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Abstract 

The research in the domain of ransomware is rapidly emerging, and the 

application of machine learning algorithms in ransomware detection is one of the 

recent breakthroughs. In this research, we constructed an experimental platform 

using ransomware datasets to compare the performance of various machine 

learning algorithms such as Random Forest, Gradient Boosting Decision Tree 

(GBDT), Neural Network using Multilayer Perceptron as well as three types of 

Support Vector Machine (SVM) kernels in ransomware detection. Our 

experiment is based on a combination of different methodologies reported in the 

existing literature. We used complete executable files in our experiment, 

analyzed the opcodes and measures their frequencies. The objective of this 

research was to discover the algorithms that are highly suitable to develop models 

as well as systems for ransomware detection. Consequently, we identified that 

Random Forest, GBDT and SVM (Linear) have shown optimal results in 

detection of ransomware. 

Keywords: Decision tree, Gradient boosting, Machine learning, Neural network, 

Random forest, Ransomware, Support vector machine. 
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1.  Introduction 

Cyber ransomware became a major point of focus in the research world since the 

major WannaCry attack that occurred in May 2017. Based on Kaspersky Lab’s 

Report 2017, WannaCry was ranked as the highest among other encrypting 

ransomware attacks which accounted 13.4% of all workstations in the first half of 

that year [1]. Existing commercial solutions provide various analysis approaches to 

detecting ransomware. In static analysis, the threats are detected by relying on 

unique pattern recognition [2]. Despite that, many solutions adopt this approach 

due to its inexpensive and fast detection. Signature-based detection falls short in 

countering with zero-day attacks that essentially means that new attacks cannot be 

detected. In contrast, behavioral-based detection adopts a profiling method by 

creating profiles for each malicious behavior [3, 4]. Even though it is substantially 

superior over signature-based, it generates issues where there is a disconnection in 

malicious behavior and the attack’s goal [5]. Thus, it fails to detect obfuscation 

techniques such as polymorphism [6, 7].  

The reality of research in the domain of ransomware is scarce. Hence, by 

conducting this research, it tackles the issue and impacting the research community 

by creating more ideas and opportunities to explore. The experiment was conducted 

in detecting ransomware from good-ware using four types of classification machine 

learning algorithms, and three out of the seven types of feature selection methods 

were chosen for the best results using real ransomware samples. Our research was 

inspired by studies of automatic labeling of malware samples and using a whole 

executable to conduct analysis [8, 9]. Many of the commercial antivirus providers are 

facing issues in labeling malicious samples. We thus adopted the idea of using the 

former study in predicting ransomware. The latter study gave us process guidance in 

working with analyzing ransomware samples in an executable file. The motivation of 

this experiment is to determine which machine learning algorithms work best with 

the ransomware datasets. The findings of this research will assist the industries and 

researchers of the domain in designing and developed systems as well as models 

using the most appropriate machine learning algorithms for ransomware detection. 

The rest of the paper is organized as followed: Section 2 critically discusses the 

existing research in the domain. Section 3 describes the research methodology. 

Section 4 demonstrates the experimental factors and Section 5 discusses the results. 

Lastly, Section 6 concludes the research with the discussion on its future direction. 

2.  Related Work  

In this research, we reviewed both supervised and unsupervised machine learning 

algorithms. There are many studies on using machine learning to detect malware, 

but few studies focus specifically on ransomware, although ransomware is one of 

the latest threats to our data [10]. Unsupervised learning algorithms learn from 

unlabelled data, and one of the commonly used methods is clustering, where 

responses are grouped into clusters [11]. One of the works we looked into was 

Mutant-X, a static analysis malware clustering algorithm [12]. Mutant-X uses a 

clustering algorithm and emphasizes on the use of its’ generic unpacking algorithm 

in detecting malware that uses obfuscation. It also reduces the number dimension 

to improve its efficiency. A different paper suggests the use of Balanced Iterative 

Reducing and Clustering using Hierarchies (BIRCH) by creating a summary of the 

huge dataset and clustering the data accordingly to reduce computational time [13], 
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and then the summarized dataset can be complemented with other clustering 

methods [14]. One of the drawbacks of BIRCH is that it requires large dataset to be 

accurate; thus it is resource-intensive.  

Supervised learning algorithms are powerful in classifying heterogeneous data by 

taking known datasets to produce a trained model [15, 16]. We studied MalCov 

Architecture using Convolutional Neural Network (CNN). This technique examines 

the whole .exe file to analyze whether the file is malware [9]. CNN is a feed-forward 

type of neural network, which can reduce the complexity of the network model with 

the number of weights [17, 18]. The architecture uses raw bytes extracted and placed 

in an embedding layer, training with the CNN giving it a degree of robustness despite 

facing minor alterations in byte values. Kotler and Maloof [3] and Ioffe and Szegedy 

[19] mentioned the use of byte n-grams, however, the model lacks robustness. There 

are several limitations in the model as the architecture has obstacles in working with 

batch-normalization because it prevents the model from learning the problem causing 

a downgraded performance. This is rather interesting because according to Singh et 

al. [20], batch normalization often improves generalization. The accuracy with batch 

normalization obtains 60% during training and a drop of 10% in the test process. 

Another study proposed a hybrid of a statistical and dynamic approach to improving 

efficiency and accuracy using Support Vector Machine (SVM) [21]. Applying both 

techniques to extract opcodes and system calls in parallel, it was possible to achieve 

a True Positive Rate (TPR) from 0.95 to 1 and False Positive Rate (FPR) in the range 

of 0.00300. However, the false positives grew from 0.04 to 0.28 as the data sets 

increased from 15% to 50%.  

Chumachenko and Juutilainen [22] suggested the use of a random forest scheme. 

Furthermore, Zhang also mentioned that random forest with n-gram analysis 

employed high accuracy obtaining 91.43% against other algorithms that include 

Decision Tree (DT), Random Forest (RF), K-Nearest Neighbour (KNN), Naive 

Bayes (NB), and Gradient Boosting Decision Tree (GBDT) [23]. On the other hand, 

Kolter’s works showed that boosted decision tree achieves a rate of 98% in detecting 

new malicious executables with a 0.05 false-positive rate by selecting relevant n-

grams [3]. Kolter used a four-byte sequence of n-grams which produced 255 million 

distinct n-grams, reduced to 500 n-gram features while Zhang used 2, 3 and 4 grams 

as its features. In this research, we adopted a statistical approach along with 

supervised algorithms using op-code frequency analysis [24]. Opcodes are extracted 

through disassembly and exist in the software’s assembly code. This allowed us to 

analyze malware without simulating execution as proposed by Sornil and 

Liangboonprakong [25]. 

3.  Methodology 

Figure 1 depicts the method that we applied in our experiment. It starts with the 

collection of datasets that contain ransomware. The datasets are pre-processed, and 

feature selection is performed using the most appropriate techniques. Once the data 

is ready, we implemented and applied machine learning algorithms using Microsoft 

Azure and Python programming packages to detect whether the file is ransomware 

and perform analysis in various visual representations. Supervised machine 

learning was chosen because in general unsupervised learning is computationally 

complex, thus requiring more time and data. We have collected several datasets 

that were available on the internet that contain various kind of malware. theZoo 

provided the necessary files that enable us to proceed with the process of data 
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collection [26]. We obtained opcodes from the files as our dataset. Meanwhile, we 

also collected 200 good files to be disassembled to get the opcodes of the benign 

files. Due to the limitations of ransomware data, we generated dummy records of 

ransomware. We also collected several good files to be disassembled to get the 

opcodes of the benign files for the machine learning algorithm. We cleaned the data 

by only focusing on ransomware executable files. Opcodes are operation codes in 

a file that tells the computer what commands are supposed to be executed to run 

the files properly. We obtained the opcodes of each file by disassembling the files 

using IDA version 6.5. By using IDA, we were able to disassemble the files without 

executing them. Therefore, this method was safe as we were dealing with 

ransomware that could potentially harm our computers. 

Fig. 1. The methodology of the experiment. 

     Upon disassembling the files, we found that there were around 3000 different 

opcodes. Since a huge number of features would take up a high amount of 

computational time to train. Therefore, to ease the training of the machine 

learning model, we put our dataset through a feature selection algorithm. Using 

Azure by Microsoft, we had the choice to choose from Chi-Squared, Principal 

Component Analysis (PCA), and Pearson’s Correlation [27]. Among the 

algorithms, Chi-Squared was chosen. The process in choosing the feature 

selection algorithm goes by running all the algorithms with four different types 

of machine learning test model including decision tree, GBDT, neural network, 

and SVM. These machine learning algorithms were chosen based on the 

literature review and given popularity in the research field. We then picked the 

model which overall scores the best in terms of accuracy, precision, recall, f-

score, Area Under the Curve (AUC), average and training log loss. We then made 

a comparison table among the top three feature selection algorithms. 

Table 1. Feature selection method comparison table (Standard deviation). 

Feature 

Selection 

 

Accuracy Precision Recall F-Score AUC 

Average 

Log 

Loss 

PCA 0.01756 0 0.03226 0.01679 0.002273 0.05 

Pearson’s 0.0146 0.0093 0.0272 0.0149 0.0119 0.0669 

Chi Square 0.0179 0.0167 0.032 0.0180 0.0107 0.0498 

PCA is one of the most popular dimensionality reduction algorithms [28, 29]. 

Pearson’s correlation describes the linear relationship between two variables 

usually shown in a scatterplot to define the strength of correlation [30]. Chi Square 

is a test for statistical purposes measuring the relation between two categorical 

variables using normalized values [31]. According to the results in Table 1, PCA 
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achieved a standard deviation of zero in precision. Since precision only considers 

identification we must also consider recall that shows the actual proportion of 

positives identified. Pearson had a much better standard deviation than PCA and 

Chi-Square. Looking at Pearson’s F-Score, there is no doubt it is the lowest among 

the rest due to both low accuracy and precision in terms of standard deviation. 

Despite that, it has a slightly higher log loss. We thus chose Chi-Square as it has a 

lower average log loss and although the rest of the results seemed to be not the best 

score but when we compare it with the other algorithms, it is substantially better in 

performance. Through the pre-processing of the dataset, we selected the opcodes 

that determine if the file with a specific opcode is benign or malicious. Huang 

mentioned that strong relevance in a feature does not suggest optimality [32]. In 

our case, we have three features indicating strong relevance. The results tend to 

skew if a file has a certain amount of the first three opcodes it would be considered 

as ransomware. We thus decided to remove the first three opcodes because 

although it has strong relevancy, it provides weaker accuracy. 

4. Experimental Factors 

The factors used in our experiment include the Accuracy, Sensitivity, Precision, 

F-Score, Receiver Operating Characteristics (ROC), Confusion Matrix, and 

Precision-Recall. The detailed description of these factors is provided in the 

following sub-sections.  

4.1.  Accuracy 

Accuracy can be expressed as an overall view based on the number of events being 

classified correctly. In a high-level scale, it is easy to represent accuracy in the form 

of the number of true positive and negative events over the total in 100%. However, 

ultimately it is only designed to judge the accuracy of the specific model rather than 

considering the other aspects such as the falsely classified events [33]. Provost et 

al. [34] mentioned that merely using accuracy is misleading. The equation for 

accuracy is shown in Eq. (1). 

Accuracy =
True Positive + True Negative

All Events
              (1) 

4.2.  Recall 

The second performance metrics used is recall. A model’s prediction can be 

categorized into four different types that are True Positive, False Positive, True 

Negative and False Negative. Sensitivity is the measure of the number of true 

positive events over the total number of true positive and false negative events as 

denoted in Eq. (2). This metrics is used to show the percentage of the true positive 

rate that can tell us the ratio of events that truly have ransomware.  

Sensitivity =
True Positive

True Positive + False Negative
                  (2) 

4.3. Precision 

Precision also is known as specificity, is the measure of the number of true positive 

events over the total amount of true positive and false positive events as shown in 

Eq. (3). This metrics tells us the portion of correct positive classifications of 

ransomware from cases that are predicted as positive.  
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Precision =
True Positive

True Positive +False Positive
                  (3) 

4.4. F-Score 

F-Score takes the combination of both sensitivity and precision into account as denoted 

in the formula Eq. (4). F-score does not consider true negative events since F-Score is 

a normalized score [35]. Yedidia [36] also supports this idea where F-Score is difficult 

to give a sense of idea on its accuracy. Thus, we only use F-Score as a reference. 

F-Score =
2(Recall * Precision)

Recall + Precision
                   (4) 

4.5. Receiver Operating Characteristics 

Another popular evaluation method is by using ROC. The ROC is used to show the 

relationship of sensitivity and the false positive rate. 

4.6. Confusion Matrix 

The confusion matrix gives an overview of the number of correct and incorrect prediction 

on a classification problem. The key difference of confusion matrix with other accuracy 

metrics is that we can gain insight into each classes’ types of errors made.  

4.7. Precision-Recall 

Precision is the percentage of positive predictions that were correct while recall is 

the number of positive cases caught by the prediction model. When plotted on the 

graph we can see the relationship between these two. 

5. Experiment: Results & Discussion 

All experiments are conducted with Intel(R) Core(TM) i7-7500U CPU @ 2.70 

GHz, 2904 MHz, 2 Core(s), 4 Logical Processor(s), 8GB of DDR4, NVIDIA 

GeForce 940Mx DDR3. Table 2 summarizes the experimental results on the 

random forest, neural network, GBDT and SVM. The neural network mentioned 

is referring to the multilayer perceptron algorithm. According to the result, we 

can see that random forest and gradient boosting decision has achieved higher 

accuracy of 0.97 and 0.96 respectively. The ROC curve shows that random forest 

achieves a slightly better result as compared to gradient boosting. The random 

forest model was able to detect more true positive events than GBDT and SVM 

(Linear). It also has the highest sensitivity of 0.96 while GBDT comes in second 

with 0.93 and SVM with 0.95. SVM using Radial Basis Function (RBF) and 

sigmoid kernel function achieved a high precision of 1.0 that means the model 

perfectly detected the true negative events. However, they performed very poorly 

in detecting the true positive events, thus, making the model unreliable. The 

precision for the random forest is 0.98734, GBDT is 0.98701 and linear SVM is 

0.974683. The two metrics mentioned are then used to find the ROC curve. Each 

point would represent the two metrics corresponding to the specified threshold. 

The ROC curve is used to distinguish whether the model can achieve perfect 

discrimination. Thus, the accuracy rate is higher when the plotted graph is closer 

to the upper left corner [37]. 
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Table 2. Experiment results. 

Model TP FP TN FN Accuracy Sensitivity Precision F Score 

RF 78 1 68 3 0.97333 0.96296 0.98734 0.975 

GBDT 76 1 68 5 0.96 0.93827 0.98701 0.96202 

NN 0 0 69 81 0.46 - 0.0 - 
SVM Linear 77 2 67 4 0.96 0.95062 0.974683 0.9625 

SVM 

RBF 
29 0 69 52 0.65333 0.35802 1.0 0.52727 

SVM 

Sig 
2 0 69 79 0.47333 0.02469 1.0 0.04819 

All models computed in the python script are taken from the scikit-learn module 

using its default parameters, except for the GBDT where the estimators are 30 and 

max depth at 10. 

5.1. SVM Kernel Functions ROC 

ROC curve is the relationship between Sensitivity plotted against 1-Specificity. The 

curve acts as a threshold in the use of maximizing true positive while decreasing false 

positive. However, in this case, we would focus on its AUC as it tells us more 

interesting things are happening. The AUC under the ROC curve is used to pinpoint 

a numerical value on the overall location of the ROC relative to the diagonal line [38]. 

We ran a comparison of ROC between the three different functions for SVM when 

we tried running it all at once. It took a rather long-time compiling. Thus we decide 

to go with this method where we would choose the best function and compare it with 

other classifiers. The polynomial function was excluded since it took a very long time 

to compute. The linear SVM performed much better as compared to using the sigmoid 

and RBF function as shown in Fig. 2. This is perhaps because the model uses binary 

classification where our dataset only has two classes. Thus, the linear function 

performed much better here. Moreover, since SVM-RBF and SVM-Sigmoid is a non-

parametric model, as the dataset grows, overfitting occurs. Thus, when predicting the 

test datasets, it fails to generalize the new examples. We then chose the linear function 

for SVM and used it to compare with the rest of the other models. 

 
Fig. 2. ROC of SVMs. 

5.2. Overall ROC 

ROC in Fig. 3 summarizes the ROC curve. Random forest ROC achieved an area of 

0.98, GBDT and SVM having 0.96 and Neural Network having only 0.50. Apart from 



974        Y. L. Dion and S. N. Brohi 

 
 
Journal of Engineering Science and Technology               April 2020, Vol. 15(2) 

 

the neural network, there is a steady increase to 1.0, and the models have approximately 

a sensitivity of 0.9 at a threshold of 0.0. Neural networks however only picked up 

around a threshold of 0.1 and spiked to above sensitivity of 0.8 from a sensitivity close 

to 0.0. This is expected because the neural network uses a backpropagation technique 

to determine the amount of adjustment needed. Thus, in the beginning, the model made 

many errors, and it slowly adjusts its gradient descent to achieve lesser. By the time it 

reaches at a threshold of 0.1, it immediately spikes up and slowly goes up to 1.0. 

 

Fig. 3. Overall ROC. 

5.3. Cross validation ROC 

The ROC plots in Fig. 4 shows each fold during cross evaluation. Cross evaluation 

is a technique that splits the datasets into different segments; in our case, we have 

ten segments, better known as folds. The first fold is compared with the rest of the 

folds, the second time it runs it takes the first and second fold to be compared with 

the rest, this goes on until 90% of training data is compared against 10% test data. 

The ROC curve at fold 0 for the random forest is much smoother than GBDT. This 

is because GBDT uses the boosting technique where each of the tree interdepends 

on the previous tree while trying to reduce the error as much as possible. For every 

spike we see is a great error reduction as it gradually increases to reach 1.0. Random 

forest’s curve was smooth due to its bagging technique used where each of the trees 

run in parallel composing a forest. Since each tree also does not depend on another, 

the result of the whole forest is taken, hence showing a much smoother curve.  

In the neural network, although the average AUC for the ROC is 0.8, the standard 

deviation shows that it is 0.18 that proves that the model varies very vastly. Since slight 

changes can cause the model to be unstable, it is unreliable to use the model. Between 

the three different functions for SVM, the linear function has the highest mean ROC of 

0.96 and at a standard deviation of 0.03, as compared to Sigmoid at 0.07 and RBF at 

0.14. Although SVM with sigmoid function has a lower standard deviation that RBF 

but the overall ROC is lower than 0.5 that signifies that its overall accuracy is very low. 

The linear function has a slightly lower standard deviation than the random forest, 

which may due to the model consistently achieving around 0.95. 
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(a) Random forest ROC. (b) SVM (Linear) ROC. 

  

(c) GBDT ROC. (d) SVM (RBF) ROC. 

  

(e) Neural network ROC. (f) SVM (Sigmoid) ROC 

Fig. 4. ROC of cross validation. 

5.4. Confusion matrix 

As the name suggests, when generating predictions, the confusion matrix is used to 

show whereabouts the classification model is confused by breaking down the 

summarized values into each class. The predictive performance of classification 

models can be charted out in a confusion matrix [39]. Figure 5 shows the 

normalized confusion matrix. The random forest has accurately detected all true 

negative events (good-ware) with 0.94 prediction level in detecting true positive 

events (ransomware). Upon closer inspection, neural network, SVM with RBF 

function and SVM with sigmoid function all achieved 1.0 in detecting true negative 

events but their true positive rates are far beyond accurate. The neural network has 

the worst outcome where zero ransomware events have been accurately detected. 



976        Y. L. Dion and S. N. Brohi 

 
 
Journal of Engineering Science and Technology               April 2020, Vol. 15(2) 

 

The sigmoid function also did not do well as only 2% of the true positive events 

were detected, and the RBF has slightly more than half of the ransomware events 

classified correctly. Since RBF and Sigmoid are non-linear functions, in a feature 

space of dimension N, if N > n then there will always be a separating hyperplane, 

but this may not give to good generalization performance, especially if some data 

that are randomly generated does not exactly reflect the actual ransomware dataset. 

  

(a) Random forest confusion matrix. (b) SVM (Linear) confusion matrix. 

  

(c) GBDT confusion matrix. (d) SVM (RBF) confusion matrix. 

  

(e) Neural network confusion matrix. (f) SVM (Sigmoid) confusion matrix 

Fig. 5. Confusion matrix. 

5.5.  Precision-recall  

The precision-recall is another useful evaluation metrics in evaluating a model’s 

output quality. Davis. J. and Goadrich. M argued that ROC curve shows a rather 
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optimistic view of the curve due to the exclusion of negative cases [40]. Precision-

Recall curves are alternatively used to ROC curves in Information Retrieval [41, 42]. 

Precision is used to measure the relevancy of a result while recall is to calculate how 

many relevant events have truly occurred. Thus, the curve shows the trade-off 

between the two types of measurements. It is desirable to achieve high precision and 

recall. High precision shows low false positive rates and high recall value represents 

low false negative rates. In Fig. 6, Class 0 represents good-ware while Class 1 

represents ransomware. 

  

(a) Random forest precision-recall. (b) SVM (Linear) precision-recall. 

  

(c) GBDT precision-recall. (d) SVM (RBF) confusion matrix. 

  

(e) Neural network precision-recall. (f) SVM (Sigmoid) precision-recall. 

Fig. 6. Precision-recall. 

Random forest classifier has an astoundingly large AUC of 0.997 for good-ware and 

0.998 for ransomware where it has very few false positive and false negative events. 

GBDT also has high precision and recall of 0.97 for both classes. Both models show 

similar curve behaviour where both models can precisely select relevant items; 
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however, as a trade-off, recall rate is low at the beginning because not many relevant 

items are selected. The precision sharply decreases when the recall is at 1.0 because 

although the model could detect all relevant events, it was not able to precisely select 

relevant events. Neural network classifier shows very drastic changes between a 

good-ware event and ransomware events. There was a linear decrease for Class 0, as 

the model finds more and more events, its precision goes down because it did not 

properly select the cases. Class 1 had an opposite curve, as more and more cases are 

introduced, its precision starts to increase. However, it can only go as high as 

approximately 0.7. Overall, its precision-recall curve was undesirable as Class 0 only 

achieved AUC of 0.452 while Class 1 achieves 0.567. 

SVM (Linear) has high precision at the start for good-ware events, as more of the 

events were found, its precision dropped. Ransomware class, on the other hand, had 

an exponential increase until it hits slightly higher than 0.6, it starts to drop a little. 

Both classes in SVM (RBF) the precision gradually decreases as the recall increases. 

As for SVM (Sigmoid), there was a sharp drop at the start and starts to stabilize 

around the precision of 0.5 as the recall goes up. SVM with linear function was the 

most desirable function out of the other two as it has 0.958 and 0.87 for Class 0 and 

Class 1. As a result of the overall experiment, we identified that for opcodes datasets 

specifically in ransomware, algorithms including random forest, GBDT, and SVM 

(Linear) had shown great results in the evaluation metrics while neural network and 

the other two functions used in SVM are not suitable for this type of data.  

6. Conclusion and Future Work 

In this research, our experimental platform can only detect ransomware that is either 

exe or ddl format. Our detection model will reject any other file format. In future 

research, we focus on a variety of file formats that could potentially contain 

ransomware. Moreover, we used supervised learning methods to detect ransomware. 

In the future direction of this research, we will focus on unsupervised learning by 

applying clustering methods such as k-means, hierarchical clustering, and OPTICS 

algorithms to detect ransomware. Using these algorithms, we will be able to 

determine which of these algorithms is more suitable to detect ransomware with the 

highest accuracy. Furthermore, our research would also include the computational 

complexity to show the differences with higher and lower computational resources 

when the approach is deployed. The other comparison that can be done is the results 

of unsupervised and supervised algorithms. Another scope that we will research is 

in conducting a network traffic analysis for ransomware because they are targeted 

for networks as well. Such a step would provide comprehensive information to the 

researchers in the domain on selecting the best machine learning algorithms to 

develop systems or statistical models for ransomware detection. 

Abbreviations 

FN False Negative 

FP False Positive 

GBDT Gradient Boosting Decision Tree 

NN 

RBF 

Neural Network 

Radial Basis Function   

RF Random Forest 

ROC Receiver Operating Curve 
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SVM Support Vector Machine 

TN True Negative 

TP True Positive 

FN False Negative 
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