x ± y indicates a median of x (iterations) with a 
 median absolute deviation of y. 

Table 2. Performance of our Hybrid Parallel  
Algorithm in GPU versus performance of a CPU implementation. 

QAP Topology 4n Topology 8n CPU 
Kra32 88700±0 88700±0 88700±0 
Nug30 6132±6 6128±0 6128±2 
Scr20 110030±0 110030±0 110030±0 
Tai35b 283315445±0 283315445±0 283725417±0 
Tai40b 637250948±0 637250948±0 637307091±11766.5 
Tai60b 608228619±13565 608228578±9632.5 608823261±124250 
Tho40 241524±370 241130±381 242038±103 

Value x ± y indicates a median of x (solution found) with a median absolute 
     deviation of y. 

Table 3. Results reported in the literature versus  
performance of our Hybrid Parallel Algorithm in GPU. 

QAP Mohammadi et 
al. [23] 

Szwed et al. 
[24] 

Chaparala et 
al. [21] 

Our 
Algorithm 

(Topology 8n) 
Els19 - - - 17212548 
Esc64a - 116 - 116 
Had20 - - - 6922 
Kra32 - - - 88700 
Nug30 - - - 6128 
Scr20 - - - 10030 
Tai35b 284703248 - 283349722 283315445 
Tai40b 647201580 - 637349459 637250948 
Tai60b 624137807 612078720 609612341 608228578 
Tho40 - - - 24130 

6. Conclusions and Future Works 
In this paper we proposed a hybrid of a cellular parallel genetic algorithm and a 
greedy 2-opt local search heuristic to solve large instances of the quadratic 
assignment problem. The algorithm was completely implemented on GPU, 
eliminating data transfers between GPU and CPU. 

The fitness function of the genetic algorithm as well as the incremental function 
of the greedy 2-opt heuristic were formulated in a matrix fashion to take full 
advantage of the characteristics of the GPU as a multiprocessing vector device. In 
addition, an adequate handling of the memory spaces of the GPU was developed, 
in such a way that the mathematical calculations were made faster. 
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Not only was our hybrid algorithm in GPU faster than the sequential 
implementation in CPU, but also the results obtained were also much better. The 
use of a cellular parallel algorithm was significant in our implementation, 
highlighting Moore’s topology over the Von Neumann’s topology. 

The greedy 2-opt local search heuristic was important to improve solutions 
previously found by the genetic algorithm. However, an optimization heuristic with 
a more rigorous mathematical character and less burden in an exhaustive search is 
proposed for future research, as was the case of this heuristic implemented. 

Resorting to another parallel genetic model such as the distributed model 
(islands model) and combining it with what has already been implemented will 
surely improve the results obtained, and per- haps for this it is convenient to 
configure a cluster of GPUs or combine procedures in multicore architectures. 

 

Nomenclatures 
 
𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐(𝜎𝜎)  Cost of permutation 𝜎𝜎 
𝑑𝑑𝑘𝑘𝑘𝑘   Component of distance matrix 
𝐷𝐷𝑡𝑡   Transposed matrix 
𝑓𝑓𝑖𝑖𝑖𝑖   Component of flow matrix 
min
𝜎𝜎∈𝑆𝑆𝑛𝑛

  Least element in 𝑆𝑆𝑛𝑛 

𝑆𝑆𝑛𝑛  Permutations set 
𝐹𝐹  Permutation matrix 
𝑥𝑥𝑖𝑖𝑖𝑖   Element in {0, 1} 
∆𝑖𝑖𝑖𝑖  Change in the fitness value after a pair-wise exchange (i, j 

facilities that are exchanged) 
𝑂𝑂(∙)  Big O notation, Computational complexity 
 
Greek Symbols 
𝜎𝜎(𝑖𝑖)  Facility in location 𝑖𝑖 
   
Abbreviations 

ACO Ant Colony Optimization 
CPU Central Processing Unit 
EM Exchange Mutation 
GA Genetic Algorithm 
GPU Graphical Processing Unit 
GPGPU General-purpose computing on graphics processing units 
LS Local Search 
MOX Modified Order Crossover 
PSO Particle Swarm Optimization 
QAP Quadratic Assignment Problem 
RAM Random Access Memory 
SA Simulated Annealing 
SIMD Single Instruction - Multiple Data 
TS Tabu Search 
VRAM Video Random Access Memory 
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