
Journal of Engineering Science and Technology
Vol. 15, No. 5 (2020) 3082 - 3095
© School of Engineering, Taylor’s University

3082

HYBRID OF CELLULAR PARALLEL GENETIC
ALGORITHM AND GREEDY 2-OPT LOCAL SEARCH TO

SOLVE QUADRATIC ASSIGNMENT PROBLEM USING CUDA

ROBERTO POVEDA1,*, EDUARDO CARDENAS2, ORLANDO GARCIA1

1Facultad de Ingeniería, Universidad Distrital “Francisco José de Caldas” Bogotá, Colombia
2Departamento de Matemáticas, Universidad Nacional de Colombia, Bogotá, Colombia

*Corresponding Author: rpoveda@udistrital.edu.co

Abstract

This article presents an implementation of a cellular parallel genetic algorithm
and a local optimization heuristic to solve the Quadratic Assignment Problem
(QAP). First, we implemented a cellular model that combines the most
representative characteristics of the population in the Genetic Algorithm, later,
we resort to a greedy 2- opt heuristic optimization which performs a meticulous
genetic exploitation of the spaces previously explored by the Genetic Algorithm.
Our algorithm was completely implemented with CUDA on a Graphical
Processing Unit (GPU), where a GPU grid represents the population of the
Genetic Algorithm (GA), a GPU block represents each particular individual
(chromosome) of the population, and each GPU thread represents a gene of such
a chromosome. The problems examined correspond to prominent instances of the
QAPLIB library. Our algorithm solves these problems efficiently.

Keywords: Greedy 2-opt local search heuristics, Graphical processing unit (GPU),
Parallel genetic algorithm, Quadratic assignment problem (QAP).

Hybrid of Cellular Parallel Genetic Algorithm and Greedy 2-Opt Local 3083

Journal of Engineering Science and Technology October 2020, Vol. 15(5)

1. Introduction
The QAP consists in assigning, one by one, a set of n facilities in a set of n locations
so as to minimize the flow between the facilities and the distances between the
locations. The QAP is considered a strongly NP-Hard problem [1] and it is a general
model of other NP-Hard combinatorial problems [2].

Several methods have been used to resolve QAP- instances; Branch & Bound
is perhaps the most outstanding exact method [2, 3], but it is inappropriate in
large-size QAP-instances. An alternative in the solution of the QAP are methods
like metaheuristics based on population - Ant Colony Optimization (ACO) [4],
Particle Swarm Optimization (PSO) [5], Genetic Algorithms (GA) [6], among
others - generally combined with meta heuristics based on trajectories - local
search techniques (LS) [7, 8], Tabu Search (TS) [9, 10], Simulated Annealing
(SA) [11], among others. Parallel models of the previous metaheuristics have
been more efficient in the QAP-instances solution [12, 13]. These models have
been implemented in recent years on multicore architectures or GPUs,
significantly reducing the execution time [14-16]. The CUDA computing
platform is the most popular development tool nowadays to program on GPUs.
CUDA is a C language with SIMD extensions for programming without taking
into account graphic programming concepts, which were necessary with
interfaces such as DirectX or OpenGL [17].

The performance of our algorithm is measured by executing some reference
instances of different sizes present in the standard QAPLIB library. This library
includes information on such instances (distance and flow matrices) as well as the
best known solution to date [18].

This article is organized as follows: Chapter 2 presents a related works. Chapter
3 presents a background on QAP, Parallel Genetic Algorithms, Local Search
Heuristics (greedy 2-opt), and GPUs. Chapter 4 presents our algorithm. Chapter 5
explains the experiments and the results obtained. Finally, Chapter 6 highlights
conclusions and future works.

2. Related Work
Mohassesian and Karasfi [16] present an algorithm with a balanced dispersion of
the solutions in the search space of the problem. They also perform 10 executions
on each problem, each with two 220 iterations. The algorithm is executed on CPU.

Tsutsui [19] implemented ACO on a PC with a 4 GPUs array. An islands model,
where each colony resides in a GPU and individuals are interchanged through the
CPU following 4 different procedures, is followed. All the algorithm data is localized
in the global memory of the GPU, but the flow and distance matrices are located in
the texture memory. For the first procedure, in the islands model, two independent
executions are made, when an ACO in a GPU finds an acceptable solution, then the
algorithm ends, there is no interchange of information. The second procedure is elitist,
the best solution found from the 4 GPUs is distributed to the remaining that did not
obtain that solution and replaces the worst. The third uses an annealing model, the
best solution in the GPU g replaces the worst solution in the GPU (g+1)mod4. The
last procedure is elitism with massive annealing connection, the best solution of each
GPU/island, with some other solutions are distributed to the other 3 GPUs. The best
results are obtained with the last procedure. They also develop a Master-Slave

3084 R. Poveda et al.

Journal of Engineering Science and Technology October 2020, Vol. 15(5)

implementation with only one colony of m individuals (m varies between 1 and 150)
runs on the CPU and distributes m/4 individuals in each one of the GPUS. A Tabu
Search is carried out on each GPU.

Luong et al. [14] based their work on three approaches: the first is to distribute, in
an efficient manner, a Local Search process between GPU and CPU. The second,
consist in making an adequate relation between a neighbour of one current solution and
each GPU thread. The third, to efficiently optimize the data transfer between GPU
memory hierarchies, handling their capacity limitations. The CPU-GPU
communication is performed through the VRAM of the GPU. Here the input data (flow
and distance matrices) as well as the coding of the solutions of the problem are stored.
Given that the global memory is slow, a new implementation is made on the texture
memory as an optimization alternative for the storing and access to the problem’s input
data. They argue that an important way to drastically reduce the CPU-GPU data transfer
(which represents the greatest obstacle in the GPU performance) can be achieved by
moving the complete Local Search process to the GPU.

In another work, Tsutsui and Fujimoto [15] implement a coarse grain parallel
genetic algorithm, where each sub-population is hosted in the shared memory of
each block of threads and evolves in parallel on each one of these blocks (30 blocks
of 128 threads were used). In a block, each individual is implemented as an
independent thread. The QAP flow and distance matrices data are stored in the
constant memory of the GPU. After a certain number of generations, individuals in
the subpopulations are mixed in the host and then put in the GPU global memory
(VRAM). Each multiprocessor selects an unprocessed block and copies the GPU
individuals from the global memory to the shared memory, 500 generations are
made and the evolved individuals are copied again to the VRAM, this process
continues until all of the blocks are processed, then, all individuals are copied to
the host memory and mixed. The process is repeated until a certain stop criterion.
In this implementation there is no individuals interchange among blocks. The
algorithm ends when one of those subpopulations finding an “acceptable” solution.
The size of the QAP instances varies between 25 and 50.

Tsutsui and Fujimoto [20] proposed a parallel genetic algorithm with
independent executions. The base of this evolutionary model for the QAP on GPU
is exactly the same of the immediately previous one, except that here it is
considered a restart strategy, that is, it “mutates” individuals with the best solution
to avoid premature stagnation but leaving also a certain quantity of the best found
up to the moment.

Chaparala et al. [21] implemented a 2-opt local search heuristic over the GPU,
configuring different thread numbers per block.

Semlali et al. [22] presented a hybrid algorithm that combines chicken swarm
optimization and Greedy randomized adaptive search procedures, in order to find a
better initial population. The implementation was in GPU, and each instance was
tested 20 times, each with 100 iterations.

Mohammadi et al. [23] proposed a parallel genetic algorithm on GPU. The
authors combine the previous and current populations (the latter obtained by
crossover and mutation) and obtain a new one, half of it through a deterministic
fitness and the other half randomly. Each problem was executed 20 times. The
authors do not report the number of iterations used in each execution.

Hybrid of Cellular Parallel Genetic Algorithm and Greedy 2-Opt Local 3085

Journal of Engineering Science and Technology October 2020, Vol. 15(5)

Szwed et al. [24] implemented on OpenCL a massively parallel multi-swarm
algorithm, which can be executed in independent swarms or with migrations. The
authors highlight the fact that they can process large populations thanks to
parallelism. They do not show algorithm execution times for all problems.
Instances sc64a and tai60b were solved in 71 and 2220 iterations respectively - too
many compared with our algorithm.

3. Background

3.1. Quadratic assignment problem (QAP)
The QAP is an outstanding problem of optimization that has served as a model to
describe some problems of distribution and communication of scientific scope
[2]. The QAP consists in assigning, one by one, a set of n facilities in a set of n
locations so as to minimize the flow between the facilities and the distances
between the locations.

The original formulation of the QAP consists in finding a permutation σ
such that:

min
𝜎𝜎∈𝑆𝑆𝑛𝑛

∑ ∑ 𝑓𝑓𝑖𝑖𝑖𝑖
𝑛𝑛−1
𝑖𝑖=0

𝑛𝑛−1
𝑖𝑖=0 𝑑𝑑𝜎𝜎(𝑖𝑖)𝜎𝜎(𝑖𝑖) (1)

where F = fij is a flow matrix, D = dkl is a distance matrix (both F and D have a n x
n size), and 𝑆𝑆𝑛𝑛={𝜎𝜎 | 𝜎𝜎 ∶ 𝑁𝑁 → 𝑁𝑁}, where N={0,1, …, n-1} (it is often said that n is
the QAP size). Each individual product fij dσ(i)σ(j) of the previous Eq. (1) is the cost
of assigning facility σ(i) to location i, and facility σ(j) to location j.

Figure 1 shows an example of a QAP-instance of size n = 5. In the example of
the Fig.1, σ = (1,2,3,0) with

cost(𝜎𝜎) = ∑ ∑ 𝑓𝑓𝑖𝑖𝑖𝑖
4
𝑖𝑖=0

4
𝑖𝑖=0 𝑑𝑑𝜎𝜎(𝑖𝑖)𝜎𝜎(𝑖𝑖) = 222 (2)

Fig. 1. Example of a QAP-instance of size n = 5.

Another equivalent formulation is the trace formulation; this consists in finding
a permutation matrix X (associated with the permutation σ above) such that:

min trace(𝐹𝐹𝐹𝐹𝐷𝐷𝑡𝑡𝐹𝐹𝑡𝑡) (3)
Subject to ∑ 𝑥𝑥𝑖𝑖𝑖𝑖 = 1, 0 ≤ 𝑖𝑖 ≤ 𝑛𝑛 − 1𝑛𝑛−1

𝑖𝑖=0

3086 R. Poveda et al.

Journal of Engineering Science and Technology October 2020, Vol. 15(5)

 ∑ 𝑥𝑥𝑖𝑖𝑖𝑖 = 1, 0 ≤ 𝑖𝑖 ≤ 𝑛𝑛 − 1𝑛𝑛−1
𝑖𝑖=0

𝑥𝑥𝑖𝑖𝑖𝑖 ∈ {0, 1}, 0 ≤ 𝑖𝑖, 𝑖𝑖 ≤ 𝑛𝑛 − 1

where Eq. (3) is appropriate to be implemented in a vector device such as a GPU [25].

3.2. Parallel genetic algorithm

Parallel Genetic Algorithms in addition to significantly reducing the execution
time in comparison with a simple genetic algorithm, consider each individual as
a computationally independent unit and explore the search space for the problem
more appropriately. There are several models of Parallel Genetic Algorithms, and
they only differ in how individuals (or sub-populations) interact within a
population, with the Master-Slave, Islands, and Cellular models being the best
known [26, 27]. The latter is the model implemented in this work.

Cellular model. The individuals of the population are distributed one by one in
each cell of a two-dimensional mesh. The fitness of each individual is
simultaneously evaluated and the crossover genetic operator for each individual
occurs locally within a previously defined neighbourhood. With this model, a
diffusion of information between individuals from different regions of the search
space of the problem can be performed.

3.3. Local search heuristics

These methods consist in finding an optimal solution in a neighbourhood of an
initial solution. The solution found updates the initial solution and the process
continues until no better solution is found.

Greedy 2-opt Local Search Heuristics. For the QAP, these heuristic orderly
interchanges all pairs of components of an initial permutation (all possible facilities
on each of the locations). As the permutation improves (permutation with better
cost), this updates the previous permutation.

3.4. Graphic processing unit (GPU)
Graphic processing unit or GPU is a dedicated coprocessor. Due to its independent
RAM, GPU has high parallel processing capacity. This unit can use the NVidia’s
unified computing device architecture (CUDA); it becomes a programming
language that is an extension of C / C ++, whose procedures run in parallel
following the SIMD programming paradigm in the Flynn’s taxonomy [28]. The
programming language CUDA has largely improved; it makes it possible to
develop generic applications (GPGPU) [29] - mobile phones, tablets and laptops;
Conquering Disease, Improving Diagnoses, and Scientific Innovation - thanks to
numerous cores that a GPU offers. Genetic algorithms are inherently parallel in
nature, so they are favourable to be implemented in GPU but considering the
challenge of how to adequately handle the access to the device memory.

4. Proposed Approach
The approach presented in this paper is a cellular parallel genetic algorithm
(exposed in its initial phase in [30]) improved from the use of the Mutation and

Hybrid of Cellular Parallel Genetic Algorithm and Greedy 2-Opt Local 3087

Journal of Engineering Science and Technology October 2020, Vol. 15(5)

Transposition genetic operators and a Greedy 2-opt local optimization heuristic.
Our algorithm was implemented completely on GPU.

In our implementation a permutation σ = (σ(0), σ(1),…, σ(n-1)) of the QAP is
individual (chromosome) of the Genetic Algorithm and corresponds to a GPU
block; each component σ(i), 0 ≤ i ≤ n-1 it interpret that facility σ(i) assigned to
location i) is a gene on that chromosome and corresponds to a GPU thread. The
population of the Genetic Algorithm is a GPU grid.

The initial population is size 64 and each individual is randomly generated
simultaneously in each shared memory space of each GPU block in a 8 × 8 two-
dimensional GPU grid; the size of the population is maintained throughout the
algorithm. Figure 2 shows this configuration on the GPU.

The flow and distance matrices are stored in the constant memory space of the
GPU in order to accelerate the calculations.

The evaluation of the individual fitness of the population was made with the
trace formulation for the QAP. This formulation uses the multiprocessing features
of the GPU better. Matrix products are calculated by using a two-dimensional GPU
grid of size 8 x n2 where each GPU block consists of n one-dimensional GPU
threads. Each row of the GPU grid represents the linearized permutation matrix of
each individual of the population. That is, each GPU block is a row of such
matrices. These rows are housed in the corresponding shared memory spaces of
each GPU block to accelerate operations.

For the implementation of the selection operator in GPU, we obtain a permuted
population from the current population P, therefore, 𝑃𝑃� = 𝐹𝐹 ∗ 𝑃𝑃, where X is a
permutation matrix associated with a random permutation of the set {0,1,…,63}.

The binary tournament is carried out simultaneously at the block level between
the corresponding individuals of the populations P and 𝑃𝑃.� Individuals with better
fitness make up an intermediate population.

The crossover is a Modified Order Crossover (MOX) [19]. For the implementation
in GPU a permuted population is obtained in the same way as before, but in this case
the permutation matrix X is derived from a permutation θ = (θ(0), θ(1),…, θ(63)) the
set {0,1,…,63} from a specific topology of neighbourhoods; θ(i) represents the couple
with the best fitness in the neighbourhood of the individual i, 0 ≤ i ≤ 64 It is here where
the cellular parallel genetic model is applied. We consider two different neighbourhood
topologies. These are:
• Topology 4n (or Von Neumann neighbourhood; see Fig. 3).
• Topology 8n (or Moore neighbourhood; see Fig. 4).

The meshes that represent these topologies are toroidal. The offspring is
obtained between the corresponding individuals of each block of the current and
permuted population. This procedure is per- formed for all individuals
simultaneously. The offspring will only replace the individual of the current
population in the corresponding block if their fit- ness is better or equal to the
current individual’s fitness (replacement of neutral mutants).

3088 R. Poveda et al.

Journal of Engineering Science and Technology October 2020, Vol. 15(5)

Fig. 2. Population in GPU.

Fig. 3. Topology 4n. Fig. 4. Topology 8n.

The probability of crossover for each of the individuals is 0.6 throughout the
algorithm. At this moment we identify the best individual of the current population, and
then reincorporate it after applying the genetic mutation and transposition operators.

The mutation is an Exchange Mutation (EM) [19] and applied to each
individual of the current population simultaneously (i.e., in each GPU block)
with a probability of 0.01.

Transposition consists in inverting the genes of a substring (random) of the
chromosome that represents each individual. This operator is also applied
simultaneously at the block level and it has a probability of 0.4 for all
individuals. The probabilities of mutation and transposition do not change
throughout the algorithm.

The best individual previously identified is reincorporated into the population.
This is done in order to avoid losing important genetic material obtained before

Hybrid of Cellular Parallel Genetic Algorithm and Greedy 2-Opt Local 3089

Journal of Engineering Science and Technology October 2020, Vol. 15(5)

applying the mutation and transposition operators, i.e., our implementation
develops a strategy based on elitism.

Now, to further exploit the regions explored by the Genetic Algorithm, we use
a local optimization heuristic. Applied heuristics is a greedy 2-opt search.

For this heuristic, the current individual evaluates the 𝑛𝑛(𝑛𝑛 − 1)/2 swaps (all
pairwise exchanges of all possible facilities on each of the locations) Fig. 5 shows
the case for a QAP-instance of size n = 5.

Fig. 5. 10 possible 2-opt swaps for a QAP of size n = 5. 𝒇𝒇𝒊𝒊 is the i-th facility.

This heuristic leads the search more quickly to areas that have not been
exploited, since immediately a better individual is found, this replaces the current
individual (of course, fitness is also updated); and continues to be applied on the
individual updated in the next swap; by contrast, with the basic 2-opt heuristic that
replaces the current individual (and its fitness) with the best solution found only
after making all possible exchanges.

The Greedy 2-opt local search takes advantage of the elitist parallel GA
which prevents return to optimal local solutions already visited; that is, our
cellular parallel GA is an efficient perturbation technique for Greedy 2-opt local
search. Bashiri and Karimi in [31] compare several local search methods (2-
opt, 2-opt Greedy, 3-opt and 3-opt Greedy) to solve the QAP. For them, the
Greedy 2-opt local heuristic is the least efficient as the implementation lacks a
perturbation technique.

This heuristic is implemented with a matrix type formulation (Eq. (4)) to take
advantage of the benefits of the GPU.

∆𝑖𝑖𝑖𝑖= �𝑓𝑓𝑖𝑖𝑖𝑖 − 𝑓𝑓𝑖𝑖𝑖𝑖��𝑑𝑑𝜎𝜎(𝑖𝑖)𝜎𝜎(𝑖𝑖) − 𝑑𝑑𝜎𝜎(𝑖𝑖)𝜎𝜎(𝑖𝑖)�
+(𝐹𝐹𝑖𝑖∙ − 𝐹𝐹𝑖𝑖∙) ∙ ((𝐷𝐷𝐹𝐹𝑡𝑡)𝜎𝜎(𝑖𝑖)∙ − (𝐷𝐷𝐹𝐹𝑡𝑡)𝜎𝜎(𝑖𝑖)∙)
+(𝐹𝐹∙𝑖𝑖 − 𝐹𝐹∙𝑖𝑖) ∙ ((𝐹𝐹𝐷𝐷)∙𝜎𝜎(𝑖𝑖)∙ − (𝐹𝐹𝐷𝐷)∙𝜎𝜎(𝑖𝑖)) (4)

where, ∆𝒊𝒊𝒊𝒊 compute the change in the fitness value after a pair-wise exchange (i, j
facilities that are exchanged).

The current individual is updated with the first individual found such that ∆𝑖𝑖𝑖𝑖<
0. The greedy 2-opt heuristic continues on the individual updated in the next swap.

The operator ∙ interprets an internal product, fij = fji = 0 in the second and third
additions of the Eq. (3). 𝐹𝐹𝑘𝑘∙ is the row k of the matrix 𝐹𝐹, and 𝐹𝐹∙𝑘𝑘 is the column k of
the matrix 𝐹𝐹.

3090 R. Poveda et al.

Journal of Engineering Science and Technology October 2020, Vol. 15(5)

This Eq. (3) is evaluated in 𝑂𝑂(𝑛𝑛) operations for all possible 𝑂𝑂(𝑛𝑛2) swaps. The
cost with Koopmans-Beckmann's original formulation (Eq. (1)) requires 𝑂𝑂(𝑛𝑛2)
operations. Algorithm 1 presents our model implemented completely on GPU.

Algorithm 1. Hybrid Parallel Algorithm implemented on GPU.

for each GPU block 𝑖𝑖 in the GPU grid, in parallel do
Assign a random individual

end for
generation number ← 1
while termination condition not met do

for each individual 𝑖𝑖, in parallel do
Fitness
Select a different individual 𝑘𝑘
if 𝑘𝑘 is better than 𝑖𝑖 then

Assign 𝑘𝑘 to 𝑖𝑖
end if
Select an individual 𝑘𝑘 in the neighbouring of 𝑖𝑖
Produce an offspring from 𝑖𝑖 and 𝑘𝑘
if the offspring is better than 𝑖𝑖 then

Assign the offspring to 𝑖𝑖
end if

end for
To identify the best individual so far
for each individual 𝑖𝑖, in parallel do

Mutate
Transpose

end for
To reincorporate the best individual
for each individual 𝑖𝑖, in parallel do

Apply greedy 2-opt local optimization heuristic
end for
generation number ← generation number + 1

end while

5. Experiments and Results Obtained
For testing purposes, a custom CUDA program was written. The algorithms were
run on an Intel®CoreTMi7 - 4700HQ CPU @ 2.40GHz, RAM 8 GB and GPU
NVidia GeForce GTX 760M. This device has 64 kB of constant memory, therefore
the maximum size of QAP instances to consider is 90, because 2 x 902 x (4 bytes)
≤ 64 kB (two matrices of integers - flow and distance).

Ten different instances contained in the standard QAPLIB library [18] were
examined, these are:
• Els19: “The data describe the distances of nineteen different facilities of a

hospital and the flow of patients between those locations”. It is the only
instance of this type of problems

• Esc64: “This example stem from an application in computer science, from the
testing of self-testable sequential circuits. The amount of additional hardware

Hybrid of Cellular Parallel Genetic Algorithm and Greedy 2-Opt Local 3091

Journal of Engineering Science and Technology October 2020, Vol. 15(5)

for the testing should be minimized”. It is the second largest instance of this
type of problems.

• Had20: “The distance matrix represents Manhattan distances of a connected
cellular complex in the plane while the entries in the flow matrix are
drawn uniformly from the interval [1, 𝑛𝑛]”. It is the largest instance of this type
of problems.

• Kra32: “The instances contain real world data and were used to plan
the Klinikum Regensburg in Germany”. It is the largest instance of this type
of problems.

• Nug30: “The distance matrix contains Manhattan distances of rectangular
grids. The solution was found by applying a branch and bound algorithm”. It
is the largest instance of this type of problems.

• Scr20: “The distances of these problems are rectangular”. It is the largest
instance of this type.

• Tai35b: “This problem is asymmetric and randomly generated”. It is the sixth
largest in- stance of this type of problems.

• Tai40b: “This problem is asymmetric and randomly generated”. It is the fifth
largest in- stance of this type of problem.

• Tai60b: “This problem is asymmetric and randomly generated”. It is the third
largest in- stance of this type of problem.

• Tho40: “The distances of this instance are rectangular”. It is the second largest
instance of this type of problems.

The number in the name of each instance indicates the size of the problem. Ten
tests were done for each QAP-instance with respect to each of the two topologies
cited in the previous section; each test consisted of one hundred iterations. The
probability rates of the genetic operators were tuned to achieve the maximum
performance of the algorithm.

To compare the results of our implementation in GPU, a sequential genetic
algorithm was implemented in CPU with the same characteristics of our parallel
algorithm. Of course, the implementation in CPU does not consider any topology
of neighbourhoods; the crossover takes place from a random permutation. Ten tests
were also done for each QAP-instance, each with one hundred iterations.

Table 1 shows the performance of our Hybrid Parallel Algorithm for problems
Els19, Esc64a, and Had20, in relation to the number of iterations in which the
optimal solution was found in the executions for each topology. Our Hybrid Parallel
Algorithm always found the optimal solution for these three problems independent
of these configurations.

Table 2 shows the performance of our Hybrid Parallel Algorithm (median and
median absolute deviation) for the remaining seven instances - Kra32, Nug30,
Scr20, Tai35b, Tai40b, Tai60b, and Tho40 - in relation to the solutions found in
the executions for each topology.

Table 3 shows some results referenced by other researchers mentioned above
on the QAP-instances considered.

3092 R. Poveda et al.

Journal of Engineering Science and Technology October 2020, Vol. 15(5)

Table 1. Performance of our Hybrid Parallel Algorithm
in GPU versus performance of a CPU implementation.

QAP Topology 4n Topology 8n CPU
Els19 5.5±1.5 6±2 7±3
Esc64a 1±0 1±0 1±0
Had20 4±1 3±1 6.5±2.5

Value x ± y indicates a median of x (iterations) with a
 median absolute deviation of y.

Table 2. Performance of our Hybrid Parallel
Algorithm in GPU versus performance of a CPU implementation.

QAP Topology 4n Topology 8n CPU
Kra32 88700±0 88700±0 88700±0
Nug30 6132±6 6128±0 6128±2
Scr20 110030±0 110030±0 110030±0
Tai35b 283315445±0 283315445±0 283725417±0
Tai40b 637250948±0 637250948±0 637307091±11766.5
Tai60b 608228619±13565 608228578±9632.5 608823261±124250
Tho40 241524±370 241130±381 242038±103

Value x ± y indicates a median of x (solution found) with a median absolute
 deviation of y.

Table 3. Results reported in the literature versus
performance of our Hybrid Parallel Algorithm in GPU.

QAP Mohammadi et
al. [23]

Szwed et al.
[24]

Chaparala et
al. [21]

Our
Algorithm

(Topology 8n)
Els19 - - - 17212548
Esc64a - 116 - 116
Had20 - - - 6922
Kra32 - - - 88700
Nug30 - - - 6128
Scr20 - - - 10030
Tai35b 284703248 - 283349722 283315445
Tai40b 647201580 - 637349459 637250948
Tai60b 624137807 612078720 609612341 608228578
Tho40 - - - 24130

6. Conclusions and Future Works
In this paper we proposed a hybrid of a cellular parallel genetic algorithm and a
greedy 2-opt local search heuristic to solve large instances of the quadratic
assignment problem. The algorithm was completely implemented on GPU,
eliminating data transfers between GPU and CPU.

The fitness function of the genetic algorithm as well as the incremental function
of the greedy 2-opt heuristic were formulated in a matrix fashion to take full
advantage of the characteristics of the GPU as a multiprocessing vector device. In
addition, an adequate handling of the memory spaces of the GPU was developed,
in such a way that the mathematical calculations were made faster.

Hybrid of Cellular Parallel Genetic Algorithm and Greedy 2-Opt Local 3093

Journal of Engineering Science and Technology October 2020, Vol. 15(5)

Not only was our hybrid algorithm in GPU faster than the sequential
implementation in CPU, but also the results obtained were also much better. The
use of a cellular parallel algorithm was significant in our implementation,
highlighting Moore’s topology over the Von Neumann’s topology.

The greedy 2-opt local search heuristic was important to improve solutions
previously found by the genetic algorithm. However, an optimization heuristic with
a more rigorous mathematical character and less burden in an exhaustive search is
proposed for future research, as was the case of this heuristic implemented.

Resorting to another parallel genetic model such as the distributed model
(islands model) and combining it with what has already been implemented will
surely improve the results obtained, and per- haps for this it is convenient to
configure a cluster of GPUs or combine procedures in multicore architectures.

Nomenclatures

𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐(𝜎𝜎) Cost of permutation 𝜎𝜎
𝑑𝑑𝑘𝑘𝑘𝑘 Component of distance matrix
𝐷𝐷𝑡𝑡 Transposed matrix
𝑓𝑓𝑖𝑖𝑖𝑖 Component of flow matrix
min
𝜎𝜎∈𝑆𝑆𝑛𝑛

 Least element in 𝑆𝑆𝑛𝑛

𝑆𝑆𝑛𝑛 Permutations set
𝐹𝐹 Permutation matrix
𝑥𝑥𝑖𝑖𝑖𝑖 Element in {0, 1}
∆𝑖𝑖𝑖𝑖 Change in the fitness value after a pair-wise exchange (i, j

facilities that are exchanged)
𝑂𝑂(∙) Big O notation, Computational complexity

Greek Symbols
𝜎𝜎(𝑖𝑖) Facility in location 𝑖𝑖

Abbreviations

ACO Ant Colony Optimization
CPU Central Processing Unit
EM Exchange Mutation
GA Genetic Algorithm
GPU Graphical Processing Unit
GPGPU General-purpose computing on graphics processing units
LS Local Search
MOX Modified Order Crossover
PSO Particle Swarm Optimization
QAP Quadratic Assignment Problem
RAM Random Access Memory
SA Simulated Annealing
SIMD Single Instruction - Multiple Data
TS Tabu Search
VRAM Video Random Access Memory

3094 R. Poveda et al.

Journal of Engineering Science and Technology October 2020, Vol. 15(5)

References
1. Sahni, S.; and Gonzalez, T. (1976). P-complete approximation problems.

Journal of the Association for Computing Machinery (ACM), 23, 555-565.
2. Burkard, R.E.; Cela, E.; Pardalos, P.M.; and Pitsoulis, L.S. (1998). The

quadratic assignment problem. Handbook of Combinatorial Optimization,
Boston, 3, 1713-1809.

3. Gilmore, P. (1962). Optimal and suboptimal algorithms for the quadratic
assignment problem. Journal of the Society for Industrial and Applied
Mathematics (SIAM), 10 (2), 305-303.

4. Gambardella, L.; Taillard, E.; and Dorigo, M. (1999). Ant colonies for the
quadratic assigment problem. Journal of the Operational Research Society,
50(2), 167-176.

5. Liu, H.; Abraham, A.; and Zhang, J. (2007). A particle swarm approach to
quadratic assignment problems. Soft Computing in Industrial Applications,
Berlin, 39, 213-222.

6. Lim, M.; Yuan, Y.; and Omatu, S. (2002). Extensive testing of a hybrid genetic
algorithm for solving qudratic assignment problem. Computational
Optimization and Applications, 23, 47-64.

7. Taillard, E.D. (1995). Comparision of iterative searches for the quadratic
assignment problem. Location Science, 3(2), 87-105.

8. Li, Y.; Pardalos, P.M.; and Resende, M.G.C. (1994). A greedy randomized
adaptive search procedure for the quadratic assignment problem. Series in Discrete
Mathematics and Theoretical Computer Science (DIMAC),16, 237-261.

9. Taillard, E. (1991). Robust tabu search for the quadratic assignment problem,
Parallel Computing, 17(4-5), 443-455.

10. James, T.; Rengo, C.; and Glover, F. (2009). Multistart tabu serach and
diversication strategies for the quadratic assignment problem. Institute
Electrical and Electronics Engineers (IEEE) Transaction Systems, Man and
Cybernetics - Part A: System and Human, 39(3), 579-596.

11. Wilhelm, M.R.; and Ward, T.L. (1987). Solving quadratic assignment
problems by simulated annealing. Institute of Industrial and Systems Engineers
(IISE) Transaction, 19(1),107-119.

12. Alba, E.; Luque, G.; and Nesmachnow, S. (2013). Parallel metaheuristics:
Recent advances and new trends. International Transactions in Operational
Research, 20(1), 1-48.

13. Jong, K.A.D.; Spears, W.M.; and Gordon, D.F (1993). Using genetic
algorithms for concept learning. Machine Learning,13(2), 161-188.

14. Luong, T.V.; Talbi, E.G.; and Melab, N. (2010). Parallel hybrid evolutionary
algorithms on GPU. Institute Electrical and Electronics Engineers (IEEE)
Congress on Evolutionary Computation, Barcelona, 1-8 .

15. Tsutsui, S.; and Fujimoto, N. (2009). Solving quadratic assignment problems by
genetic algorithms with GPU computation: A case study. In Proceedings of the 11th
Annual Conference Companion on Genetic and Evolutionary Computation
Conference: Late Breaking Papers (GECCO 2009), New York, 2523-2530.

16. Mohassesian, E.; and Karasfi, B. (2017). New method for improving the
performance of fast local search in solving QAP for optimal exploration of
state space. Artificial Intelligence and Robotics (IRANOPEN), Qazvin, 64-72.

Hybrid of Cellular Parallel Genetic Algorithm and Greedy 2-Opt Local 3095

Journal of Engineering Science and Technology October 2020, Vol. 15(5)

17. Soyata, T (2018). GPU Parallel Program Development Using CUDA, Boca
Raton, Florida, Taylor & Francis Group.

18. Burkard, R.; Karisch S.; and Rendl, F. (2017). Quadratic Assigment Problem Library
(QAPLIB). Retrieved January 05, 2019, from http://anjos.mgi.polymtl.ca/qaplib.

19. Tsutsui, S. (2012). Aco on multiple GPUs with CUDA for faster solution of
QAPs. 12th International Conference on Parallel Problem Solving from
Nature - PPSN XII, Taormina, Italy, 7492,174-184.

20. Tsutsui, S.; and Fujimoto, N. (2013). An analytical study of parallel ga with
independent runs on GPUs. Massively Parallel Evolutionary Computation on
GPGPUs, Natural Computing Series, Berlin, Heidelberg, 105-120.

21. Chaparala, A.; Novoa, C.; and Qasem, A. (2014). A SIMD solution for the
quadratic assignment problem with GPU acceleration. Proceedings of the 2014
Annual Conference on Extreme Science and Engineering Discovery
Environment (XSEDE’14), Atlanta, USA, article No.1, 1-8.

22. Semlali, S.; Essaid, M.;and Chebihi, F. (2018). Hybrid chicken swarm
optimization with a grasp constructive procedure using multi-threads to solve
the quadratic assignment problem. 6th International Conference on
Multimedia Computing and Systems (ICMCS), Rabat, Morocoo, 1-6.

23. Mohammadi, J.; Mirzaie, K.; and Derhami, V. (2015). Parallel genetic
algorithm based on GPU for solving quadratic assignment problem. In Second
Intenational Conference on Knowledge Based Engineering and Innovation
(KBEI). Teheran, Iran, 569-572.

24. Szwed, P.; Chmiel, W.; and Luczka, P. (2015). OpenCL implementation of
PSO algorithm for the quadratic assignment problem. 14th International
Conference Artifcial Intelligence and Soft Computing (ICAISC). Zakopane,
Poland, 9120, 223-234.

25. Ujaldon, M. (2015). Programming GPUs with CUDA. Tutorial at 18th IEEE
CSE'15 and 13th. Porto, Portugal.

26. Tomassini, M. (1995). A survey of genetic algorithms. Annual Reviews of
Computational Physics, World Scientific, 3, 87-118.

27. Cantu, E. (1997). Survey of parallel genetic algorithms, Technical Report
97003, Illinois Genetic Algorithms Laboratory, University of Illinois at
Urbana Champaign.

28. Flynn, M. (1972). Some computer organizations and their effectiveness.
Institute Electrical and Electronics Engineers (IEEE) Transactions on
Computers, 21(9), 948-960.

29. NVIDIA Developer (2016). Cuda programming guide. Retrieved February 05,
2018, from https://developer.nvidia.com/cuda-gpus.

30. Poveda, R.; and Gomez, J. (2018). Solving the quadratic assignment problem
(QAP) through a fine-grained parallel genetic algorithm implemented on
GPUs. 10th International Conference on Computational Collective Intelligence
(ICCCI), Bristol, England, 145-154.

31. Bashiri, M.; and Karimi, H. (2012). Effective heuristics and meta-heuristics for
the quadratic assignment problem with tuned parameters and analytical
comparisons. Journal of Industrial Engineering International, 8(6), 1-9.

	Algorithm 1. Hybrid Parallel Algorithm implemented on GPU.

