
Journal of Engineering Science and Technology
Vol. 15, No. 2 (2020) 746 - 767
© School of Engineering, Taylor’s University

746

HABC: HYBRID ARTIFICIAL BEE COLONY
FOR GENERATING VARIABLE T-WAY TEST SETS

AMMAR K. ALAZZAWI*, HELMI MD RAIS, SHUIB BASRI

Department of Computer and Information Sciences, Universiti

Teknologi PETRONAS, Bandar Seri Iskandar 32610, Perak, Malaysia

*Corresponding Author: ammar_16000020@utp.edu.my

Abstract

Exhaustive testing of occurred interaction amongst components (i.e., parameters

and values) of a software system is usually impossible due to some factors such

as the restriction of budget and time. One of the effective software testing

techniques used for detecting faults of interactions between components is

combinatorial testing (CT). CT is a black box testing technique, used to find the

mistakes among components of a software system in a systematic and effective

way. However, CT is highly complex (NP-hard). The input variables for a real-

world software may diverge in how they strongly influence variable strength

(VS) interaction can achieve that effectively. This paper proposed a hybrid

artificial bee colony (HABC) strategy based on the hybrid artificial bee colony

algorithm and practical swarm optimization to generate optimal test suite of

variable strength interaction. PSO was integrated as the exploitation agent for the

ABC hence the hybrid nature. The information sharing ability of PSO via the

Weight Factor is used to enhance the performance of ABC. The output of the

hybrid HABC is a set of promising optimal test set combinations. Through

several benchmark experiments, HABC proved the effectiveness of the proposed

strategy. The HABC has achieved 76.31 % better result than most of the

compared strategies.

Keywords: An optimization problem, Combinatorial testing, Hybrid artificial bee

colony algorithm, Software testing, t-way testing, Variable strength

interaction.

HABC: Hybrid Artificial Bee Colony for Generating Variable T-way Test Sets 747

Journal of Engineering Science and Technology April 2020, Vol. 15(2)

1. Introduction

Software system failures have been linked to the interactions of its numerous

components parameters (i.e., inputs). These interactions amongst the parameters

have been considered as one of the primary sources of defects in software systems.

Conventional software testing techniques such as boundary value and Equivalence

Partitioning have been useful in fault detection. These techniques can address the

single input values in detecting the fault from time to time during software testing.

However, the conventional techniques may not be efficient enough to address faults

that generates among several input variables [1].

Combinatorial Testing (CT) or named t-way testing can give a viable solution

to the interaction of components for two parameters or more and producing a test

set that can assist in fault detection early in software development life cycle (SDLC)

(t indicates the interaction strength between combinations) [2, 3]. Since not all

components of a software system usually leads to faults in such system, this makes

CT a feasible approach by generating minimal number of interactions amongst

software component. In other words, CT can perform exhaustive testing by

reducing the number of test cases [3].

Pairwise or 2-way testing which is a form of CT has been used effectively in

several practical software testing [4]. However, many studies have shown software

faults maybe as a result of more than two inputs (i.e., parameters and values) [3, 5,

6]. Software faults that happen by more than two interactions and are uniform (i.e.,

where the parameter values are equal) are known as a t-way and but there are many

cases that showed the interaction between components are mostly non-uniform or

have same input values [1, 7, 8]. Therefore, variable-strength (VS) was introduced

as a type of combinatorial testing to handle cases where there are more than two

non-uniform interaction input values [9, 10].

Variable-strength combinatorial testing is an NP-hard computational problem

as in the case of combinatorial testing. In the case of CT strategies, these strategies

are based on the artificial intelligence (AI) and heuristic algorithms and have shown

to be efficient and effective in producing minimum test suite of interaction. As a

result, many CT strategies based on the Al and heuristic algorithms have been

proposed but only a few of these strategies can be deployed as variable-strength to

generate optimal test suite [11]. Simulated Annealing (SA) and Particle Swarm

Optimization (PSO), which are flexible, practical and one of the most popular

heuristic algorithms support the generation of test suites based on variable-strength

interaction [7, 12, 13].

As an extension of our previous works [14, 15], hybrid artificial bee colony

algorithm (HABC) is developed and employed to support variable strength

combinatorial testing. HABC has been enhanced to support uniform and non-

uniform covering array (CA) and for generating optimal test suite size for

variable strength-covering array (VSCA). The remainder of this paper is

structured as follows: Section 2 presents combinatorial interaction

testing. Section 3 presents a comprehensive review on VSCA strategies. An

overview of ABC algorithm is discussed in Section 4. Section 5 addresses the

HABC strategy. Sections 6 and 7 presents the experimental and statistical test

results conducted. Section 8 highlights threats to validity of the study and Section

9 addresses the conclusion.

748 A. K. Alazzawi et al.

Journal of Engineering Science and Technology April 2020, Vol. 15(2)

2. Combinatorial Interaction Testing

2.1. Theoretical background

The major motive of t-way testing to produce a test set size (i.e., number of test

cases); where this test set indicates an array of (n x m). This n x m signifies the

number of rows (i.e., the generated number test cases) and the combination value

of each test case respectively. All input parameters and associated value are covered

by a test set, where each pair of values can be covered by one test case at least.

However, generating the effective test set (i.e., test set with a few test cases) still

the main weakness of t-way testing.

In general, each test set contains a specific number of parameters (P1, P2, ..., Pn)

with associated values (V1, V2,, Vi) for every single parameter. In addition, each

test set has interaction strength t as N x m, whilst each column involved one value

and the sub-array N x t includes all combination minimums once a time.

Covering Array (CA) is a well-established mathematical theme which

combinatorial testing theoretically depends on to produce test suite [16]. For

statistical experiment's purpose, CA is a preferred alternative in comparison to the

old mathematical theme such as Orthogonal Array (OA) [17]. Generally, all

systems under test (SUT) include various items such as parameters and their values

in addition to t to signify as the interaction strength level.

Definition 1: The earlier description mentioned that each SUT has various

parameters (P) linked with their values (V), the CA termed uniform interaction

strength CA (N, t, vP) if all V equates to each other for all P. For example, it is

presumed that a system with 4-parameters are linked to 2-values each, it can be

identified as CA (6; 2, 24). The system includes six test cases (rows) that are created

in reference to four parameters (columns).

Definition 2: MCA (N, t, v1
p1 v2

p2 v3
p3 . . .‥vi

pj) is representing the mixed

covering array as the number of values are not matched to each parameter, which

is different from uniform interaction strength. As an example, a system with four

parameters, e.g., 3-parameters with 2-values and 1-parameter with 3-values is

expressed as MCA (12, 3, 23, 31). The system includes 12 test incases (rows) that are

created in reference to four parameters (columns).

Definition 3: Additional to CA and MCA notation in the real-world systems,

due to the complexity of the systems resulting in the advancement of technology,

there is a big difference in interaction of parameters. Parameters may be stronger

or may not interact with each other, and this leads to a variable strength covering

array (VSCA). The VSCA is proposed to solve this problem and can be represented

as VSCA (N; t, vp, (CA1 … CAi)), where both CA1 and CAi represent a subset of

main-set with different interaction strength.

To illustrate VSCA, a system with 5-parameters have 3-values each, where the

VSCA concepts consider t=3 for main-set and t=2 for the sub-set as shown in Fig.

1. The CA can be represented as VSCA (N, 3, 35, (CA (N, 2, 33)). The system

involves 27 test cases (rows) that are produced based on five parameters (columns).

HABC: Hybrid Artificial Bee Colony for Generating Variable T-way Test Sets 749

Journal of Engineering Science and Technology April 2020, Vol. 15(2)

Fig. 1. Variable strength interaction system.

2.2. T-way test generation problem

The t-way testing technique is vital for generating test cases; however, these

techniques are dependent on the element’s behavior interaction within the system.

A web configurable software system is utilized to justify the concept of t-way

testing techniques in generating the optimal test set as seen in Fig. 2. This system

is composed of five components, namely; a device, a processor, the operating

system (OS), a browser, and a Screen with Fig. 2 illustrating their relationships.

This system has been employed as a simple illustration of the main idea in t-way

testing regarding variable strength, and uniform strength. Each component of this

system is known as a separate parameter, and each parameter has one or more

values with Table 1 displaying the parameters of the systems and their respective

values. In this example, the number of parameters is five, consisting of three

parameters with two values and two parameters with three values. The adopted

display tab interaction strength is t=2; the CA is represented as MCA (N, 2, 32 23).

Table 1. A Web configurable software system.

Parameters

Device Processor OS Browser Display

PC Dual core Android Firefox 720 x 1280

Phone Multi core IOS Chrome 1024 x 768

 Windows Safari

The exhaustive test case to test this system completely is (i.e., 2 × 2 × 3 × 3 ×

2= 72) test cases. Assuming the t that denotes the interaction strength is 2, the test

set created is 9 test cases only. Consequently, approximately 80% of the resources

will be saved. The interactions between parameters are directly proportional to the

number of test cases. In general, the minimum test case for each combination value

is one test case [18, 19]. The study of NASA application showed if we tested

parameter (t=1), (t=2) and (t=3), it can detect 67%, 93% and 98% failures

respectively. It will eventually achieve 100% failure detection with (t = 4-6)

interaction of elements [20, 21]. Therefore, increasing the interaction strength of

testing is not important. However, it often comes that certain components have

complex interactions while others may have few or none. For this reason, it is not

important to go for higher interaction strength of testing.

To achieve better testing, identify some components (i.e., subsets) with strong

interactions, and increase the interaction strength higher than the interaction

strength of the main components to detect the faults by their interactions. This is

called the variable strength-covering array (VSCA). A web configurable software

system example is next shown to understand VSCA. In the web, configurable

750 A. K. Alazzawi et al.

Journal of Engineering Science and Technology April 2020, Vol. 15(2)

software assumes that all parameter combinations require 2-way and a device,

processor and OS that requires 3-way interaction. In this case, the configuration

system is indicated as VSCA (N; 2, 2332, CA (3, 2231)). Therefore, a web

configurable software system required 12 test cases for VSCA. We can notice that

VSCA achieving higher coverage of the fault detection.

3. Related Work

Many researchers have suggested several t-way strategies for the last two decades.

Most of these suggested strategies such as Bat-Testing Strategy [22-28], Jenny [29],

etc. have been focusing on the uniform t-way and pairwise testing strategies (where

the interaction strength t=2). Therefore, most of the available strategies depends on

orthogonal array like (OA) [30, 31], MOA [32]. However, still, there are restricted in

application to small configurations [33, 34] only, although with fast execution time.

Fig. 2. An illustration of the web configurable software system.

Given the mentioned constraints above, focus has shifted to t-way uniform

strategies such as GTWay [35], Jenny [29], TCG [36], AETG [37], TConfig [38]

and MIPOG [39] that support the uniform interaction strength. However, due to the

progress in software domain, it is hard to find uniformity as interaction between

parameters became hard. Therefore, several strategies have been suggested to

support variable strength interaction such as VS-PSTG [7], ACS [40], IPOG [33,

41], ITTDG [42], Density [43], and PICT [44, 45]. Consequently, one of the goals

of this paper is to focus on uniform interaction strength and variable interaction

strength for t-way strategies that previously were ignored. These strategies are

categorized based on the general computational based strategies or Meta-heuristic

based strategies as follows:

3.1. General computational based strategies

ITTDG strategy is categorized as a one-test-at-a-time strategy that supports the

variable strength interaction. It generates one test case iteratively to achieve the

maximum coverage for all interactions. At the end, ITTDG selects the best test

cases (test set) of several generated test case candidates that can achieve the

maximum coverage of the uncovered components. The test case selection of

ITTDG strategy adopts random heuristics and iterative as AETG. However, AETG

HABC: Hybrid Artificial Bee Colony for Generating Variable T-way Test Sets 751

Journal of Engineering Science and Technology April 2020, Vol. 15(2)

the contrary of the ITTDG strategy, where to produce new test case for every single

iteration; ITTDG generates new candidates test case when there is a tie situation

(i.e., when more than one value can cover the most uncovered tuples).

PICT [45] is proposed by Czerwonka in 2006 to generate a complete test set,

which has been used extensively by Microsoft for software testing purposes. Based

on the SUT configuration, PICT generates all possible combinations and marks

every combination as an uncovered combination. Therefore, the test engineer will

announce if there is any constraint. Based on these constraints, the combination

will be marked as excluded. After that, one of the uncovered combinations will be

selected and extended until completion using a greedy heuristic. This is done to

achieve the maximum coverage as possible as without excluded any combination.

The selected test case will be stored as the final test set; this procedure will be

repeated until all uncovered combinations are covered.

Another strategy that can be characterized as one-test-at-a-time is Density. It

works exactly like PICT and ITTDG, however, the generated test case for this

strategy depends completely on a mathematical formula obtained from density

properties. Bryce introduced Density [46, 47] to generate the final t-way test set,

and to generate the uniform t-way. However, density concepts are extended by

Wang et al [43] to support the variable strength interaction by introducing new

formulae for local and global density [43, 48].

In contrast to one-test-at-a-time strategies, IPOG is one-parameter-at-a-time

strategy. The IPOG generation process begins with the creation of a full test set for

the initial t of parameters (the highest t will be chosen for the VSCA (t) case) as an

initial test set. IPOG generation process is dependent on two processes namely

horizontal and vertical extension as one of one parameter at time strategies. The

horizontal extension will begin to add one parameter to the test set continuously

until the test set covered all parameters. Vertical extension is responsible to ensure

all combinations are covered but if there is a case of the test set that cannot cover

some combinations, the test set will be expanded vertically by addition of several

new test cases on the initial set.

3.2. Meta-heuristic based strategies

All strategies mentioned earlier are a part of the computational approach; however,

several strategies have been proposed that depends on artificial intelligence (AI)

approach such as VS-PSTG [7, 49] and ACS [40] for generating a t-way test set. VS-

PSTG and ACS are t-way strategies based on particle swarm optimization and ant

colony optimization respectively as the key feature. The searching process of VS-

PSTG for the best test case is inspired by flocks of birds. In order to detect the best

test case, VS-PSTG iteratively merges local and global search to cover the interaction

combinations greedily. For ACS, the ant colony searches for the best test case on

some paths, the path's qualities are evaluated in terms of the pheromones.

Consequently, the best test case that corresponds with the optimum path is included

in the final test set. VS-PSTG and ACS are exactly similar to PICT, Density and

ITTDG as one-test-at-a-time strategies. Alsewari [18] proposed Harmony Search

Strategy (HSS) based on Harmony Search algorithm for test set generation. HSS is

one of the existing strategies that addressed the support for constraints by mimicking

musician behaviour to create good music. Iteratively, HSS executes the global search

by inserting randomized values to the Harmonic memory whereby the local best value

752 A. K. Alazzawi et al.

Journal of Engineering Science and Technology April 2020, Vol. 15(2)

can be selected considering rate probability. The best value at each iteration will be

added to the final test set until all required interactions are covered.

4. An Overview of Artificial Bee Colony Algorithm

Artificial Bee Colony (ABC) is one of the meta-heuristics algorithms inspired by

the foraging behaviour of honeybee colony as proposed by Karoboge in 2005 [50].

This algorithm is performed by three kinds of bees: employed bees, onlooker bees,

and scout bees. The onlooker bees and scout bees are also identified as unemployed

bees. These bees are assigned to increase the food source from the hive (nectar) by

dividing the bee population and organize them with a specific task. Half of the

colony is presented by an employed bee, while the remaining half is represented by

onlooker bee. Employed bees are given the task of exploring the higher nectar

potential food source and convey the information to standby onlooker bees at the

hive. The information includes the navigation, location, and potential of the food

source. The selection process of food source made by onlooker bees is in reference

to the information disseminated by the employed bees. Scout bees are derived from

employed bees and assigned to search the environment randomly for new or better

food source discovery. In general, employed bees and onlookers perform

exploitation process (where exploitation refers to finding good solutions), while

scout bees perform exploration process (where exploration refers to the avoiding

being trapped in local optima by widening the search to new areas). The

behavioural manner of an artificial bee colony can be divided into four phases:

i. Initial phase: - using Eq. (1), the algorithm initiates the food source discovery

by randomly searching the environment, provided it is within the algorithm's

parameters border; producing the initial food sources.

𝑥𝑖𝑗 = 𝑥𝑚𝑖𝑛,𝑗 + rand (0,1)(𝑥𝑚𝑎𝑥,𝑗 - 𝑥𝑚𝑖𝑛,𝑗) (1)

ii. Employed bee phase: -Upon identified, the food source information will be

detected by the employed bees. The employed bee numbers equate to a number of

a food source at the ratio 1:1. The employed bees will gather the nectar and return

to the hive with all the standby bees to convey the information by dancing in the

dance area. The employed bee then transformed into a scout bee if the nectar of

source is running out so it can begin to search for a better food source. The

discovery for a new food source is expressed as below Eq (2).

𝑉𝑖,𝑗 = 𝑋𝑖,𝑗 + rand (-1, 1)(𝑥𝑖,𝑗 - 𝑥𝑘,𝑗) (2)

Upon detection of the food source, the selection food source probability is

expressed using Eq (3).

𝑓𝑖𝑡𝑛𝑒𝑠𝑠𝑖 = {

1

1+𝑓𝑖
 , 𝑖𝑓 𝑓𝑖 ≥0

 1 + |𝑓𝑖|, 𝑖𝑓𝑓𝑖 <0
 (3)

iii. Onlooker bee phase: -The amount of nectar is the main criterion for

onlooker bee food source selection activity. The information on the profitability of

the food nectar is transmitted by employed bee on the dance area. The food source

selection probability is expressed using Eq. (4).

Pi=
𝑓𝑖𝑡𝑖

∑ 𝑓𝑖𝑡𝑛
𝑠𝑛
𝑛=1

 (4)

HABC: Hybrid Artificial Bee Colony for Generating Variable T-way Test Sets 753

Journal of Engineering Science and Technology April 2020, Vol. 15(2)

iv. Scout bee and Limit phase: Upon completion of their tasks, both employed

and onlooker bees, the search continues for any remaining source that is not yet

explored. The credibility of the food source is calculated using limit Eq. (5). The

limit is a control parameter where the counter value of the food source is compared

to the algorithm, if it is superior to the limit, the food source will be disregard. A

better food source discovered by scout bee will replace the disregard food source.

The second phase to the fourth phase is repeated until all solutions are found. The

flowchart on Fig. 3 represents all the bee’s interaction and activities.

limit = c.ne .D (5)

where ne signify the number of unemployed bees, c is a constant coefficient with a

recommended value of 0.5 or 1. ABC minimum application requirement is one

scout bee implementation. Scout-type operations hypothetical searches in the

whole D-dimensional space. As they provide exceptional effectiveness to the ABC

method in searching the best global solution. Scout bees are independent when it

comes to global optimum solution discovery in comparison to other bee types. Both

(employed/onlooker) concurrently check on their local candidate solutions for the

global best. Thus, it is impossible for ABC to be trapped in local optima [50].

Fig. 3. Flowchart of the artificial bee colony algorithm.

5. Hybrid Artificial Bee Colony Algorithm

The swarm intelligence (SI) algorithms are the most utilized algorithm for the past

twenty years. Its establishment was inspired from foraging behaviour of bird, fish,

754 A. K. Alazzawi et al.

Journal of Engineering Science and Technology April 2020, Vol. 15(2)

bee and insect colonies such as termites and ants. Its derives such as the Artificial

Bee Colony (ABC) algorithm [50], Bacterial a Foraging Optimization a (BFO) [51],

Particle a Swarm Optimization (PSO) [52], etc. are applied to a real world an

optimization a problem. Bee colony algorithm is one of the derivatives of SI

algorithm that are used to solve optimization problems. This algorithm has various

advantages which helps to implement intelligent search such as “queen bee, task

selection, bee foraging, navigation systems, nest site selection, mating, collective

decision making, bee dance (communication), floral/pheromone laying" [53].

ABC algorithm has its downfall as well where its convenient operation is very

dependent on the solution development process. Suppose it has insufficiencies, it

will increase the convergence speed of the algorithm [53]. The occurrence of rapid

convergence in this algorithm can lead to obstructions for several complications in

the local optimum. Besides that, the information sharing activity is being completed

in one a dimension with a random neighbour to one solution improvement, thus the

speed of convergence is inversely proportional to problem dimension. [54]. Hence,

the weak performance as a result of information sharing activity of the ABC

algorithm [55]. The chance to search optimization algorithm is very low, thus the

failure to get global optimum for most optimization problem. These limitations can

be surpassed by tuning or modifying different characteristics of ABC algorithm

such as convergence speed, exploration and exploitation ability, and missed being

trapped at the local optimum [53, 54]. However, the focus is mainly on information

conveying activity or solution improvements, which are the dual most vital

parameter of exploitation and exploration ability of the algorithm.

From this research, we believe there still need for ABC algorithm improvement

by adopting some characteristics from particles in the PSO algorithm operation. The

mechanism of PSO is one of a kind in terms of information sharing and solution

improvement processes. It requires a crucial and unique parameter termed as Weight

Factor (w). Referring to the previous solution, the velocity parameter is vital for

required improvement degree control. Besides velocity, there are dual factors (C1 and

C2) which are required for the relative influence of cognitive (self-confidence) and

social (swarm-confidence) components determination, respectively. (Eq. (6)).

𝑉𝑖,𝑑
𝑡+1 = 𝑊𝑡 * 𝑉𝑖,𝑑

𝑡 + 𝐶1
𝑡 * 𝑟1 * (𝑝𝑏𝑒𝑠𝑡𝑖,𝑑

𝑡 - 𝑋𝑖,𝑑
𝑡) +𝐶2

𝑡 * 𝑟2 *(𝑔𝑏𝑒𝑠𝑡𝑖,𝑑
𝑡 - 𝑋𝑖,𝑑

𝑡) (6)

The particles in PSO depends on three categories for the movement operation or

the local search. The following are the categories:

i. The variation of velocity will affect every subsequent particle movement. It

can be assumed that particles movement is not random or arbitrary.

ii. The local best solution variable generates the best local information which

later links with the chosen particle's next move value.

iii. The particle’s next move best dependent on global best solution variable.

The absence of these properties is identified in the ABC algorithm. As shown in

Eq. (2), the selected neighbour solution was randomly searched to determine the size

that is a parameter for solution improvement or local search that bees depend on,

which represents the exploitation process. This has proven that the used value for

experimental solutions a in every single loop is a random. On the contrary, the velocity

value of PSO varies. The local search of ABC algorithm lacks an information-based

a procedure, where the discovered solutions (the best) usually not held in the

population. Therefore, it will bean exchanged with other a generated solutions randomly

HABC: Hybrid Artificial Bee Colony for Generating Variable T-way Test Sets 755

Journal of Engineering Science and Technology April 2020, Vol. 15(2)

by scout bee; it may not clearly contribute in generated experimental solutions. The

chosen solution will be selected at the improvement part (local search) of employed

bee and onlooker bee stage. Nevertheless, onlooker bees create experimental

solutions using a higher fitness value of the solutions. The onlooker bee is highly

dependent on the probability of the solution value. Scout bees have the ability to

constraint problematic search. For example, premature convergences providing a

global mechanism search for ABC. PSO has this limitation in its search procedures.

PSO keeps the best solution despite this shortcoming and the new velocities are

utilized to generate new solutions. With a shorter time, the regions illustrated

considered as search space is ransacked in detail. This is a good enough justification

why the algorithm will be trapped in the local minima and cause limitation for ABS

as suggested by the proposed HABC. This ABC limit parameter intercepts the

algorithm from trapping in the local minima with the act of inserting the random

selected solution into search space occasionally. The limit parameter represents the

exploration process. The strengths of the PSO and the strengths of ABC are combined

to minimize optimization search troubles as proposed in HABC algorithm. However,

there are still several issues among researchers about ABC and PSO that are taken

into account. There are idea clashes in terms of execution time as PSO is faster than

ABC, but ABC is more accurate solution than PSO [56].

HABC algorithm proposed that the bee colony size is comprised mainly into

three types of bees known as employed, onlookers and scouts bee. The food source

thus equates to the colony size. The employed bee transformed into a scout bee

once the food source is exhausting. The scout bee then searches for a better food

source to replace the old one. The flowchart on Fig. 4 represents all the bee’s

interaction and activities of HABC algorithm.

The discovery activity of HABC is listed as the following:

• The algorithm initiates the food source discovery and identifies the amount of

nectar source.

• The employed bee conveys the information of the selected food source to the

standby onlooker bee within the dance area (in the hive). The food source with

higher nectar amount is selected by the onlooker bee.

• The selected food source is examined if it needs a new replacement food source

using Eq. (6).

• If the food source failed, an employed bee transformed into a scout bee. The

scout bee is assigned to find a replacement for the old food source using Eq. (1).

The main steps of the HABC algorithm are shown as follows in Fig. 5:

The HABC algorithm search cycle is enclosed within these three steps;

i. Employed bees evaluate the profitability of the food source in the search

space, choose the food source with higher random discovery probability,

and selected by the onlooker bees.

ii. PSO algorithm as in Eq. (6) is an alternative equation for the local

discovery of the employed bee phase replacing Eq. (2).

Scout bees use Eq. (1) search for better food source if the parameter is out limit

(similar to the original ABC).

756 A. K. Alazzawi et al.

Journal of Engineering Science and Technology April 2020, Vol. 15(2)

Fig. 4. Flowchart of the hybrid artificial bee colony algorithm.

Fig. 5. Hybrid artificial bee colony algorithm.

6. Experiments

6.1. Experimental Setup

The main goal of this section is to evaluate the proposed HABC strategy compared

to the existing tools and strategies such as Jenny, TConfig, PICT, TVG, IPOG,

IPOG-D, VS-PSTG, ACS, SA, HSS, and VS-MGS. The benchmarking data of the

tools and strategies were adopted from the published results in [14, 15, 18, 41, 57-

61]. The HABC strategy parameters were set at Nbees = 5, maxCycle= 1000, limit

= 100, C1 & C2=2.0 and W=0.9. All experiments are implemented on a Windows

7 (OS) desktop computer with 3.40 GHz Xeon (R) CPU E3 and 8GB RAM. The

Java language JDK 1.8. It was used to code and implement the HABC. Figure 6

shows the programming code during the implementation of the actual input.

HABC: Hybrid Artificial Bee Colony for Generating Variable T-way Test Sets 757

Journal of Engineering Science and Technology April 2020, Vol. 15(2)

Fig. 6. The HABC strategy implementation.

6.2. Experimental evaluation

Due to the randomization characteristic of the proposed HABC strategy, the

experiment runs twenty independent times for each configuration system to get the

best result. Tables 2 to 7 present the experimental result, and each table presents

the optimal test set size for each configuration. The dark cell with (*) represents the

optimal test set size and the cell with NA or NS represents (not available) and (not

supported) respectively. Tables 2, 3 and 4 mainly focus on the t-way, while Tables

5, 6 and 7 focus on VSCA.

The proposed HABC strategy showed a good result compared to other existing

strategies as depicted in Table 2. HABC produced the optimal test set size for both

configurations No. 3 and No. 5 when the interaction strength equals 4 and 6.

However, HABC strategy generated similar results to CS and HSS for

configuration No.1 and No. 4. ITCH produced the optimal test set size when the

interaction strength equals 3. Jenny, TConfig, PICT, TVG, CTE-xl, IPOG-D,

IPOG, PSTG and ABC-TG produced worst results most of the time compared to

HABC, HSS and CS. In Table 3, the HABC strategy showed a good result better

than HSS, CS, PSTG and ABC-TG. HABC strategy produced the most minimum

test set size for configuration No. 1 like both of ITCH, IPOG-D, and PSTG. On the

other hand, HABC strategy produced the optimal test set size when the number of

the parameters was 9 and 10 for Configuration No. 6 and No. 7. ITCH and CS

produced the optimal test set size for configuration No. 4, No. 5 and No. 2

respectively. Jenny, TConfig, PICT, TVG, CTE-Xl, IPOG-D, IPOG, PSTG, HSS

and ABC-TG produced worst results most of the time compared to HABC. From

Table 4, it is evident that HABC strategy outcomes excelled for both of the

configuration No. 1, No. 3, No. 4 and No. 5 and regarding configuration No. 2

produced a competitive test set close to the optimal test set.

758 A. K. Alazzawi et al.

Journal of Engineering Science and Technology April 2020, Vol. 15(2)

Tables 5, 6 and 7 highlights the VSCA experimental results with Tables 5 and

6 fairly focusing on variable strength interaction with the uniform covering array,

and Table 7 on variable strength interaction with a mixed covering array (Non-

uniform). In overall, HABC strategy produced four of the optimal test set size for

the sub-configurations No. 9 (CA (5, 37) and No. 11 (CA (6, 37) in Table 5, the sub-

configuration No. 8 (CA (4, 37)) in Table 6, and the sub configuration No. 12 (MCA

(5, 43 53)) in Table 7 compared to other existing strategy's results. On the other

hand, some of HABC strategy results match the best results of other strategies for

most of the sub configurations. The shaded and bold cells presented the best test set

size that matched with other results reported by existing strategies. HABC and HSS

had the best results followed by PSTG, SA, ACS, and GS respectively. Overall,

WHITCH, ParaOrder, Density, and PICT produced the worst results.

T
a

b
le

 2
.

C
A

 (
N

;
3

,
3

P
),

 P
 i

s
v
a

ri
a

b
le

 f
ro

m
 4

 t
o

 1
0
.

T
a

b
le

 3
.

C
A

 (
N

;
3

,
V

7
),

 V
 i

s
v

a
ri

a
b

le
 f

ro
m

 2
 t

o
 6

.

Number

Parameter

P
u

re
 C

o
m

p
u

ta
ti

o
n

a
l

S
tr

a
te

g
ie

s
A

I-
S

tr
a

te
g

ie
s

Jenny

Best

TConfig

Best

ITCH

Best

PICT

Best

TVG

Best

CTE-XL

Best

IPOG-D

Best

IPOG

Best

PSTG

Best

ABC-TG

Best

CS

Best

HSS

Best

HABC

Best

HABC

Avg.

1

4

3
4

3
2

2
7

3
4

3
4

3
4

2
7

3
9

2
7

3
3

2
8

3
0

2
7

2
9

.7
5

2

5

4
0

4
0

4
5

4
3

4
1

4
3

4
9

4
3

3
9

4
0

3
8

*

3
9

3
9

4
3

.0
0

3

6

5
1

4
8

4
5

4
8

4
9

5
2

4
9

5
3

4
5

4
3

4
3

4
5

4
3

4
5

.5
5

4

7

5
1

5
5

4
5

*

5
1

5
5

5
4

6
3

5
7

5
0

5
0

4
8

5
0

4
7

5
0

.9
0

5

8

5
8

5
8

4
5

*

5
9

6
0

6
3

6
3

6
3

5
4

5
4

5
3

5
4

5
0

5
4

.3
0

6

9

6
2

6
4

7
5

6
3

6
4

6
6

7
1

6
5

5
8

5
8

5
8

5
9

5
6

*

5
8

.8
5

7

1
0

6
5

6
8

7
5

6
5

6
8

7
1

7
1

6
8

6
2

6
2

6
2

6
2

6
1

*

6
3

.5
0

Number

Value

P
u

re
 C

o
m

p
u

ta
ti

on
al

 S
tr

a
te

gi
es

A

I-
S

tr
at

eg
ie

s

Jenny

Best

TConfig

Best

ITCH

Best

PICT

Best

TVG

Best

CTE-XL

Best

IPOG-D

Best

IPOG

Best

PSTG

Best

ABC-TG

Best

CS

Best

HSS

Best

HABC

Best

HABC

Avg.

1
2

14

16

13

15

15

15

14

19

13

12

12

12

12

14
.7

00

2
3

51

55

45
*

51

55

54

63

57

50

49

49

50

47

50
.9

00

3
4

12
4

11
2

11
2

12
4

13
4

13
6

11
2

20
8

11
6

11
6

11
7

12
1

11
0*

11

7.
85

4
5

23
6

23
9

22
5

24
1

26
0

26
7

29
2

27
5

22
5

22
8

22
3

22
3

22
2*

22

4.
90

5
6

40
0

42
3

11
77

41

3
46

4
46

7
53

2
45

5
42

5
39

1
N

A

N
A

37

6*

38
4.

80

HABC: Hybrid Artificial Bee Colony for Generating Variable T-way Test Sets 759

Journal of Engineering Science and Technology April 2020, Vol. 15(2)

Table 4. Test set size for VSCA (N, 2, 315, {C}).

N
u

m
b

er

{C}

Pure Computation Strategies AI- Strategies

W
H

IT
C

H

B
est

IP
O

G

B
est

P
a
ra

O
rd

er

B
est

D
en

sity

B
est

T
V

G

B
est

P
IC

T

B
est

S
A

B
est

A
C

S

B
est

P
S

T
G

B
est

H
S

S

B
est

P
w

iseG
en

B
est

G
S

B
est

V
S

-M
G

S

B
est

H
A

B
C

B
est

H
A

B
C

A
vg

.

1 Ø
31 21 33 21 22 35 16 19 19 20 16 19 20 19 21.300

2 CA (3, 3
3
) 48 27 27 28 27 81 27 27 27 27 27 28 27 27 27.850

3 CA (3, 3
4
) 59 39 27 32 35 105 27 27 30 27 27 29 31 30 34.550

4 CA (3, 3
5
) 62 39 45 40 41 131 33 38 38 38 33 38 39 39 42.900

5 CA (4, 3
4
) 103 81 NA NA 81 245 NA NA 81 81 81 81 81 81 81.200

6 CA (4, 3
5
) 118 122 NA NA 103 301 NA NA 97 94 91* 92 96 93 103.40

7 CA (4, 3
7
) 189 181 NA NA 168 505 NA NA 158 159 158 155 153* 154 160.20

8 CA (5, 3
5
) 261 243 NA NA 243 730 NA NA 243 243 243 243 NA 243 243.10

9 CA (5, 3
7
) 481 581 NA NA 462 1356 NA NA 441 441 441 441 NA 439* 446.15

10 CA (6, 3
6
) 745 729 NA NA 729 2187 NA NA 729 729 729 729 729 729 729.00

11 CA (6, 3
7
) 1050 967 NA NA 1028 3045 NA NA 966 902 NA 960 NA 830* 961.10

12 CA (3, 3
4
) CA (3, 3

5
) CA (3, 3

6
) 114 51 44 46 53 1376 34* 40 45 45 NA NA NA 82 85.100

13 CA (3, 3
6
) 61 53 49 46 48 146 34* 45 45 45 40 46 44 45 46.700

14 CA (3, 3
7
) 68 58 54 53 54 154 41* 48 49 51 47 50 48 50 51.850

15 CA (3, 3
9
) 94 65 62 60 62 177 50 57 57 62 57 57 57 50 60.100

16 CA (3, 3
15

) 132 NS 82 70 81 83 67* 76 74 77 74 75 81 81 83.200

Table 5. Test set size for VSCA (N; 3, 315, {C}).

N
u

m
b

er

{C}

Pure Computation Strategies AI- Strategies

W
H

IT
C

H

B
est

IP
O

G

B
est

P
a
ra

O
rd

er

B
est

D
en

sity

B
est

T
V

G

B
est

P
IC

T

B
est

S
A

B
est

A
C

S

B
est

P
S

T
G

B
est

H
S

S

B
est

P
w

iseG
en

-V
S

C
A

B
est

G
S

B
est

V
S

-M
G

S

B
est

H
A

B
C

B
est

H
A

B
C

A
vg

.

1 Ø 75 82 NA NA 84 83 NS NS 75 75 NA 74* NA 85 86.50

2 CA(4, 3
4
) 129 87 NA NA 93 1507 NS NS 91 87 NA 88 NA 94 98.55

3 CA(5, 3
5
) 273 243 NA NA 244 5366 NS NS 243 243 NA 243 NA 243 247.10

4 CA(6, 3
6
) 759 729 NA NA 729 12,609 NS NS 729 729 NA 729 NA 729 729.60

5 CA(4, 3
5
) 151 119 NA NA 118 1793 NS NS 114 112 NA 111* NA 115 120.25

6 CA(5, 3
6
) 387 337 NA NA 323 5387 NS NS 314 309 NA 308* NA 325 331.25

7 CA(6, 3
7
) 1441 1215 NA NA 1018 16,792 NS NS 1002 888* NA 959 NA 964 994.85

8 CA(4, 3
7
) 219 183 NA NA 168 2781 NS NS 159 159 NA 158 NA 157* 163.40

9 CA(4, 3
9
) 289 227 NA NA 214 3095 NS NS 195 199 NA 194* NA 199 202.65

10 CA(4, 3
11

) 354 259 NA NA 256 2824 NS NS 226 242 NA 226* NA 238 242.60

11 CA(4, 3
15

) 498 498 NA NA 327 NA NS NS 284 323 NA 282* NA 315 324.25

12 CA(5, 3
7
) 481 713 NA NA 471 7475 NS NS 437 448 NA 437 NA 442 445.75

13 CA(5, 3
8
) 620 714 NA NA 556 8690 NS NS 516 516 NA 516 NA 531 537.55

14 CA(6, 3
8
) 1513 2108 NA NA 1479 22,833 NS NS 1396* 1430 NA 1397 NA 1414 1425.6

15 CA(6, 3
9
) 1964 2124 NA NA 1840 26,729 NS NS 1690 1739 NA 1687 NA 1737 1743.45

Table 6. Test set size for VSCA (N, 2, 43 53 62, {C}).

N
u

m
b

er

{C}

Pure Computation Strategies AI- Strategies

W
H

IT
C

H

B
est

IP
O

G

B
est

P
a
ra

O
rd

er

B
est

D
en

sity

B
est

T
V

G

B
est

P
IC

T

B
est

S
A

B
est

A
C

S

B
est

P
S

T
G

B
est

H
S

S

B
est

P
w

iseG
en

-V
S

C
A

B
est

G
S

B
est

V
S

-M
G

S

B
est

H
A

B
C

B
est

H
A

B
C

A
vg

.

1 Ø 48 43 49 41 44 43 36 41 42 42 37 NA 41 42 46.050

2 CA (3, 43) 97 83 64 64 67 384 64 64 64 64 64 NA 64 64 64.000

3 MCA (3, 43 52) 164 147 141 131 132 781 100* 104 124 116 120 NA 120 121 130.90

4 CA (3, 53) 145 136 126 125 125 750 125 125 125 125 125 NA 125 125 125.00

5 MCA (4, 43 51) 354 329 NA NA 320 1920 NS NS 320 320 320 NA 320 320 320.00

6 MCA (5, 43 52) 1639 1602 NA NA 1600 9600 NS NS 1600 1600 1600 NA NA 1600 1600.0

7 CA (3, 43) CA (3, 53) 194 136 129 125 125 8000 125 125 125 125 125 NA NA 125 125.00

8 MCA (4, 43 51) MCA (4, 52 62) 1220 900 NA NA 900 288,000 NS NS 900 900 900 NA NA 900 900.00

9 CA (3, 43) MCA (4, 53 61) 819 750 NA NA 750 48,000 NS NS 750 750 750 NA NA 750 750.00

10 CA (3, 43) MCA (5, 53 62) 4569 4500 NA NA 4500 288,000 NS NS 4500 4500 4500 NA NA 4500 4500.0

11 MCA (4, 43 52) 510 512 NA NA 496 2874 NS NS 472 453* 454 NA 461 461 476.75

12 MCA (5, 43 53) 2520 2763 NA NA 2592 15,048 NS NS 2430 2430 NA NA NA 2411* 2437.0

13 MCA (3, 43 53 61) 254 215 247 207 237 1266 171* 201 206 212 204 NA 203 212 219.20

14 MCA (3, 51 62) 188 180 180 180 180 900 180 180 180 180 180 NA 180 180 180.00

15 MCA (3, 43 53 62) 312 NS 307 256 302 261 214* 255 260 263 260 NA 258 269 276.45

760 A. K. Alazzawi et al.

Journal of Engineering Science and Technology April 2020, Vol. 15(2)

Table 7. Wilcoxon signed rank sum test for Table 2.

Pairs

Ranks Test statistics

Conclusion ABCS < ABCS > ABCS = Z Asymp. Sig. (2-

tailed)

𝛂

𝐡𝐨𝐥𝐦

HABC-HSS 6 0 1 2.225996 0.026014 0.0041 Reject the null
hypothesis

HABC- PICT 7 0 0 2.387848 0.016947 0.0045 Reject the null
hypothesis

HABC-

TConfig

7 0 0 2.387848 0.016947 0.0050 Reject the null
hypothesis

HABC- CTE-

XL

7 0 0 2.374929 0.017552 0.0055 Reject the null
hypothesis

HABC- TVG 7 0 0 2.374929 0.017552 0.0062 Reject the null
hypothesis

HABC- Jenny 7 0 0 2.374929 0.017552 0.0071 Reject the null
hypothesis

HABC-IPOG 7 0 0 2.370669 0.017756 0.0083 Reject the null
hypothesis

HABC-ABC-

TG

6 0 1 2.207471 0.027281 0.0100 Reject the null
hypothesis

HABC-IPOG-

D

6 0 1 2.207471 0.027281 0.0125 Reject the null
hypothesis

HABC-PSTG 5 0 2 2.031856 0.042168 0.0166 Reject the null
hypothesis

HABC-CS 5 1 1 1.725324 0.084469 0.0250 Retain null
hypothesis

HABC- ITCH 4 2 1 1.261412 0.207160 0.0500 Retain null
hypothesis

Table 8. Wilcoxon signed rank sum test for Table 3.

Pairs

Ranks Test statistics

Conclusion ABCS < ABCS > ABCS = Z Asymp. Sig. (2-

tailed)

𝛂

𝐡𝐨𝐥𝐦

HABC-PSTG
5 0 0 2.031856 0.042168 0.0050

Reject the null
hypothesis

HABC-IPOG-

D
5 0 0 2.031856 0.042168 0.0055

Reject the null
hypothesis

HABC- Jenny
5 0 0 2.031856 0.042168 0.0062

Reject the null
hypothesis

HABC-IPOG
5 0 0 2.022600 0.043114 0.0071

Reject the null
hypothesis

HABC- CTE-

XL
5 0 0 2.022600 0.043114 0.0083

Reject the null
hypothesis

HABC- TVG
5 0 0 2.022600 0.043114 0.0100

Reject the null
hypothesis

HABC- PICT
5 0 0 2.022600 0.043114 0.0125

Reject the null
hypothesis

HABC-

TConfig
5 0 0 2.022600 0.043114 0.0166

Reject the null
hypothesis

HABC-ABC-

TG
4 0 1 1.841149 0.065600 0.0250

Retain null
hypothesis

HABC- ITCH
4 1 0 1.354571 0.175554 0.0500

Retain null
hypothesis

Table 9. Wilcoxon signed rank sum test for Table 4.

Pairs

Ranks Test statistics

Conclusion ABCS

<

ABCS > ABCS = Z Asymp. Sig. (2-

tailed)

𝛂

𝐡𝐨𝐥𝐦

HABC- TVG 10 1 5 2.045961 0.040760 0.0100 Reject the null
hypothesis

HABC-

WHITCH

16 0 0 3.517372 0.000436 0.0125 Reject the null
hypothesis

HABC- PICT 16 0 0 3.516196 0.000438 0.0166 Reject the null
hypothesis

HABC-HSS 7 4 5 0.670151 0.502762 0.0250 Retain null
hypothesis

HABC-PSTG 5 4 7 0.593914 0.552570 0.0500 Retain null
hypothesis

Table 10. Wilcoxon signed rank sum test for Table 5.

Pairs

Ranks Test statistics

Conclusion ABCS

<

ABCS > ABCS = Z Asymp. Sig. (2-

tailed)

𝛂

𝐡𝐨𝐥𝐦

HABC: Hybrid Artificial Bee Colony for Generating Variable T-way Test Sets 761

Journal of Engineering Science and Technology April 2020, Vol. 15(2)

HABC-GS 1 12 2 3.114669 0.001842 0.0083 Reject the null
hypothesis

HABC-

WHITCH

14 1 0 3.352327 0.000801 0.0100 Reject the null
hypothesis

HABC-IPOG 11 2 2 2.901140 0.003718 0.0125 Reject the null
hypothesis

HABC- TVG 11 3 1 2.796310 0.005169 0.0166 Reject the null
hypothesis

HABC-PSTG 2 11 2 2.201398 0.027708 0.0250 Reject the null
hypothesis

HABC-HSS 6 6 3 0.745815 0.455779 0.050 Retain null
hypothesis

Table 11. Wilcoxon signed rank sum test for Table 6.

Pairs

Ranks Test statistics

Conclusion ABCS

<

ABCS > ABCS = Z Asymp. Sig. (2-

tailed)

𝛂

𝐡𝐨𝐥𝐦

HABC- TVG 7 0 8 2.366432 0.017960 0.0100 Reject the null
hypothesis

HABC-

WHITCH

15 0 0 3.411211 0.000647 0.0125 Reject the null
hypothesis

HABC- PICT 14 1 0 3.294179 0.000987 0.0166 Reject the null
hypothesis

HABC-PSTG 3 2 10 0.674200 0.500184 0.0250 Retain null
hypothesis

HABC-HSS 1 3 11 0.365148 0.715001 0.0500 Retain null
hypothesis

7. Statistical Evaluation

Statistical analysis is another method to evaluate the proposed strategy in terms of

effectiveness to assess the significance of strategy. The Wilcoxon signed-rank test

is used to evaluate HABC strategy with existing strategies in the experimental

(from Tables 2 to 6) with 95% confidence level (i.e., α=0.05). The main reason for

adopting a Wilcoxon signed-rank test is to determine whether there is a statistical

difference between the proposed strategy and the remaining strategies in the

comparison. This test is ideal to measure the difference of the two sets.

In order to control the error rate due to multiple comparisons, Bonferroni-

Holm correction was adopted for adjusting α value (i.e., based on Holm’s

sequentially rejective step-down procedure [62]). Depending on the first stored

p-value (Asymp. Sig. (2-tailed)) in scaling in ascending order. Therefore, α Holm

is adjusted based on:

α Holm =
𝛼

𝑀−𝑖+1
 (7)

where M indicates the overall number of paired comparison and i indicate the

test number.

There are three values to evaluate HABC; Ranks HABC>, HABC<, and

HABC= are used. In other words, the results of the proposed strategy are greater,

smaller or equal to the other existing strategies. Two values have a Statistical Test

part; Asymp. Sig. (2-tailed) and Z. The value of Asymp. Sig. (2-tailed) indicates

the significant difference between the two sets and that the value does not exceed α

Holm. Regarding the Z value, it is out of the scope of this paper (i.e., not

considered). The corresponding hypothesis is rejected if the value of the Asymp.

Sig. (2tailed) alternatively, called P-value is less than α Holm. The second

hypothesis if rejected, the test proceeds with the third and so on. As soon as a certain

null hypothesis cannot be rejected, all the remaining hypotheses are retained as

well. The strategies with N/A and N/S results are considered incomplete and

762 A. K. Alazzawi et al.

Journal of Engineering Science and Technology April 2020, Vol. 15(2)

ignored samples, as there is no available result for the specified test configuration.

The complete statistical analyses are shown in Tables 7 to 11.

Statistical results based on Wilcoxon test for Tables 2 to 6 are presented in

Tables 7 to 11. From Table 7, HABC shows there is a significant difference with

other strategies in column Asymp. Sig. (2-tailed), except for CS and ITCH, which

has a significant difference from HABC. From Table 8, HSS and CS results are

considered “missing” due to unavailability of results when t value is 6. Although

HABC performed better than PSTG, IPOG-D, Jenny, IPOG, CTE-XL, TVG, PICT

and TConfig. However, ABC-TG and ITCH showed better significant difference

from HABC. From Table 9, HABC showed there is a significant difference

compared to WHITCH, TVG and PICT strategies except for the HSS and PSTG

that showed a better significant difference from HABC. For the other existing

strategies, the results are considered “missing” due to unavailable results or not

supported to the certain configuration. Table 10 presents the test results of Table 5.

HSS is shown to have a significant difference compared to HABC. However,

HABC excelled with the WHITCH, GS, IPOG, TVG and PSTG strategies. Table

11 presents the test results of Table 6. PSTG and HSS are shown to have a

significant difference compared to HABC. However, HABC excelled with the

WHITCH, TVG and PICT strategies.

8. Threats to Validity

There are many threats that confront the validity of any study during the research.

Therefore, it is necessary to reduce and validate these threats as soon as possible.

Reducing these threats is not an impossible task, by designing and development

experiments can achieve the mitigation of threats. There are many t-way testing

strategies that can be compared with the proposed HABC strategy. However, a few

strategies support the VSCA. These strategies have been selected in order to

compare the performance of HABC results.

The effectiveness of the proposed HABC strategy is one of the most important

threats to validity. As such, we cannot use statistical hypothesis tests method such

as the t-test in order to evaluate and compare HABC strategy with other existing

strategies for producing the VSCA because we do not have the source code of any

of them. Based on the previously mentioned reason, we cannot make a comparison

in terms of the efficiency of generating time with existing strategies. All VSCA

strategies have been implemented in a different environment. Therefore, our

benchmarking result has been based on the published results.

9. Conclusion

This paper proposed a hybridization of ABC algorithm and PSO algorithm. This

hybridization is aimed to generate the perfect test set size for t-way and VSCA. The

HABC strategy exploits the advantage of both ABC and PSO algorithm. The

experiments revealed that HABC strategy delivers phenomenal performance in

comparison to the old strategies for both t-way and VSCA except GS and SA due

to sub-configuration regarding VSCA when performed on various problems.

Whereas the generated result was competitive and close with SA and GS in terms

of VSCA. As part of our future work, we plan to improve the performance of the

HABC strategy for generating the better result and to support the constraints within

variable strength interaction.

HABC: Hybrid Artificial Bee Colony for Generating Variable T-way Test Sets 763

Journal of Engineering Science and Technology April 2020, Vol. 15(2)

Nomenclatures

C1&C2 Learning Vector

fit Fitness Value

gbest Dimension of best particle

ne Number Of Unemployed Honeybees

pbest Personal best of particle

r1&r2 independent random numbers

rand Scaling factor

V Velocity of particle

Xi Test case
𝑋𝑖,𝑑

𝑡 Position of particle

Xmax Upper Boundary Parameter

Xmin Lower Boundary Parameter

Abbreviations

ABC Artificial Bee Colony

ACS Ant Colony System

AETG Automatic Efficient Test Generator

AI Artificial Intelligent

CA Covering Array

CS Cuckoo search

CT Combinatorial Testing

CTE-

XL

Classification-Tree Editor (eXtended Logics

HABC Hybrid Artificial Bee Colony

HSS Harmony Search Strategy

IPOG In-Parameter-Order Generator

ITCH Intelligent Test Case Handler

ITTDG Integrated t-way Test Data Generation

MCA Mixed Covering Array

OA Orthogonal Array

PICT Pairwise Independent Combinatorial Testing

PSO Particle Swarm Optimization

PSTG Particle Swarm Test Generator

SA Simulated Annealing

SI swarm intelligence

TCG Test Case Generation Tool

TVG Test Vector Generator

VS Variable Strength

VSCA Variable Strength Covering Array

References

1. Cohen, M.B.; Gibbons, P.B.; Mugridge, W.B.; Colbourn, C.J.; and Collofello,

J.S. (2003). A variable strength interaction testing of components.

Proceedings of the 27th Annual International Computer Software and

Applications Conference COMPSAC Dallas, Texas, USA, 413-418.

764 A. K. Alazzawi et al.

Journal of Engineering Science and Technology April 2020, Vol. 15(2)

2. Yilmaz, C.; Fouche, S.; Cohen, M.B.; Porter, A.; Demiroz, G.; and Koc, U.

(2014). Moving forward with combinatorial interaction testing. Computer,

47(2), 37-45.

3. Nie, C.; and Leung, H. (2011). A survey of combinatorial testing. ACM

Computing Surveys (CSUR), 43(2), 11.

4. Hervieu, A.; Marijan, D.; Gotlieb, A.; and Baudry, B. (2016). Practical

minimization of pairwise-covering test configurations using constraint

programming. Information and Software Technology, 71(1), 129-146.

5. Kacker, R.N.; Kuhn, D.R.; Lei, Y.; and Lawrence, J.F. (2013). Combinatorial

testing for software: An adaptation of design of experiments. Measurement,

46(9), 3745-3752.

6. Kuhn, D.R.; Kacker, R.N.; and Lei, Y. (2013). Introduction to combinatorial

testing. CRC press.

7. Ahmed, B.S.; and Zamli, K.Z. (2011). A variable strength interaction test

suites generation strategy using particle swarm optimization. Journal of

Systems and Software, 84(12), 2171-2185.

8. Zamli, K.Z.; Din, F.; Kendall, G.; and Ahmed, B.S. (2017). An experimental

study of hyper-heuristic selection and acceptance mechanism for combinatorial

t-way test suite generation. Information Sciences, 399(C), 121-153.

9. Huang, R.; Chen, J.; Zhang, T.; Wang, R.; and Lu, Y. (2013). Prioritizing

variable-strength covering array. Proceedings of the 37th Annual Computer

Software and Applications Conference (COMPSAC), Kyoto, Japan, 502-511.

10. Cai, L.; Zhang, Y.; and Ji, W. (2018). Variable Strength Combinatorial Test

Data Generation Using Enhanced Bird Swarm Algorithm. Proceedings of the

19th IEEE/ACIS International Conference on Software Engineering,

Artificial Intelligence, Networking and Parallel/Distributed Computing

(SNPD), Busan, South Korea, 391-398.

11. Cohen, M.B.; Colbourn, C.J.; and Ling, A.C. (2003). Augmenting simulated

annealing to build interaction test suites. Proceedings of the 14th

International Symposium on Software Reliability Engineering ISSRE,

Denver, CO, USA, 394-405.

12. Ahmed, B.S.; Gambardella, L.M.; Afzal, W.; and Zamli, K.Z. (2017).

Handling constraints in combinatorial interaction testing in the presence of

multi objective particle swarm and multithreading. Information and Software

Technology, 86(C), 20-36.

13. Ahmed, B.S.; Zamli, K.Z.; and Lim, C.P. (2012). Application of particle

swarm optimization to uniform and variable strength covering array

construction. Applied Soft Computing, 12(4), 1330-1347.

14. Alsewari, A.A.; Alazzawi, A.K.; Rassem, T.H.; Kabir, M.N.; Homaid, A.A.B.;

Alsariera, Y.A.; Tairan, N.M.; and Zamli, K.Z. (2017). ABC Algorithm for

Combinatorial Testing Problem. Journal of Telecommunication, Electronic and

Computer Engineering (JTEC), 9(3-3), 85-88.

15. Alazzawi, A.K.; Homaid, A.A.B.; Alomoush, A.A.; and Alsewari, A.A.

(2017). Artificial Bee Colony Algorithm for Pairwise Test Generation.

Journal of Telecommunication, Electronic and Computer Engineering

(JTEC), 9(1-2), 103-108.

16. Yilmaz, C.; Cohen, M.B.; and Porter, A.A. (2006). Covering arrays for

efficient fault characterization in complex configuration spaces. IEEE

Transactions on Software Engineering, 32(1), 20-34.

HABC: Hybrid Artificial Bee Colony for Generating Variable T-way Test Sets 765

Journal of Engineering Science and Technology April 2020, Vol. 15(2)

17. Cohen, M.B.; Gibbons, P.B.; Mugridge, W.B.; and Colbourn, C.J. (2003).

Constructing test suites for interaction testing. Proceedings of the 25th

International Conference on Software Engineering, Portland, OR, USA, 38-48.

18. Alsewari, A.R.A.; and Zamli, K.Z. (2012). Design and implementation of a

harmony-search-based variable-strength t-way testing strategy with

constraints support. Information and Software Technology, 54(6), 553-568.

19. Cohen, D.M.; Dalal, S.R.; Parelius, J.; and Patton, G.C. (1996). The

combinatorial design approach to automatic test generation. IEEE software,

13(5), 83-88.

20. Williams, A.W. (2002). Software component interaction testing: Coverage

measurement and generation of configurations. University of Ottawa

(Canada).

21. Bell, K.Z.; and Vouk, M.A. (2005). On effectiveness of pairwise methodology

for testing network-centric software. Proceedings of the 3rd International

Conference on Information and Communications Technology, Cairo, Egypt,

221-235.

22. Alsariera, Y.A.; and Zamli, K.Z. (2017). A real-world test suite generation

using the bat-inspired t-way strategy. Proceedings of the 10th Asia Software

Testing Conference (SOFTEC2017), Kuala Lumpur, Malaysia,

23. Alsariera, Y.A.; Alamri, H.S.; and Zamli, K.Z. (2017). A bat-inspired testing

strategy for generating constraints pairwise test suite. Proceedings of the The

5th International Conference on Software Engineering & Computer Systems

(ICSECS), Pahang, Malaysia,

24. Alsariera, Y.A.; Nasser, A.; and Zamli, K.Z. (2016). Benchmarking of Bat-

inspired interaction testing strategy. International Journal of Computer

Science and Information Engineering (IJCSIE), 7(71-79.

25. Alsariera, Y.A.; and Zamli, K.Z. (2015). A bat-inspired strategy for t-way

interaction testing. Advanced Science Letters, 21(7), 2281-2284.

26. Alsariera, Y.A.; Majid, M.A.; and Zamli, K.Z. (2015). Adopting the bat-

inspired algorithm for interaction testing. Proceedings of the The 8th edition

of annual conference for software testing, Kuala Lumpur, Malaysia, 14.

27. Alsariera, Y.A.; Majid, M.A.; and Zamli, K.Z. (2015). SPLBA: An interaction

strategy for testing software product lines using the Bat-inspired algorithm.

Proceedings of the 4th International Conference on Software Engineering

and Computer Systems (ICSECS), Kuantan, Malaysia, 148-153.

28. Alsariera, Y.A.; Majid, M.A.; and Zamli, K.Z. (2015). A bat-inspired Strategy

for Pairwise Testing. ARPN Journal of Engineering and Applied Sciences,

10(8500-8506.

29. Jenkins (2003). Jenny. http://www.burtleburtle.net/bob/math/.

30. Hartman, A.; and Raskin, L. (2004). Problems and algorithms for covering

arrays. Discrete Mathematics, 284(1), 149-156.

31. Hedayat, A.S.; Sloane, N.J.A.; and Stufken, J. Orthogonal arrays: theory and

applications. Springer Science & Business Media, 1999.

32. Mandl, R. (1985). Orthogonal Latin squares: an application of experiment

design to compiler testing. Communications of the ACM, 28(10), 1054-1058.

33. Lei, Y.; Kacker, R.; Kuhn, D.R.; Okun, V.; and Lawrence, J. (2007). IPOG:

A general strategy for t-way software testing. Proceedings of the 14th Annual

IEEE International Conference and Workshops on the Engineering of

Computer-Based Systems, Tucson, AZ, USA, 549-556.

http://www.burtleburtle.net/bob/math/

766 A. K. Alazzawi et al.

Journal of Engineering Science and Technology April 2020, Vol. 15(2)

34. Yan, J.; and Zhang, J. (2006). Backtracking algorithms and search heuristics

to generate test suites for combinatorial testing. Proceedings of the 30th

Annual International Computer Software and Applications Conference,

COMPSAC'06, Chicago, IL, USA, 385-394.

35. Zamli, K. Z.; Klaib, M.F.; Younis, M.I.; Isa, N.A.M.; and Abdullah, R. (2011).

Design and implementation of a t-way test data generation strategy with

automated execution tool support. Information Sciences, 181(9), 1741-1758.

36. Tung, Y.-W.; and Aldiwan, W.S., (2000). Automating test case generation for

the new generation mission software system. Proceedings of the 2000 IEEE

Aerospace Conference, Big Sky, MT, USA, 431-437.

37. Cohen, D.M.; Dalal, S.R.; Fredman, M.L.; and Patton, G.C. (1997). The

AETG system: An approach to testing based on combinatorial design.

Software Engineering, IEEE Transactions on, 23(7), 437-444.

38. Williams, A. TConfig. download page [Online]. Available:

http://www.site.uottawa.ca/~awilliam/ [Accessed 23 Dec 2014]

39. Younis, M. (2010). MIPOG: A parallel t-way minimization strategy for

combinatorial testing. PhD. Thesis, School of Electrical And Electronics,

Universiti Sains Malaysia.

40. Chen, X.; Gu, Q.; Li, A.; and Chen, D. (2009). Variable strength interaction

testing with an ant colony system approach. Proceedings of the 16th Asia-

Pacific Software Engineering Conference, APSEC'09, Penang, Malaysia,

160-167.

41. Lei, Y.; Kacker, R.; Kuhn, D.R.; Okun, V.; and Lawrence, J. (2008).

IPOG/IPOG‐D: efficient test generation for multi‐way combinatorial

testing. Software Testing, Verification and Reliability, 18(3), 125-148.

42. Othman, R.R.; and Zamli, K.Z. (2011). ITTDG: Integrated T-way test data

generation strategy for interaction testing. Scientific Research and Essays,

6(17), 3638-3648.

43. Wang, Z.; Xu, B.; and Nie, C. (2008). Greedy heuristic algorithms to generate

variable strength combinatorial test suite. Proceedings of the Eighth

International Conference on Quality Software, Oxford, UK, 155-160.

44. Keith & Doug, H. (2006). PICT. http://testmuse.wordpress.com/2006/04/05/

pict-tool-available/2006/

45. Czerwonka, J. (2006). Pairwise testing in real world. Proceedings of the 24th

Pacific Northwest Software Quality Conference,

46. Bryce, R.C.; and Colbourn, C.J. (2009). A density‐based greedy algorithm

for higher strength covering arrays. Software Testing, Verification and

Reliability, 19(1), 37-53.

47. Bryce, R.C.; and Colbourn, C.J. (2007). The density algorithm for pairwise

interaction testing. Software Testing, Verification and Reliability, 17(3), 159-182.

48. Ziyuan, W.; Changhai, N.; and Baowen, X. (2007). Generating combinatorial

test suite for interaction relationship. Proceedings of the Fourth international

workshop on Software quality assurance: in conjunction with the 6th

ESEC/FSE joint meeting, Dubrovnik, Croatia, 55-61.

49. Ahmed, B.S.; Zamli, K.Z.; and Lim, C.P. (2012). Constructing a t-way

interaction test suite using the particle swarm optimization approach.

International Journal of Innovative Computing, Information and Control, 8(1

A), 431-451.

http://www.site.uottawa.ca/~awilliam/

HABC: Hybrid Artificial Bee Colony for Generating Variable T-way Test Sets 767

Journal of Engineering Science and Technology April 2020, Vol. 15(2)

50. Karaboga, D. (2005). An idea based on honey bee swarm for numerical

optimization. Technical report-tr06, Erciyes university, engineering faculty,

computer engineering department, Vol. 200.

51. Passino, K.M. (2002). Biomimicry of bacterial foraging for distributed

optimization and control. IEEE control systems, 22(3), 52-67.

52. Eberhart, R.C.; and Kennedy, J. (1995). A new optimizer using particle swarm

theory. Proceedings of the sixth international symposium on micro machine

and human science, Nagoya, Japan, 39-43.

53. Karaboga, D.; and Akay, B. (2009). A survey: algorithms simulating bee

swarm intelligence. Artificial Intelligence Review, 31(1-4), 61-85.

54. Yan, X.; Zhu, Y.; and Zou, W. (2011). A hybrid artificial bee colony

algorithm for numerical function optimization. Proceedings of the 11th

International Conference on Hybrid Intelligent Systems (HIS), Melacca,

Malaysia, 127-132.

55. Kıran, M.S.; and Gündüz, M. (2012). A novel artificial bee colony-based

algorithm for solving the numerical optimization problems. International

Journal of Innovative Computing, Information & Control, 8(9), 6107-6121.

56. Alqattan, Z.N.; and Abdullah, R. (2013). A comparison between artificial bee

colony and particle swarm optimization algorithms for protein structure

prediction problem. Proceedings of the 11th International Conference on

Neural Information Processing, Daegu, Korea, 331-340.

57. Esfandyari, S.; and Rafe, V. (2018). A tuned version of genetic algorithm for

efficient test suite generation in interactive t-way testing strategy. Information

and Software Technology, 94(165-185.

58. Alazzawi, A.K.; Rais, H.M.; and Basri, S. (2018). Artificial Bee Colony

Algorithm for t-Way Test Suite Generation. Proceedings of the 4th

International Conference on Computer and Information Sciences (ICCOINS),

Kuala Lumpur, Malaysia, 1-6.

59. Arshem, J. (2010). TVG. http://sourceforge.net/projects/tvg,.

60. Ahmed, B.S.; and Zamli, K.Z. (2010). PSTG: a t-way strategy adopting

particle swarm optimization. Proceedings of the the Fourth Asia International

on Mathematical/Analytical Modelling and Computer Simulation (AMS),

Bornea, Malaysia, 1-5.

61. HOMAID, A.B.; ALSWEARI, A.; ZAMLI, K.; and Alsariera, Y. (2018).

Adapting the Elitism on the Greedy Algorithm for Variable Strength

Combinatorial Test Cases Generation. IET Software.

62. Holm, S. (1979). A simple sequentially rejective multiple test procedure.

Scandinavian journal of statistics, 65-70.

http://sourceforge.net/projects/tvg

