
Journal of Engineering Science and Technology
Vol. 15, No. 2 (2020) 967 - 981
© School of Engineering, Taylor’s University

967

AN EXPERIMENTAL STUDY TO EVALUATE
THE PERFORMANCE OF MACHINE LEARNING
ALGORITHMS IN RANSOMWARE DETECTION

YAP L. DION, SARFRAZ N. BROHI*

School of Computing & IT, Taylor’s University, Lakeside Campus, Selangor, Malaysia

*Corresponding Author: SarfrazNawaz.Brohi@taylors.edu.my

Abstract

The research in the domain of ransomware is rapidly emerging, and the

application of machine learning algorithms in ransomware detection is one of the

recent breakthroughs. In this research, we constructed an experimental platform

using ransomware datasets to compare the performance of various machine

learning algorithms such as Random Forest, Gradient Boosting Decision Tree

(GBDT), Neural Network using Multilayer Perceptron as well as three types of

Support Vector Machine (SVM) kernels in ransomware detection. Our

experiment is based on a combination of different methodologies reported in the

existing literature. We used complete executable files in our experiment,

analyzed the opcodes and measures their frequencies. The objective of this

research was to discover the algorithms that are highly suitable to develop models

as well as systems for ransomware detection. Consequently, we identified that

Random Forest, GBDT and SVM (Linear) have shown optimal results in

detection of ransomware.

Keywords: Decision tree, Gradient boosting, Machine learning, Neural network,

Random forest, Ransomware, Support vector machine.

968 Y. L. Dion and S. N. Brohi

Journal of Engineering Science and Technology April 2020, Vol. 15(2)

1. Introduction

Cyber ransomware became a major point of focus in the research world since the

major WannaCry attack that occurred in May 2017. Based on Kaspersky Lab’s

Report 2017, WannaCry was ranked as the highest among other encrypting

ransomware attacks which accounted 13.4% of all workstations in the first half of

that year [1]. Existing commercial solutions provide various analysis approaches to

detecting ransomware. In static analysis, the threats are detected by relying on

unique pattern recognition [2]. Despite that, many solutions adopt this approach

due to its inexpensive and fast detection. Signature-based detection falls short in

countering with zero-day attacks that essentially means that new attacks cannot be

detected. In contrast, behavioral-based detection adopts a profiling method by

creating profiles for each malicious behavior [3, 4]. Even though it is substantially

superior over signature-based, it generates issues where there is a disconnection in

malicious behavior and the attack’s goal [5]. Thus, it fails to detect obfuscation

techniques such as polymorphism [6, 7].

The reality of research in the domain of ransomware is scarce. Hence, by

conducting this research, it tackles the issue and impacting the research community

by creating more ideas and opportunities to explore. The experiment was conducted

in detecting ransomware from good-ware using four types of classification machine

learning algorithms, and three out of the seven types of feature selection methods

were chosen for the best results using real ransomware samples. Our research was

inspired by studies of automatic labeling of malware samples and using a whole

executable to conduct analysis [8, 9]. Many of the commercial antivirus providers are

facing issues in labeling malicious samples. We thus adopted the idea of using the

former study in predicting ransomware. The latter study gave us process guidance in

working with analyzing ransomware samples in an executable file. The motivation of

this experiment is to determine which machine learning algorithms work best with

the ransomware datasets. The findings of this research will assist the industries and

researchers of the domain in designing and developed systems as well as models

using the most appropriate machine learning algorithms for ransomware detection.

The rest of the paper is organized as followed: Section 2 critically discusses the

existing research in the domain. Section 3 describes the research methodology.

Section 4 demonstrates the experimental factors and Section 5 discusses the results.

Lastly, Section 6 concludes the research with the discussion on its future direction.

2. Related Work

In this research, we reviewed both supervised and unsupervised machine learning

algorithms. There are many studies on using machine learning to detect malware,

but few studies focus specifically on ransomware, although ransomware is one of

the latest threats to our data [10]. Unsupervised learning algorithms learn from

unlabelled data, and one of the commonly used methods is clustering, where

responses are grouped into clusters [11]. One of the works we looked into was

Mutant-X, a static analysis malware clustering algorithm [12]. Mutant-X uses a

clustering algorithm and emphasizes on the use of its’ generic unpacking algorithm

in detecting malware that uses obfuscation. It also reduces the number dimension

to improve its efficiency. A different paper suggests the use of Balanced Iterative

Reducing and Clustering using Hierarchies (BIRCH) by creating a summary of the

huge dataset and clustering the data accordingly to reduce computational time [13],

An Experimental Study to Evaluate the Performance of Machine Learning 969

Journal of Engineering Science and Technology April 2020, Vol. 15(2)

and then the summarized dataset can be complemented with other clustering

methods [14]. One of the drawbacks of BIRCH is that it requires large dataset to be

accurate; thus it is resource-intensive.

Supervised learning algorithms are powerful in classifying heterogeneous data by

taking known datasets to produce a trained model [15, 16]. We studied MalCov

Architecture using Convolutional Neural Network (CNN). This technique examines

the whole .exe file to analyze whether the file is malware [9]. CNN is a feed-forward

type of neural network, which can reduce the complexity of the network model with

the number of weights [17, 18]. The architecture uses raw bytes extracted and placed

in an embedding layer, training with the CNN giving it a degree of robustness despite

facing minor alterations in byte values. Kotler and Maloof [3] and Ioffe and Szegedy

[19] mentioned the use of byte n-grams, however, the model lacks robustness. There

are several limitations in the model as the architecture has obstacles in working with

batch-normalization because it prevents the model from learning the problem causing

a downgraded performance. This is rather interesting because according to Singh et

al. [20], batch normalization often improves generalization. The accuracy with batch

normalization obtains 60% during training and a drop of 10% in the test process.

Another study proposed a hybrid of a statistical and dynamic approach to improving

efficiency and accuracy using Support Vector Machine (SVM) [21]. Applying both

techniques to extract opcodes and system calls in parallel, it was possible to achieve

a True Positive Rate (TPR) from 0.95 to 1 and False Positive Rate (FPR) in the range

of 0.00300. However, the false positives grew from 0.04 to 0.28 as the data sets

increased from 15% to 50%.

Chumachenko and Juutilainen [22] suggested the use of a random forest scheme.

Furthermore, Zhang also mentioned that random forest with n-gram analysis

employed high accuracy obtaining 91.43% against other algorithms that include

Decision Tree (DT), Random Forest (RF), K-Nearest Neighbour (KNN), Naive

Bayes (NB), and Gradient Boosting Decision Tree (GBDT) [23]. On the other hand,

Kolter’s works showed that boosted decision tree achieves a rate of 98% in detecting

new malicious executables with a 0.05 false-positive rate by selecting relevant n-

grams [3]. Kolter used a four-byte sequence of n-grams which produced 255 million

distinct n-grams, reduced to 500 n-gram features while Zhang used 2, 3 and 4 grams

as its features. In this research, we adopted a statistical approach along with

supervised algorithms using op-code frequency analysis [24]. Opcodes are extracted

through disassembly and exist in the software’s assembly code. This allowed us to

analyze malware without simulating execution as proposed by Sornil and

Liangboonprakong [25].

3. Methodology

Figure 1 depicts the method that we applied in our experiment. It starts with the

collection of datasets that contain ransomware. The datasets are pre-processed, and

feature selection is performed using the most appropriate techniques. Once the data

is ready, we implemented and applied machine learning algorithms using Microsoft

Azure and Python programming packages to detect whether the file is ransomware

and perform analysis in various visual representations. Supervised machine

learning was chosen because in general unsupervised learning is computationally

complex, thus requiring more time and data. We have collected several datasets

that were available on the internet that contain various kind of malware. theZoo

provided the necessary files that enable us to proceed with the process of data

970 Y. L. Dion and S. N. Brohi

Journal of Engineering Science and Technology April 2020, Vol. 15(2)

collection [26]. We obtained opcodes from the files as our dataset. Meanwhile, we

also collected 200 good files to be disassembled to get the opcodes of the benign

files. Due to the limitations of ransomware data, we generated dummy records of

ransomware. We also collected several good files to be disassembled to get the

opcodes of the benign files for the machine learning algorithm. We cleaned the data

by only focusing on ransomware executable files. Opcodes are operation codes in

a file that tells the computer what commands are supposed to be executed to run

the files properly. We obtained the opcodes of each file by disassembling the files

using IDA version 6.5. By using IDA, we were able to disassemble the files without

executing them. Therefore, this method was safe as we were dealing with

ransomware that could potentially harm our computers.

Fig. 1. The methodology of the experiment.

 Upon disassembling the files, we found that there were around 3000 different

opcodes. Since a huge number of features would take up a high amount of

computational time to train. Therefore, to ease the training of the machine

learning model, we put our dataset through a feature selection algorithm. Using

Azure by Microsoft, we had the choice to choose from Chi-Squared, Principal

Component Analysis (PCA), and Pearson’s Correlation [27]. Among the

algorithms, Chi-Squared was chosen. The process in choosing the feature

selection algorithm goes by running all the algorithms with four different types

of machine learning test model including decision tree, GBDT, neural network,

and SVM. These machine learning algorithms were chosen based on the

literature review and given popularity in the research field. We then picked the

model which overall scores the best in terms of accuracy, precision, recall, f-

score, Area Under the Curve (AUC), average and training log loss. We then made

a comparison table among the top three feature selection algorithms.

Table 1. Feature selection method comparison table (Standard deviation).

Feature

Selection

Accuracy Precision Recall F-Score AUC

Average

Log

Loss

PCA 0.01756 0 0.03226 0.01679 0.002273 0.05

Pearson’s 0.0146 0.0093 0.0272 0.0149 0.0119 0.0669

Chi Square 0.0179 0.0167 0.032 0.0180 0.0107 0.0498

PCA is one of the most popular dimensionality reduction algorithms [28, 29].

Pearson’s correlation describes the linear relationship between two variables

usually shown in a scatterplot to define the strength of correlation [30]. Chi Square

is a test for statistical purposes measuring the relation between two categorical

variables using normalized values [31]. According to the results in Table 1, PCA

An Experimental Study to Evaluate the Performance of Machine Learning 971

Journal of Engineering Science and Technology April 2020, Vol. 15(2)

achieved a standard deviation of zero in precision. Since precision only considers

identification we must also consider recall that shows the actual proportion of

positives identified. Pearson had a much better standard deviation than PCA and

Chi-Square. Looking at Pearson’s F-Score, there is no doubt it is the lowest among

the rest due to both low accuracy and precision in terms of standard deviation.

Despite that, it has a slightly higher log loss. We thus chose Chi-Square as it has a

lower average log loss and although the rest of the results seemed to be not the best

score but when we compare it with the other algorithms, it is substantially better in

performance. Through the pre-processing of the dataset, we selected the opcodes

that determine if the file with a specific opcode is benign or malicious. Huang

mentioned that strong relevance in a feature does not suggest optimality [32]. In

our case, we have three features indicating strong relevance. The results tend to

skew if a file has a certain amount of the first three opcodes it would be considered

as ransomware. We thus decided to remove the first three opcodes because

although it has strong relevancy, it provides weaker accuracy.

4. Experimental Factors

The factors used in our experiment include the Accuracy, Sensitivity, Precision,

F-Score, Receiver Operating Characteristics (ROC), Confusion Matrix, and

Precision-Recall. The detailed description of these factors is provided in the

following sub-sections.

4.1. Accuracy

Accuracy can be expressed as an overall view based on the number of events being

classified correctly. In a high-level scale, it is easy to represent accuracy in the form

of the number of true positive and negative events over the total in 100%. However,

ultimately it is only designed to judge the accuracy of the specific model rather than

considering the other aspects such as the falsely classified events [33]. Provost et

al. [34] mentioned that merely using accuracy is misleading. The equation for

accuracy is shown in Eq. (1).

Accuracy =
True Positive + True Negative

All Events
 (1)

4.2. Recall

The second performance metrics used is recall. A model’s prediction can be

categorized into four different types that are True Positive, False Positive, True

Negative and False Negative. Sensitivity is the measure of the number of true

positive events over the total number of true positive and false negative events as

denoted in Eq. (2). This metrics is used to show the percentage of the true positive

rate that can tell us the ratio of events that truly have ransomware.

Sensitivity =
True Positive

True Positive + False Negative
 (2)

4.3. Precision

Precision also is known as specificity, is the measure of the number of true positive

events over the total amount of true positive and false positive events as shown in

Eq. (3). This metrics tells us the portion of correct positive classifications of

ransomware from cases that are predicted as positive.

972 Y. L. Dion and S. N. Brohi

Journal of Engineering Science and Technology April 2020, Vol. 15(2)

Precision =
True Positive

True Positive +False Positive
 (3)

4.4. F-Score

F-Score takes the combination of both sensitivity and precision into account as denoted

in the formula Eq. (4). F-score does not consider true negative events since F-Score is

a normalized score [35]. Yedidia [36] also supports this idea where F-Score is difficult

to give a sense of idea on its accuracy. Thus, we only use F-Score as a reference.

F-Score =
2(Recall * Precision)

Recall + Precision
 (4)

4.5. Receiver Operating Characteristics

Another popular evaluation method is by using ROC. The ROC is used to show the

relationship of sensitivity and the false positive rate.

4.6. Confusion Matrix

The confusion matrix gives an overview of the number of correct and incorrect prediction

on a classification problem. The key difference of confusion matrix with other accuracy

metrics is that we can gain insight into each classes’ types of errors made.

4.7. Precision-Recall

Precision is the percentage of positive predictions that were correct while recall is

the number of positive cases caught by the prediction model. When plotted on the

graph we can see the relationship between these two.

5. Experiment: Results & Discussion

All experiments are conducted with Intel(R) Core(TM) i7-7500U CPU @ 2.70

GHz, 2904 MHz, 2 Core(s), 4 Logical Processor(s), 8GB of DDR4, NVIDIA

GeForce 940Mx DDR3. Table 2 summarizes the experimental results on the

random forest, neural network, GBDT and SVM. The neural network mentioned

is referring to the multilayer perceptron algorithm. According to the result, we

can see that random forest and gradient boosting decision has achieved higher

accuracy of 0.97 and 0.96 respectively. The ROC curve shows that random forest

achieves a slightly better result as compared to gradient boosting. The random

forest model was able to detect more true positive events than GBDT and SVM

(Linear). It also has the highest sensitivity of 0.96 while GBDT comes in second

with 0.93 and SVM with 0.95. SVM using Radial Basis Function (RBF) and

sigmoid kernel function achieved a high precision of 1.0 that means the model

perfectly detected the true negative events. However, they performed very poorly

in detecting the true positive events, thus, making the model unreliable. The

precision for the random forest is 0.98734, GBDT is 0.98701 and linear SVM is

0.974683. The two metrics mentioned are then used to find the ROC curve. Each

point would represent the two metrics corresponding to the specified threshold.

The ROC curve is used to distinguish whether the model can achieve perfect

discrimination. Thus, the accuracy rate is higher when the plotted graph is closer

to the upper left corner [37].

An Experimental Study to Evaluate the Performance of Machine Learning 973

Journal of Engineering Science and Technology April 2020, Vol. 15(2)

Table 2. Experiment results.

Model TP FP TN FN Accuracy Sensitivity Precision F Score

RF 78 1 68 3 0.97333 0.96296 0.98734 0.975

GBDT 76 1 68 5 0.96 0.93827 0.98701 0.96202

NN 0 0 69 81 0.46 - 0.0 -
SVM Linear 77 2 67 4 0.96 0.95062 0.974683 0.9625

SVM

RBF
29 0 69 52 0.65333 0.35802 1.0 0.52727

SVM

Sig
2 0 69 79 0.47333 0.02469 1.0 0.04819

All models computed in the python script are taken from the scikit-learn module

using its default parameters, except for the GBDT where the estimators are 30 and

max depth at 10.

5.1. SVM Kernel Functions ROC

ROC curve is the relationship between Sensitivity plotted against 1-Specificity. The

curve acts as a threshold in the use of maximizing true positive while decreasing false

positive. However, in this case, we would focus on its AUC as it tells us more

interesting things are happening. The AUC under the ROC curve is used to pinpoint

a numerical value on the overall location of the ROC relative to the diagonal line [38].

We ran a comparison of ROC between the three different functions for SVM when

we tried running it all at once. It took a rather long-time compiling. Thus we decide

to go with this method where we would choose the best function and compare it with

other classifiers. The polynomial function was excluded since it took a very long time

to compute. The linear SVM performed much better as compared to using the sigmoid

and RBF function as shown in Fig. 2. This is perhaps because the model uses binary

classification where our dataset only has two classes. Thus, the linear function

performed much better here. Moreover, since SVM-RBF and SVM-Sigmoid is a non-

parametric model, as the dataset grows, overfitting occurs. Thus, when predicting the

test datasets, it fails to generalize the new examples. We then chose the linear function

for SVM and used it to compare with the rest of the other models.

Fig. 2. ROC of SVMs.

5.2. Overall ROC

ROC in Fig. 3 summarizes the ROC curve. Random forest ROC achieved an area of

0.98, GBDT and SVM having 0.96 and Neural Network having only 0.50. Apart from

974 Y. L. Dion and S. N. Brohi

Journal of Engineering Science and Technology April 2020, Vol. 15(2)

the neural network, there is a steady increase to 1.0, and the models have approximately

a sensitivity of 0.9 at a threshold of 0.0. Neural networks however only picked up

around a threshold of 0.1 and spiked to above sensitivity of 0.8 from a sensitivity close

to 0.0. This is expected because the neural network uses a backpropagation technique

to determine the amount of adjustment needed. Thus, in the beginning, the model made

many errors, and it slowly adjusts its gradient descent to achieve lesser. By the time it

reaches at a threshold of 0.1, it immediately spikes up and slowly goes up to 1.0.

Fig. 3. Overall ROC.

5.3. Cross validation ROC

The ROC plots in Fig. 4 shows each fold during cross evaluation. Cross evaluation

is a technique that splits the datasets into different segments; in our case, we have

ten segments, better known as folds. The first fold is compared with the rest of the

folds, the second time it runs it takes the first and second fold to be compared with

the rest, this goes on until 90% of training data is compared against 10% test data.

The ROC curve at fold 0 for the random forest is much smoother than GBDT. This

is because GBDT uses the boosting technique where each of the tree interdepends

on the previous tree while trying to reduce the error as much as possible. For every

spike we see is a great error reduction as it gradually increases to reach 1.0. Random

forest’s curve was smooth due to its bagging technique used where each of the trees

run in parallel composing a forest. Since each tree also does not depend on another,

the result of the whole forest is taken, hence showing a much smoother curve.

In the neural network, although the average AUC for the ROC is 0.8, the standard

deviation shows that it is 0.18 that proves that the model varies very vastly. Since slight

changes can cause the model to be unstable, it is unreliable to use the model. Between

the three different functions for SVM, the linear function has the highest mean ROC of

0.96 and at a standard deviation of 0.03, as compared to Sigmoid at 0.07 and RBF at

0.14. Although SVM with sigmoid function has a lower standard deviation that RBF

but the overall ROC is lower than 0.5 that signifies that its overall accuracy is very low.

The linear function has a slightly lower standard deviation than the random forest,

which may due to the model consistently achieving around 0.95.

An Experimental Study to Evaluate the Performance of Machine Learning 975

Journal of Engineering Science and Technology April 2020, Vol. 15(2)

(a) Random forest ROC. (b) SVM (Linear) ROC.

(c) GBDT ROC. (d) SVM (RBF) ROC.

(e) Neural network ROC. (f) SVM (Sigmoid) ROC

Fig. 4. ROC of cross validation.

5.4. Confusion matrix

As the name suggests, when generating predictions, the confusion matrix is used to

show whereabouts the classification model is confused by breaking down the

summarized values into each class. The predictive performance of classification

models can be charted out in a confusion matrix [39]. Figure 5 shows the

normalized confusion matrix. The random forest has accurately detected all true

negative events (good-ware) with 0.94 prediction level in detecting true positive

events (ransomware). Upon closer inspection, neural network, SVM with RBF

function and SVM with sigmoid function all achieved 1.0 in detecting true negative

events but their true positive rates are far beyond accurate. The neural network has

the worst outcome where zero ransomware events have been accurately detected.

976 Y. L. Dion and S. N. Brohi

Journal of Engineering Science and Technology April 2020, Vol. 15(2)

The sigmoid function also did not do well as only 2% of the true positive events

were detected, and the RBF has slightly more than half of the ransomware events

classified correctly. Since RBF and Sigmoid are non-linear functions, in a feature

space of dimension N, if N > n then there will always be a separating hyperplane,

but this may not give to good generalization performance, especially if some data

that are randomly generated does not exactly reflect the actual ransomware dataset.

(a) Random forest confusion matrix. (b) SVM (Linear) confusion matrix.

(c) GBDT confusion matrix. (d) SVM (RBF) confusion matrix.

(e) Neural network confusion matrix. (f) SVM (Sigmoid) confusion matrix

Fig. 5. Confusion matrix.

5.5. Precision-recall

The precision-recall is another useful evaluation metrics in evaluating a model’s

output quality. Davis. J. and Goadrich. M argued that ROC curve shows a rather

An Experimental Study to Evaluate the Performance of Machine Learning 977

Journal of Engineering Science and Technology April 2020, Vol. 15(2)

optimistic view of the curve due to the exclusion of negative cases [40]. Precision-

Recall curves are alternatively used to ROC curves in Information Retrieval [41, 42].

Precision is used to measure the relevancy of a result while recall is to calculate how

many relevant events have truly occurred. Thus, the curve shows the trade-off

between the two types of measurements. It is desirable to achieve high precision and

recall. High precision shows low false positive rates and high recall value represents

low false negative rates. In Fig. 6, Class 0 represents good-ware while Class 1

represents ransomware.

(a) Random forest precision-recall. (b) SVM (Linear) precision-recall.

(c) GBDT precision-recall. (d) SVM (RBF) confusion matrix.

(e) Neural network precision-recall. (f) SVM (Sigmoid) precision-recall.

Fig. 6. Precision-recall.

Random forest classifier has an astoundingly large AUC of 0.997 for good-ware and

0.998 for ransomware where it has very few false positive and false negative events.

GBDT also has high precision and recall of 0.97 for both classes. Both models show

similar curve behaviour where both models can precisely select relevant items;

978 Y. L. Dion and S. N. Brohi

Journal of Engineering Science and Technology April 2020, Vol. 15(2)

however, as a trade-off, recall rate is low at the beginning because not many relevant

items are selected. The precision sharply decreases when the recall is at 1.0 because

although the model could detect all relevant events, it was not able to precisely select

relevant events. Neural network classifier shows very drastic changes between a

good-ware event and ransomware events. There was a linear decrease for Class 0, as

the model finds more and more events, its precision goes down because it did not

properly select the cases. Class 1 had an opposite curve, as more and more cases are

introduced, its precision starts to increase. However, it can only go as high as

approximately 0.7. Overall, its precision-recall curve was undesirable as Class 0 only

achieved AUC of 0.452 while Class 1 achieves 0.567.

SVM (Linear) has high precision at the start for good-ware events, as more of the

events were found, its precision dropped. Ransomware class, on the other hand, had

an exponential increase until it hits slightly higher than 0.6, it starts to drop a little.

Both classes in SVM (RBF) the precision gradually decreases as the recall increases.

As for SVM (Sigmoid), there was a sharp drop at the start and starts to stabilize

around the precision of 0.5 as the recall goes up. SVM with linear function was the

most desirable function out of the other two as it has 0.958 and 0.87 for Class 0 and

Class 1. As a result of the overall experiment, we identified that for opcodes datasets

specifically in ransomware, algorithms including random forest, GBDT, and SVM

(Linear) had shown great results in the evaluation metrics while neural network and

the other two functions used in SVM are not suitable for this type of data.

6. Conclusion and Future Work

In this research, our experimental platform can only detect ransomware that is either

exe or ddl format. Our detection model will reject any other file format. In future

research, we focus on a variety of file formats that could potentially contain

ransomware. Moreover, we used supervised learning methods to detect ransomware.

In the future direction of this research, we will focus on unsupervised learning by

applying clustering methods such as k-means, hierarchical clustering, and OPTICS

algorithms to detect ransomware. Using these algorithms, we will be able to

determine which of these algorithms is more suitable to detect ransomware with the

highest accuracy. Furthermore, our research would also include the computational

complexity to show the differences with higher and lower computational resources

when the approach is deployed. The other comparison that can be done is the results

of unsupervised and supervised algorithms. Another scope that we will research is

in conducting a network traffic analysis for ransomware because they are targeted

for networks as well. Such a step would provide comprehensive information to the

researchers in the domain on selecting the best machine learning algorithms to

develop systems or statistical models for ransomware detection.

Abbreviations

FN False Negative

FP False Positive

GBDT Gradient Boosting Decision Tree

NN

RBF

Neural Network

Radial Basis Function

RF Random Forest

ROC Receiver Operating Curve

An Experimental Study to Evaluate the Performance of Machine Learning 979

Journal of Engineering Science and Technology April 2020, Vol. 15(2)

SVM Support Vector Machine

TN True Negative

TP True Positive

FN False Negative

References

1. Kaspersky. (2017). The Rise of Ransomware. Retrieved October 30, 2018,

from http://www.kaspersky.com.

2. Ranveer, S.; and Hiray, S. (2015). SVM Based Effective Malware Detection

System. International Journal of Computer Science and Information

Technologies, 6(4), 3361-3365.

3. Kotler, J.Z.; and Maloof, M.A. (2006). Learning to Detect Malicioud

Executables in the Wild. Journal of Machine Learning Research, 7, 2721-

2744.

4. Mujumdar, A.; Masiwal, G.; and Meshram, B.B. (2013). Analysis of Signature-

Baed and Behavior-Based Anti-Malware Approaches. International Journal of

Advanced Research in Computer Engineering and Technology (IJARCET), 6

(2), 2278-1323.

5. Christodorescu, M.; and Kruegel, C. (2007). Mining Specifications of

Malicious Behavior. Proceedings of the the 6th joint meeting of the European

software engineering conference and the ACM SIGSOFT symposium on The

foundations of software engineering "Flight dynamics of unmanned vehicles".

Dubrovnik, Croatia, 5-14

6. Zakaria, W.Z.A.; Abdollah, M.F.; Mohd, O.; and Ariffin, A.F.M. (2017). The

Rise of Ransomware. Proceedings of the 2017 International Conference on

Software and e-Business. Hong Kong, Hong Kong, 66-70.

7. Chakraborty, S. (2017). A Comparison study of Computer Virus and Detection

Techniques. International Journal of Scientific Research in Computer Science,

Engineering and Information Technology (IJSRCSEIT), 2(1), 2456-3307.

8. Hu, X.; Griffin, K.; and Shin, K.G. (2018). MutantX-S : scalable malware

clustering based on static features MutantX-S : Scalable Malware Clustering

Based on Static Features. USENIX Annual Technical Conference, Washington,

D.C., 187-198.

9. Raff, E.; Barker, J.; Sylvester, J.; Brandon, R.; Catanzaro, B.; and Nicholas,

C. (2017). Malware Detection by Eating a Whole EXE. arXiv preprint.

arXiv:170.09435

10. Edgar, P.; Torres, P.; and Yoo, S.G. (2017). Detecting and Neutralizing

Encrypting Ransomware Attacks by Using Machine-Learning Techniques: A

Literature Review. International Journal of Applied Engineering Research,

12(18), 7902-7911.

11. Amruthnath, N.; and Gupta, T. (2018). A Research Study on Unsupervised

Machine Learning Algorithms for Fault Detection in Predictive Maintenance.

5th International Conference on Industrial Engineering and Applications,

Singapore, Singapore, 355-361.

980 Y. L. Dion and S. N. Brohi

Journal of Engineering Science and Technology April 2020, Vol. 15(2)

12. Dutta, A.K. (2016). Detection of Malware and Malicious Executables Using E-

Birch Algorithm. International Journal of Advanced Computer Science and

Applications (IJACSA), 7(1), 124-126.

13. Zhang, T.; Ramakrishnan, T.; and Livny, M. (1997). BIRCH: A New Data

Clustering Algorithm and Its Applications. Data Mining and Knowledge

Discovery, 1, 141-182.

14. Kruczkowski, M.J.; and Niewiadomska-Szynkiewicz, E. (2014). Comparative

study of supervised learning methods for malware analysis. Journal of

Telecommunications and Information Technology, 4, 1-10.

15. MathWorks. (2016). What is Machine Learning?. Retrieved November 13, 2018

from https://www.mathworks.com/discovery/machine-learning.html.

16. Liu, T. Fang, S. Zhao, Y. Wang, P. and Zhang, J. (2015). Implementation of

Training Convolutional Neural Networks. University of Chinese Academy of

Sciences, Beijing, China.

17. Kabanga, E.K.; and Kim. C.H. (2018). Malware Images Classification Using

Convolutional Neural Network. Journal of Computer and Communications, 6,

153-158.

18. Raff, E.; Zak, R.; Cox, R.; Sylvester, J.; Yacci, P.; Ward, R.; Tracy, A.; McLean,

M.; and Nicholas, C. (2016) An Investigation of Byte N-Gram Features for

Malware Classification. Journal of Computer Virology and Hacking

Techniques, 14(1), 1-20.

19. Ioffe, S.; and Szegedy, C. (2015). Batch Normalization : Accelerating Deep

Network Training by Reducing Internal Covariate Shift. Proceedings of the

32nd International Conference on Machine Learning, Lille, France, 448-456.

20. Singh, T.; Di Troia, F.; Corrado, V.A.; Austin, T.H.; and Stamp, M. (2015).

Support vector machines and malware detection. Journal of Computer

Virology and Hacking Techniques, 12(4), 203-212.

21. Agarap, A.F.; and Pepito, F.J.H. (2017). Towards Building an Intelligent Anti-

Malware System: A Deep Learning Approach using Support Vector Machine

(SVM) for Malware Classification. arXiv preprint. arXiv:1801.00318

22. Chumachenko, K.; and Juutilainen, M. (2017) MACHINE LEARNING

METHODS FOR MALWARE DETECTION AND CLASSIFICATION.

Bachelor’s. Thesis. South-East Finland University of Applied Sciences,

Kymenlaakso, Finland.

23. Zhang, H.; Xiao, X.; Mercaldo, F.; Ni, S.; Martinelli, F.; and Sangaiah, A.K.

(2018). Classification of ransomware families with machine learning based on

N-gram of opcodes. Future Generation Computer Systems. 90, 211-221.

24. Ghezelbigloo, Z.; and Vafaeijahan, M. (2014). Role-opcode vs. opcode: The

new method in computer malware detection. First International Congress on

Technology, Communication and Knowledge (ICTCK), Mashhad Branch,

Islamic Azad University, Mashhad, Iran.

25. Sornil, O.; and Liangboonprakong, C. (2013). Malware Classification Using N-

grams Sequential Pattern Features. International Journal of Information

Processing and Management (IJIPM), 4(5), 59-67.

26. Nativ, Y. (2014). theZoo. Retrieved November 5, 2018, from

https://github.com/ytisf/theZoo.

https://link.springer.com/journal/11416
https://link.springer.com/journal/11416

An Experimental Study to Evaluate the Performance of Machine Learning 981

Journal of Engineering Science and Technology April 2020, Vol. 15(2)

27. Microsoft. Azure Machine Learning Studio. Retrieved November 17, 2018 from

https://studio.azureml.net.

28. Wold, S.; Esbensen, K.; and Geladi, P. (1987). Principal Component Analysis.

Chemometrics and Intelligent Laboratory Systems, 2(1), 37-52.

29. Jollife, I.T. (2002). Principal Component Analysis, Springer Science &

Business Media, 2, 487.

30. Wang, J.; and Zheng. N. (2016). Measures of Correlation for Multiple

Variables, arXiv

31. Ugoni, A.; and Walker, B. (1995). The Chi square test: an introduction.

COMSIG review / COMSIG, Chiropractors and Osteopaths Musculo-Skeletal

Interest Group. 4. 61-4.

32. Huang, S.H. (2015). Supervised feature selection : A tutorial. Artificial

Intelligence Research, 4(2), 22-37.

33. McNee, S.M.; Riedi, J.; and Konstan, J.A. (2006). Accurate is not always good:

How Accuracy Metrics have hurt Recommender Systems. Proceedings of the

2006 Conference on Human Factors in Computing Systems, Montréal, Canada,

1097-1101.

34. Provost, F.; Fawcett, T.; and Kohavi, R. (1998). The case against accuracy

estimation for comparing induction algorithms. Proceeding of the 15th

International Conference on Machine Learning, San Francisco, CA, 445-453.

35. Powers, D.M.W (2015). What the F-measure doesn't measure: Features, Flaws,

Fallacies and Fixes, arXiv.

36. Yedidia, A. (2016). Against the F-score.

37. Zweig, M.H.; and Campbell, G. (1993). Receiver-operating characteristic

(ROC) plots: A fundamental evaluation tool in clinical medicine. Clinical

Chemistry. 39(4), 561-577.

38. Hanley, J.A.; and McNeil, B.J. (1982). The Meaning and Use of the Area under

a Receiver Operating Characteristic (ROC) Curve. Radiology, 143(1), 29-36.

39. Ostrand, T.; and Weyuker, E. (2007). How to measure success of fault

prediction models. Fourth international workshop on Software quality

assurance: in conjunction with the 6th ESEC/FSE joint meeting, 25-30.

40. Davis, J.; and Goadrich, M. (2006). The Relationship Between Precision-Recall

and ROC Curves. Proceedings of the 23rd international conference on

machine learning. ACM, 233–240.

41. Manning, C.D.; and Schutze, H. (1999). Foundations of Statistical Natural

Language Processing. MIT Press, Cambridge, MA.

42. Raghavan, V.; Jung, G.S.; and Bollmann, P. (1989). A Critical Investigation of

Recall and Precision as Measures of Retrieval System Performance. ACM

Transactions on Information Systems, 7, 205-229.

