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Abstract 

Exhaustive testing of occurred interaction amongst components (i.e., parameters 

and values) of a software system is usually impossible due to some factors such 

as the restriction of budget and time. One of the effective software testing 

techniques used for detecting faults of interactions between components is 

combinatorial testing (CT). CT is a black box testing technique, used to find the 

mistakes among components of a software system in a systematic and effective 

way. However, CT is highly complex (NP-hard). The input variables for a real-

world software may diverge in how they strongly influence variable strength 

(VS) interaction can achieve that effectively. This paper proposed a hybrid 

artificial bee colony (HABC) strategy based on the hybrid artificial bee colony 

algorithm and practical swarm optimization to generate optimal test suite of 

variable strength interaction. PSO was integrated as the exploitation agent for the 

ABC hence the hybrid nature. The information sharing ability of PSO via the 

Weight Factor is used to enhance the performance of ABC. The output of the 

hybrid HABC is a set of promising optimal test set combinations. Through 

several benchmark experiments, HABC proved the effectiveness of the proposed 

strategy. The HABC has achieved 76.31 % better result than most of the 

compared strategies.  

Keywords: An optimization problem, Combinatorial testing, Hybrid artificial bee 

colony algorithm, Software testing, t-way testing, Variable strength 

interaction. 
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1.  Introduction 

Software system failures have been linked to the interactions of its numerous 

components parameters (i.e., inputs). These interactions amongst the parameters 

have been considered as one of the primary sources of defects in software systems. 

Conventional software testing techniques such as boundary value and Equivalence 

Partitioning have been useful in fault detection. These techniques can address the 

single input values in detecting the fault from time to time during software testing. 

However, the conventional techniques may not be efficient enough to address faults 

that generates among several input variables [1]. 

Combinatorial Testing (CT) or named t-way testing can give a viable solution 

to the interaction of components for two parameters or more and producing a test 

set that can assist in fault detection early in software development life cycle (SDLC) 

(t indicates the interaction strength between combinations) [2, 3]. Since not all 

components of a software system usually leads to faults in such system, this makes 

CT a feasible approach by generating minimal number of interactions amongst 

software component. In other words, CT can perform exhaustive testing by 

reducing the number of test cases [3].  

Pairwise or 2-way testing which is a form of CT has been used effectively in 

several practical software testing [4]. However, many studies have shown software 

faults maybe as a result of more than two inputs (i.e., parameters and values) [3, 5, 

6]. Software faults that happen by more than two interactions and are uniform (i.e., 

where the parameter values are equal) are known as a t-way and but there are many 

cases that showed the interaction between components are mostly non-uniform or 

have same input values [1, 7, 8]. Therefore, variable-strength (VS) was introduced 

as a type of combinatorial testing to handle cases where there are more than two 

non-uniform interaction input values [9, 10]. 

Variable-strength combinatorial testing is an NP-hard computational problem 

as in the case of combinatorial testing. In the case of CT strategies, these strategies 

are based on the artificial intelligence (AI) and heuristic algorithms and have shown 

to be efficient and effective in producing minimum test suite of interaction. As a 

result, many CT strategies based on the Al and heuristic algorithms have been 

proposed but only a few of these strategies can be deployed as variable-strength to 

generate optimal test suite [11]. Simulated Annealing (SA) and Particle Swarm 

Optimization (PSO), which are flexible, practical and one of the most popular 

heuristic algorithms support the generation of test suites based on variable-strength 

interaction [7, 12, 13].  

As an extension of our previous works [14, 15], hybrid artificial bee colony 

algorithm (HABC) is developed and employed to support variable strength 

combinatorial testing. HABC has been enhanced to support uniform and non-

uniform covering array (CA) and for generating optimal test suite size for 

variable strength-covering array (VSCA). The remainder of this paper is 

structured as follows: Section 2 presents combinatorial interaction                    

testing. Section 3 presents a comprehensive review on VSCA strategies. An 

overview of ABC algorithm is discussed in Section 4. Section 5 addresses the 

HABC strategy. Sections 6 and 7 presents the experimental and statistical test 

results conducted. Section 8 highlights threats to validity of the study and Section 

9 addresses the conclusion. 
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2. Combinatorial Interaction Testing  

2.1.  Theoretical background 

The major motive of t-way testing to produce a test set size (i.e., number of test 

cases); where this test set indicates an array of (n x m). This n x m signifies the 

number of rows (i.e., the generated number test cases) and the combination value 

of each test case respectively. All input parameters and associated value are covered 

by a test set, where each pair of values can be covered by one test case at least. 

However, generating the effective test set (i.e., test set with a few test cases) still 

the main weakness of t-way testing. 

In general, each test set contains a specific number of parameters (P1, P2, ..., Pn) 

with associated values (V1, V2, ......, Vi) for every single parameter. In addition, each 

test set has interaction strength t as N x m, whilst each column involved one value 

and the sub-array N x t includes all combination minimums once a time. 

Covering Array (CA) is a well-established mathematical theme which 

combinatorial testing theoretically depends on to produce test suite [16]. For 

statistical experiment's purpose, CA is a preferred alternative in comparison to the 

old mathematical theme such as Orthogonal Array (OA) [17]. Generally, all 

systems under test (SUT) include various items such as parameters and their values 

in addition to t to signify as the interaction strength level. 

Definition 1: The earlier description mentioned that each SUT has various 

parameters (P) linked with their values (V), the CA termed uniform interaction 

strength CA (N, t, vP) if all V equates to each other for all P. For example, it is 

presumed that a system with 4-parameters are linked to 2-values each, it can be 

identified as CA (6; 2, 24). The system includes six test cases (rows) that are created 

in reference to four parameters (columns). 

Definition 2: MCA (N, t, v1
p1 v2

p2 v3
p3 . . .‥vi

pj) is representing the mixed 

covering array as the number of values are not matched to each parameter, which 

is different from uniform interaction strength. As an example, a system with four 

parameters, e.g., 3-parameters with 2-values and 1-parameter with 3-values is 

expressed as MCA (12, 3, 23, 31). The system includes 12 test incases (rows) that are 

created in reference to four parameters (columns). 

Definition 3: Additional to CA and MCA notation in the real-world systems, 

due to the complexity of the systems resulting in the advancement of technology, 

there is a big difference in interaction of parameters. Parameters may be stronger 

or may not interact with each other, and this leads to a variable strength covering 

array (VSCA). The VSCA is proposed to solve this problem and can be represented 

as VSCA (N; t, vp, (CA1 … CAi)), where both CA1 and CAi represent a subset of 

main-set with different interaction strength.  

To illustrate VSCA, a system with 5-parameters have 3-values each, where the 

VSCA concepts consider t=3 for main-set and t=2 for the sub-set as shown in Fig. 

1. The CA can be represented as VSCA (N, 3, 35, (CA (N, 2, 33)). The system 

involves 27 test cases (rows) that are produced based on five parameters (columns). 
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Fig. 1. Variable strength interaction system. 

2.2. T-way test generation problem 

The t-way testing technique is vital for generating test cases; however, these 

techniques are dependent on the element’s behavior interaction within the system. 

A web configurable software system is utilized to justify the concept of t-way 

testing techniques in generating the optimal test set as seen in Fig. 2. This system 

is composed of five components, namely; a device, a processor, the operating 

system (OS), a browser, and a Screen with Fig. 2 illustrating their relationships. 

This system has been employed as a simple illustration of the main idea in t-way 

testing regarding variable strength, and uniform strength. Each component of this 

system is known as a separate parameter, and each parameter has one or more 

values with Table 1 displaying the parameters of the systems and their respective 

values. In this example, the number of parameters is five, consisting of three 

parameters with two values and two parameters with three values. The adopted 

display tab interaction strength is t=2; the CA is represented as MCA (N, 2, 32 23). 

Table 1. A Web configurable software system. 

Parameters 

Device Processor OS Browser Display 

PC Dual core Android Firefox 720 x 1280 

Phone Multi core IOS Chrome 1024 x 768 

  Windows Safari  
 

The exhaustive test case to test this system completely is (i.e., 2 × 2 × 3 × 3 × 

2= 72) test cases. Assuming the t that denotes the interaction strength is 2, the test 

set created is 9 test cases only. Consequently, approximately 80% of the resources 

will be saved. The interactions between parameters are directly proportional to the 

number of test cases. In general, the minimum test case for each combination value 

is one test case [18, 19]. The study of NASA application showed if we tested 

parameter (t=1), (t=2) and (t=3), it can detect 67%, 93% and 98% failures 

respectively. It will eventually achieve 100% failure detection with (t = 4-6) 

interaction of elements [20, 21]. Therefore, increasing the interaction strength of 

testing is not important. However, it often comes that certain components have 

complex interactions while others may have few or none. For this reason, it is not 

important to go for higher interaction strength of testing.  

To achieve better testing, identify some components (i.e., subsets) with strong 

interactions, and increase the interaction strength higher than the interaction 

strength of the main components to detect the faults by their interactions. This is 

called the variable strength-covering array (VSCA). A web configurable software 

system example is next shown to understand VSCA. In the web, configurable 
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software assumes that all parameter combinations require 2-way and a device, 

processor and OS that requires 3-way interaction. In this case, the configuration 

system is indicated as VSCA (N; 2, 2332, CA (3, 2231)). Therefore, a web 

configurable software system required 12 test cases for VSCA. We can notice that 

VSCA achieving higher coverage of the fault detection. 

3.  Related Work 

Many researchers have suggested several t-way strategies for the last two decades. 

Most of these suggested strategies such as Bat-Testing Strategy [22-28], Jenny [29], 

etc. have been focusing on the uniform t-way and pairwise testing strategies (where 

the interaction strength t=2). Therefore, most of the available strategies depends on 

orthogonal array like (OA) [30, 31], MOA [32]. However, still, there are restricted in 

application to small configurations [33, 34] only, although with fast execution time. 

 

Fig. 2. An illustration of the web configurable software system. 

Given the mentioned constraints above, focus has shifted to t-way uniform 

strategies such as GTWay [35], Jenny [29], TCG [36], AETG [37], TConfig [38] 

and MIPOG [39] that support the uniform interaction strength. However, due to the 

progress in software domain, it is hard to find uniformity as interaction between 

parameters became hard. Therefore, several strategies have been suggested to 

support variable strength interaction such as VS-PSTG [7], ACS [40], IPOG [33, 

41], ITTDG [42], Density [43], and PICT [44, 45]. Consequently, one of the goals 

of this paper is to focus on uniform interaction strength and variable interaction 

strength for t-way strategies that previously were ignored. These strategies are 

categorized based on the general computational based strategies or Meta-heuristic 

based strategies as follows: 

3.1.  General computational based strategies 

ITTDG strategy is categorized as a one-test-at-a-time strategy that supports the 

variable strength interaction. It generates one test case iteratively to achieve the 

maximum coverage for all interactions. At the end, ITTDG selects the best test 

cases (test set) of several generated test case candidates that can achieve the 

maximum coverage of the uncovered components. The test case selection of 

ITTDG strategy adopts random heuristics and iterative as AETG. However, AETG 
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the contrary of the ITTDG strategy, where to produce new test case for every single 

iteration;  ITTDG generates new candidates test case when there is a tie situation 

(i.e., when more than one value can cover the most uncovered tuples).  

PICT [45] is proposed by Czerwonka in 2006 to generate a complete test set, 

which has been used extensively by Microsoft for software testing purposes. Based 

on the SUT configuration, PICT generates all possible combinations and marks 

every combination as an uncovered combination. Therefore, the test engineer will 

announce if there is any constraint. Based on these constraints, the combination 

will be marked as excluded. After that, one of the uncovered combinations will be 

selected and extended until completion using a greedy heuristic. This is done to 

achieve the maximum coverage as possible as without excluded any combination. 

The selected test case will be stored as the final test set; this procedure will be 

repeated until all uncovered combinations are covered. 

Another strategy that can be characterized as one-test-at-a-time is Density. It 

works exactly like PICT and ITTDG, however, the generated test case for this 

strategy depends completely on a mathematical formula obtained from density 

properties. Bryce introduced Density [46, 47] to generate the final t-way test set, 

and to generate the uniform t-way. However, density concepts are extended by 

Wang et al [43] to support the variable strength interaction by introducing new 

formulae for local and global density [43, 48].  

In contrast to one-test-at-a-time strategies, IPOG is one-parameter-at-a-time 

strategy. The IPOG generation process begins with the creation of a full test set for 

the initial t of parameters (the highest t will be chosen for the VSCA (t) case) as an 

initial test set. IPOG generation process is dependent on two processes namely 

horizontal and vertical extension as one of one parameter at time strategies. The 

horizontal extension will begin to add one parameter to the test set continuously 

until the test set covered all parameters. Vertical extension is responsible to ensure 

all combinations are covered but if there is a case of the test set that cannot cover 

some combinations, the test set will be expanded vertically by addition of several 

new test cases on the initial set. 

3.2. Meta-heuristic based strategies 

All strategies mentioned earlier are a part of the computational approach; however, 

several strategies have been proposed that depends on artificial intelligence (AI) 

approach such as VS-PSTG [7, 49] and ACS [40] for generating a t-way test set. VS-

PSTG and ACS are t-way strategies based on particle swarm optimization and ant 

colony optimization respectively as the key feature. The searching process of VS-

PSTG for the best test case is inspired by flocks of birds. In order to detect the best 

test case, VS-PSTG iteratively merges local and global search to cover the interaction 

combinations greedily. For ACS, the ant colony searches for the best test case on 

some paths, the path's qualities are evaluated in terms of the pheromones. 

Consequently, the best test case that corresponds with the optimum path is included 

in the final test set. VS-PSTG and ACS are exactly similar to PICT, Density and 

ITTDG as one-test-at-a-time strategies. Alsewari [18] proposed  Harmony Search 

Strategy (HSS) based on Harmony Search algorithm for test set generation. HSS is 

one of the existing strategies that addressed the support for constraints by mimicking 

musician behaviour to create good music. Iteratively, HSS executes the global search 

by inserting randomized values to the Harmonic memory whereby the local best value 
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can be selected considering rate probability. The best value at each iteration will be 

added to the final test set until all required interactions are covered. 

4.  An Overview of Artificial Bee Colony Algorithm 

Artificial Bee Colony (ABC) is one of the meta-heuristics algorithms inspired by 

the foraging behaviour of honeybee colony as proposed by Karoboge in 2005 [50]. 

This algorithm is performed by three kinds of bees: employed bees, onlooker bees, 

and scout bees. The onlooker bees and scout bees are also identified as unemployed 

bees. These bees are assigned to increase the food source from the hive (nectar) by 

dividing the bee population and organize them with a specific task. Half of the 

colony is presented by an employed bee, while the remaining half is represented by 

onlooker bee. Employed bees are given the task of exploring the higher nectar 

potential food source and convey the information to standby onlooker bees at the 

hive. The information includes the navigation, location, and potential of the food 

source. The selection process of food source made by onlooker bees is in reference 

to the information disseminated by the employed bees. Scout bees are derived from 

employed bees and assigned to search the environment randomly for new or better 

food source discovery. In general, employed bees and onlookers perform 

exploitation process (where exploitation refers to finding good solutions), while 

scout bees perform exploration process (where exploration refers to the avoiding 

being trapped in local optima by widening the search to new areas). The 

behavioural manner of an artificial bee colony can be divided into four phases: 

i. Initial phase: - using Eq. (1), the algorithm initiates the food source discovery 

by randomly searching the environment, provided it is within the algorithm's 

parameters border; producing the initial food sources. 

𝑥𝑖𝑗  = 𝑥𝑚𝑖𝑛,𝑗 + rand (0,1)( 𝑥𝑚𝑎𝑥,𝑗 - 𝑥𝑚𝑖𝑛,𝑗)                     (1) 

ii. Employed bee phase: -Upon identified, the food source information will be 

detected by the employed bees. The employed bee numbers equate to a number of 

a food source at the ratio 1:1. The employed bees will gather the nectar and return 

to the hive with all the standby bees to convey the information by dancing in the 

dance area. The employed bee then transformed into a scout bee if the nectar of 

source is running out so it can begin to search for a better food source. The 

discovery for a new food source is expressed as below Eq (2). 

𝑉𝑖,𝑗 = 𝑋𝑖,𝑗 + rand (-1, 1)( 𝑥𝑖,𝑗  - 𝑥𝑘,𝑗)                                    (2) 

Upon detection of the food source, the selection food source probability is 

expressed using Eq (3). 

𝑓𝑖𝑡𝑛𝑒𝑠𝑠𝑖 = {
      

1

1+𝑓𝑖
 ,             𝑖𝑓 𝑓𝑖 ≥0 

  1 + |𝑓𝑖|,          𝑖𝑓𝑓𝑖 <0 
                          (3) 

iii. Onlooker bee phase: -The amount of nectar is the main criterion for 

onlooker bee food source selection activity. The information on the profitability of 

the food nectar is transmitted by employed bee on the dance area. The food source 

selection probability is expressed using Eq. (4). 

Pi= 
𝑓𝑖𝑡𝑖

∑ 𝑓𝑖𝑡𝑛
𝑠𝑛
𝑛=1

                                                                (4) 
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iv. Scout bee and Limit phase: Upon completion of their tasks, both employed 

and onlooker bees, the search continues for any remaining source that is not yet 

explored. The credibility of the food source is calculated using limit Eq. (5). The 

limit is a control parameter where the counter value of the food source is compared 

to the algorithm, if it is superior to the limit, the food source will be disregard. A 

better food source discovered by scout bee will replace the disregard food source. 

The second phase to the fourth phase is repeated until all solutions are found. The 

flowchart on Fig. 3 represents all the bee’s interaction and activities. 

limit = c.ne .D                                                             (5) 

where ne signify the number of unemployed bees, c is a constant coefficient with a 

recommended value of 0.5 or 1. ABC minimum application requirement is one 

scout bee implementation. Scout-type operations hypothetical searches in the 

whole D-dimensional space. As they provide exceptional effectiveness to the ABC 

method in searching the best global solution. Scout bees are independent when it 

comes to global optimum solution discovery in comparison to other bee types. Both 

(employed/onlooker) concurrently check on their local candidate solutions for the 

global best. Thus, it is impossible for ABC to be trapped in local optima [50]. 

 

Fig. 3. Flowchart of the artificial bee colony algorithm. 

5.  Hybrid Artificial Bee Colony Algorithm 

The swarm intelligence (SI) algorithms are the most utilized algorithm for the past 

twenty years. Its establishment was inspired from foraging behaviour of bird, fish, 
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bee and insect colonies such as termites and ants. Its derives such as the Artificial 

Bee Colony (ABC) algorithm [50], Bacterial a Foraging Optimization a (BFO) [51], 

Particle a Swarm Optimization (PSO) [52], etc. are applied to a real world an 

optimization a problem. Bee colony algorithm is one of the derivatives of SI 

algorithm that are used to solve optimization problems. This algorithm has various 

advantages which helps to implement intelligent search such as “queen bee, task 

selection, bee foraging, navigation systems, nest site selection, mating, collective 

decision making, bee dance (communication), floral/pheromone laying" [53]. 

ABC algorithm has its downfall as well where its convenient operation is very 

dependent on the solution development process. Suppose it has insufficiencies, it 

will increase the convergence speed of the algorithm [53]. The occurrence of rapid 

convergence in this algorithm can lead to obstructions for several complications in 

the local optimum. Besides that, the information sharing activity is being completed 

in one a dimension with a random neighbour to one solution improvement, thus the 

speed of convergence is inversely proportional to problem dimension. [54]. Hence, 

the weak performance as a result of information sharing activity of the ABC 

algorithm [55]. The chance to search optimization algorithm is very low, thus the 

failure to get global optimum for most optimization problem. These limitations can 

be surpassed by tuning or modifying different characteristics of ABC algorithm 

such as convergence speed, exploration and exploitation ability, and missed being 

trapped at the local optimum [53, 54]. However, the focus is mainly on information 

conveying activity or solution improvements, which are the dual most vital 

parameter of exploitation and exploration ability of the algorithm. 

From this research, we believe there still need for ABC algorithm improvement 

by adopting some characteristics from particles in the PSO algorithm operation. The 

mechanism of PSO is one of a kind in terms of information sharing and solution 

improvement processes. It requires a crucial and unique parameter termed as Weight 

Factor (w). Referring to the previous solution, the velocity parameter is vital for 

required improvement degree control. Besides velocity, there are dual factors (C1 and 

C2) which are required for the relative influence of cognitive (self-confidence) and 

social (swarm-confidence) components determination, respectively. (Eq. (6)). 
 

𝑉𝑖,𝑑
𝑡+1 = 𝑊𝑡 * 𝑉𝑖,𝑑

𝑡  + 𝐶1
𝑡 * 𝑟1 * (𝑝𝑏𝑒𝑠𝑡𝑖,𝑑

𝑡  - 𝑋𝑖,𝑑
𝑡 ) +𝐶2

𝑡 * 𝑟2 *(𝑔𝑏𝑒𝑠𝑡𝑖,𝑑
𝑡  - 𝑋𝑖,𝑑

𝑡 )                           (6) 

The particles in PSO depends on three categories for the movement operation or 

the local search. The following are the categories: 

i. The variation of velocity will affect every subsequent particle movement. It 

can be assumed that particles movement is not random or arbitrary. 

ii. The local best solution variable generates the best local information which 

later links with the chosen particle's next move value. 

iii. The particle’s next move best dependent on global best solution variable. 

The absence of these properties is identified in the ABC algorithm. As shown in 

Eq. (2), the selected neighbour solution was randomly searched to determine the size 

that is a parameter for solution improvement or local search that bees depend on, 

which represents the exploitation process. This has proven that the used value for 

experimental solutions a in every single loop is a random. On the contrary, the velocity 

value of PSO varies. The local search of ABC algorithm lacks an information-based 

a procedure, where the discovered solutions (the best) usually not held in the 

population. Therefore, it will bean exchanged with other a generated solutions randomly 
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by scout bee; it may not clearly contribute in generated experimental solutions. The 

chosen solution will be selected at the improvement part (local search) of employed 

bee and onlooker bee stage. Nevertheless, onlooker bees create experimental 

solutions using a higher fitness value of the solutions. The onlooker bee is highly 

dependent on the probability of the solution value. Scout bees have the ability to 

constraint problematic search. For example, premature convergences providing a 

global mechanism search for ABC. PSO has this limitation in its search procedures. 

PSO keeps the best solution despite this shortcoming and the new velocities are 

utilized to generate new solutions. With a shorter time, the regions illustrated 

considered as search space is ransacked in detail. This is a good enough justification 

why the algorithm will be trapped in the local minima and cause limitation for ABS 

as suggested by the proposed HABC. This ABC limit parameter intercepts the 

algorithm from trapping in the local minima with the act of inserting the random 

selected solution into search space occasionally. The limit parameter represents the 

exploration process. The strengths of the PSO and the strengths of ABC are combined 

to minimize optimization search troubles as proposed in HABC algorithm. However, 

there are still several issues among researchers about ABC and PSO that are taken 

into account. There are idea clashes in terms of execution time as PSO is faster than 

ABC, but ABC is more accurate solution than PSO [56]. 

HABC algorithm proposed that the bee colony size is comprised mainly into 

three types of bees known as employed, onlookers and scouts bee. The food source 

thus equates to the colony size. The employed bee transformed into a scout bee 

once the food source is exhausting. The scout bee then searches for a better food 

source to replace the old one. The flowchart on Fig. 4 represents all the bee’s 

interaction and activities of HABC algorithm. 

The discovery activity of HABC is listed as the following: 

• The algorithm initiates the food source discovery and identifies the amount of 

nectar source. 

• The employed bee conveys the information of the selected food source to the 

standby onlooker bee within the dance area (in the hive). The food source with 

higher nectar amount is selected by the onlooker bee. 

• The selected food source is examined if it needs a new replacement food source 

using Eq. (6). 

• If the food source failed, an employed bee transformed into a scout bee. The 

scout bee is assigned to find a replacement for the old food source using Eq. (1). 

The main steps of the HABC algorithm are shown as follows in Fig. 5:  

The HABC algorithm search cycle is enclosed within these three steps; 

i. Employed bees evaluate the profitability of the food source in the search 

space, choose the food source with higher random discovery probability, 

and selected by the onlooker bees. 

ii. PSO algorithm as in Eq. (6) is an alternative equation for the local 

discovery of the employed bee phase replacing Eq. (2). 

Scout bees use Eq. (1) search for better food source if the parameter is out limit 

(similar to the original ABC). 
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Fig. 4. Flowchart of the hybrid artificial bee colony algorithm. 

 

Fig. 5. Hybrid artificial bee colony algorithm. 

6.  Experiments 

6.1.  Experimental Setup 

The main goal of this section is to evaluate the proposed HABC strategy compared 

to the existing tools and strategies such as Jenny, TConfig, PICT, TVG, IPOG, 

IPOG-D, VS-PSTG, ACS, SA, HSS, and VS-MGS. The benchmarking data of the 

tools and strategies were adopted from the published results in [14, 15, 18, 41, 57-

61]. The HABC strategy parameters were set at Nbees = 5, maxCycle= 1000, limit 

= 100, C1 & C2=2.0 and W=0.9. All experiments are implemented on a Windows 

7 (OS) desktop computer with 3.40 GHz Xeon (R) CPU E3 and 8GB RAM. The 

Java language JDK 1.8. It was used to code and implement the HABC. Figure 6 

shows the programming code during the implementation of the actual input. 
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Fig. 6. The HABC strategy implementation. 

6.2. Experimental evaluation 

Due to the randomization characteristic of the proposed HABC strategy, the 

experiment runs twenty independent times for each configuration system to get the 

best result. Tables 2 to 7 present the experimental result, and each table presents 

the optimal test set size for each configuration. The dark cell with (*) represents the 

optimal test set size and the cell with NA or NS represents (not available) and (not 

supported) respectively. Tables 2, 3 and 4 mainly focus on the t-way, while Tables 

5, 6 and 7 focus on VSCA. 

The proposed HABC strategy showed a good result compared to other existing 

strategies as depicted in Table 2. HABC produced the optimal test set size for both 

configurations No. 3 and No. 5 when the interaction strength equals 4 and 6. 

However, HABC strategy generated similar results to CS and HSS for 

configuration No.1 and No. 4. ITCH produced the optimal test set size when the 

interaction strength equals 3. Jenny, TConfig, PICT, TVG, CTE-xl, IPOG-D, 

IPOG, PSTG and ABC-TG produced worst results most of the time compared to 

HABC, HSS and CS. In Table 3, the HABC strategy showed a good result better 

than HSS, CS, PSTG and ABC-TG. HABC strategy produced the most minimum 

test set size for configuration No. 1 like both of ITCH, IPOG-D, and PSTG. On the 

other hand, HABC strategy produced the optimal test set size when the number of 

the parameters was 9 and 10 for Configuration No. 6 and No. 7. ITCH and CS 

produced the optimal test set size for configuration No. 4, No. 5 and No. 2 

respectively. Jenny, TConfig, PICT, TVG, CTE-Xl, IPOG-D, IPOG, PSTG, HSS 

and ABC-TG produced worst results most of the time compared to HABC. From 

Table 4, it is evident that HABC strategy outcomes excelled for both of the 

configuration No. 1, No. 3, No. 4 and No. 5 and regarding configuration No. 2 

produced a competitive test set close to the optimal test set. 
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Tables 5, 6 and 7 highlights the VSCA experimental results with Tables 5 and 

6 fairly focusing on variable strength interaction with the uniform covering array, 

and Table 7 on variable strength interaction with a mixed covering array (Non-

uniform). In overall, HABC strategy produced four of the optimal test set size for 

the sub-configurations No. 9 (CA (5, 37) and No. 11 (CA (6, 37) in Table 5, the sub-

configuration No. 8 (CA (4, 37)) in Table 6, and the sub configuration No. 12 (MCA 

(5, 43 53)) in Table 7 compared to other existing strategy's results. On the other 

hand, some of HABC strategy results match the best results of other strategies for 

most of the sub configurations. The shaded and bold cells presented the best test set 

size that matched with other results reported by existing strategies. HABC and HSS 

had the best results followed by PSTG, SA, ACS, and GS respectively. Overall, 

WHITCH, ParaOrder, Density, and PICT produced the worst results. 
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Table 4. Test set size for VSCA (N, 2, 315, {C}). 
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4
) 59 39 27 32 35 105 27 27 30 27 27 29 31 30 34.550 

4 CA (3,  3
5
) 62 39 45 40 41 131 33 38 38 38 33 38 39 39 42.900 

5 CA (4,  3
4
) 103 81 NA NA 81 245 NA NA 81 81 81 81 81 81 81.200 

6 CA (4,  3
5
) 118 122 NA NA 103 301 NA NA 97 94 91* 92 96 93 103.40 

7 CA (4,  3
7
) 189 181 NA NA 168 505 NA NA 158 159 158 155 153* 154 160.20 

8 CA (5,  3
5
) 261 243 NA NA 243 730 NA NA 243 243 243 243 NA 243 243.10 

9 CA (5,  3
7
) 481 581 NA NA 462 1356 NA NA 441 441 441 441 NA 439* 446.15 

10 CA (6,  3
6
) 745 729 NA NA 729 2187 NA NA 729 729 729 729 729 729 729.00 

11 CA (6,  3
7
) 1050 967 NA NA 1028 3045 NA NA 966 902 NA 960 NA 830* 961.10 
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4
) CA (3,  3

5
) CA (3,  3

6
) 114 51 44 46 53 1376 34* 40 45 45 NA NA NA 82 85.100 

13 CA (3,  3
6
) 61 53 49 46 48 146 34* 45 45 45 40 46 44 45 46.700 

14 CA (3,  3
7
) 68 58 54 53 54 154 41* 48 49 51 47 50 48 50 51.850 

15 CA (3,  3
9
) 94 65 62 60 62 177 50 57 57 62 57 57 57 50 60.100 

16 CA (3,  3
15

) 132 NS 82 70 81 83 67* 76 74 77 74 75 81 81 83.200 

Table 5. Test set size for VSCA (N; 3, 315, {C}). 
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8
) 1513 2108 NA NA 1479 22,833 NS NS 1396* 1430 NA 1397 NA 1414 1425.6 

15 CA(6,  3
9
) 1964 2124 NA NA 1840 26,729 NS NS 1690 1739 NA 1687 NA 1737 1743.45 

Table 6. Test set size for VSCA (N, 2, 43 53 62, {C}). 
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2 CA (3, 43) 97 83 64 64 67 384 64 64 64 64 64 NA 64 64 64.000 

3 MCA (3, 43 52) 164 147 141 131 132 781 100* 104 124 116 120 NA 120 121 130.90 

4 CA (3, 53) 145 136 126 125 125 750 125 125 125 125 125 NA 125 125 125.00 

5 MCA (4, 43 51) 354 329 NA NA 320 1920 NS NS 320 320 320 NA 320 320 320.00 

6 MCA (5, 43 52) 1639 1602 NA NA 1600 9600 NS NS 1600 1600 1600 NA NA 1600 1600.0 

7 CA (3, 43) CA (3, 53) 194 136 129 125 125 8000 125 125 125 125 125 NA NA 125 125.00 

8 MCA (4, 43 51) MCA (4, 52 62) 1220 900 NA NA 900 288,000 NS NS 900 900 900 NA NA 900 900.00 

9 CA (3, 43) MCA (4, 53 61) 819 750 NA NA 750 48,000 NS NS 750 750 750 NA NA 750 750.00 

10 CA (3, 43) MCA (5, 53 62) 4569 4500 NA NA 4500 288,000 NS NS 4500 4500 4500 NA NA 4500 4500.0 

11 MCA (4, 43 52) 510 512 NA NA 496 2874 NS NS 472 453* 454 NA 461 461 476.75 

12 MCA (5, 43 53) 2520 2763 NA NA 2592 15,048 NS NS 2430 2430 NA NA NA 2411* 2437.0 
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14 MCA (3, 51 62) 188 180 180 180 180 900 180 180 180 180 180 NA 180 180 180.00 

15 MCA (3, 43 53 62) 312 NS 307 256 302 261 214* 255 260 263 260 NA 258 269 276.45 
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Table 7. Wilcoxon signed rank sum test for Table 2. 

Pairs 

Ranks Test statistics  

Conclusion ABCS < ABCS > ABCS = Z Asymp. Sig. (2-

tailed) 

𝛂 

𝐡𝐨𝐥𝐦   

HABC-HSS 6 0 1 2.225996 0.026014 0.0041 Reject the null 
hypothesis 

HABC- PICT 7 0 0 2.387848 0.016947 0.0045 Reject the null 
hypothesis 

HABC- 

TConfig 

7 0 0 2.387848 0.016947 0.0050 Reject the null 
hypothesis 

HABC- CTE-

XL 

7 0 0 2.374929 0.017552 0.0055 Reject the null 
hypothesis 

HABC- TVG 7 0 0 2.374929 0.017552 0.0062 Reject the null 
hypothesis 

HABC- Jenny 7 0 0 2.374929 0.017552 0.0071 Reject the null 
hypothesis 

HABC-IPOG 7 0 0 2.370669 0.017756 0.0083 Reject the null 
hypothesis 

HABC-ABC-

TG 

6 0 1 2.207471 0.027281 0.0100 Reject the null 
hypothesis 

HABC-IPOG-

D 

6 0 1 2.207471 0.027281 0.0125 Reject the null 
hypothesis 

HABC-PSTG 5 0 2 2.031856 0.042168 0.0166 Reject the null 
hypothesis 

HABC-CS 5 1 1 1.725324 0.084469 0.0250 Retain null 
hypothesis 

HABC- ITCH 4 2 1 1.261412 0.207160 0.0500 Retain null 
hypothesis 

Table 8. Wilcoxon signed rank sum test for Table 3. 

Pairs 

Ranks Test statistics  

Conclusion ABCS < ABCS > ABCS = Z Asymp. Sig. (2-

tailed) 

𝛂 

𝐡𝐨𝐥𝐦   

HABC-PSTG 
5 0 0 2.031856 0.042168 0.0050 

Reject the null 
hypothesis 

HABC-IPOG-

D 
5 0 0 2.031856 0.042168 0.0055 

Reject the null 
hypothesis 

HABC- Jenny 
5 0 0 2.031856 0.042168 0.0062 

Reject the null 
hypothesis 

HABC-IPOG 
5 0 0 2.022600 0.043114 0.0071 

Reject the null 
hypothesis 

HABC- CTE-

XL 
5 0 0 2.022600 0.043114 0.0083 

Reject the null 
hypothesis 

HABC- TVG 
5 0 0 2.022600 0.043114 0.0100 

Reject the null 
hypothesis 

HABC- PICT 
5 0 0 2.022600 0.043114 0.0125 

Reject the null 
hypothesis 

HABC- 

TConfig 
5 0 0 2.022600 0.043114 0.0166 

Reject the null 
hypothesis 

HABC-ABC-

TG 
4 0 1 1.841149 0.065600 0.0250 

Retain null 
hypothesis 

HABC- ITCH 
4 1 0 1.354571 0.175554 0.0500 

Retain null 
hypothesis 

Table 9. Wilcoxon signed rank sum test for Table 4. 

Pairs 

Ranks Test statistics  

Conclusion ABCS 

< 

ABCS > ABCS = Z Asymp. Sig. (2-

tailed) 

𝛂 

𝐡𝐨𝐥𝐦   

HABC- TVG 10 1 5 2.045961 0.040760 0.0100 Reject the null 
hypothesis 

HABC- 

WHITCH 

16 0 0 3.517372 0.000436 0.0125 Reject the null 
hypothesis 

HABC- PICT 16 0 0 3.516196 0.000438 0.0166 Reject the null 
hypothesis 

HABC-HSS 7 4 5 0.670151 0.502762 0.0250 Retain null 
hypothesis 

HABC-PSTG 5 4 7 0.593914 0.552570 0.0500 Retain null 
hypothesis 

Table 10. Wilcoxon signed rank sum test for Table 5. 

Pairs 

Ranks Test statistics  

Conclusion ABCS 

< 

ABCS > ABCS = Z Asymp. Sig. (2-

tailed) 

𝛂 

𝐡𝐨𝐥𝐦   
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HABC-GS 1 12 2 3.114669 0.001842 0.0083 Reject the null 
hypothesis 

HABC- 

WHITCH 

14 1 0 3.352327 0.000801 0.0100 Reject the null 
hypothesis 

HABC-IPOG 11 2 2 2.901140 0.003718 0.0125 Reject the null 
hypothesis 

HABC- TVG 11 3 1 2.796310 0.005169 0.0166 Reject the null 
hypothesis 

HABC-PSTG 2 11 2 2.201398 0.027708 0.0250 Reject the null 
hypothesis 

HABC-HSS 6 6 3 0.745815 0.455779 0.050 Retain null 
hypothesis 

 

Table 11. Wilcoxon signed rank sum test for Table 6. 

Pairs 

Ranks Test statistics  

Conclusion ABCS 

< 

ABCS > ABCS = Z Asymp. Sig. (2-

tailed) 

𝛂 

𝐡𝐨𝐥𝐦   

HABC- TVG 7 0 8 2.366432 0.017960 0.0100 Reject the null 
hypothesis 

HABC- 

WHITCH 

15 0 0 3.411211 0.000647 0.0125 Reject the null 
hypothesis 

HABC- PICT 14 1 0 3.294179 0.000987 0.0166 Reject the null 
hypothesis 

HABC-PSTG 3 2 10 0.674200 0.500184 0.0250 Retain null 
hypothesis 

HABC-HSS 1 3 11 0.365148 0.715001 0.0500 Retain null 
hypothesis 

7. Statistical Evaluation 

Statistical analysis is another method to evaluate the proposed strategy in terms of 

effectiveness to assess the significance of strategy. The Wilcoxon signed-rank test 

is used to evaluate HABC strategy with existing strategies in the experimental 

(from Tables 2 to 6) with 95% confidence level (i.e., α=0.05). The main reason for 

adopting a Wilcoxon signed-rank test is to determine whether there is a statistical 

difference between the proposed strategy and the remaining strategies in the 

comparison. This test is ideal to measure the difference of the two sets. 

In order to control the error rate due to multiple comparisons, Bonferroni-

Holm correction was adopted for adjusting α value (i.e., based on Holm’s 

sequentially rejective step-down procedure [62]). Depending on the first stored 

p-value (Asymp. Sig. (2-tailed)) in scaling in ascending order. Therefore, α Holm 

is adjusted based on: 

α Holm =
𝛼 

𝑀−𝑖+1
                     (7) 

where M indicates the overall number of paired comparison and i indicate the 

test number. 

There are three values to evaluate HABC; Ranks HABC>, HABC<, and 

HABC= are used. In other words, the results of the proposed strategy are greater, 

smaller or equal to the other existing strategies. Two values have a Statistical Test 

part; Asymp. Sig. (2-tailed) and Z. The value of Asymp. Sig. (2-tailed) indicates 

the significant difference between the two sets and that the value does not exceed α 

Holm. Regarding the Z value, it is out of the scope of this paper (i.e., not 

considered). The corresponding hypothesis is rejected if the value of the Asymp. 

Sig. (2tailed) alternatively, called P-value is less than α Holm. The second 

hypothesis if rejected, the test proceeds with the third and so on. As soon as a certain 

null hypothesis cannot be rejected, all the remaining hypotheses are retained as 

well. The strategies with N/A and N/S results are considered incomplete and 
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ignored samples, as there is no available result for the specified test configuration. 

The complete statistical analyses are shown in Tables 7 to 11. 

Statistical results based on Wilcoxon test for Tables 2 to 6 are presented in 

Tables 7 to 11. From Table 7, HABC shows there is a significant difference with 

other strategies in column Asymp. Sig. (2-tailed), except for CS and ITCH, which 

has a significant difference from HABC. From Table 8, HSS and CS results are 

considered “missing” due to unavailability of results when t value is 6. Although 

HABC performed better than PSTG, IPOG-D, Jenny, IPOG, CTE-XL, TVG, PICT 

and TConfig. However, ABC-TG and ITCH showed better significant difference 

from HABC. From Table 9, HABC showed there is a significant difference 

compared to WHITCH, TVG and PICT strategies except for the HSS and PSTG 

that showed a better significant difference from HABC. For the other existing 

strategies, the results are considered “missing” due to unavailable results or not 

supported to the certain configuration. Table 10 presents the test results of Table 5. 

HSS is shown to have a significant difference compared to HABC. However, 

HABC excelled with the WHITCH, GS, IPOG, TVG and PSTG strategies. Table 

11 presents the test results of Table 6. PSTG and HSS are shown to have a 

significant difference compared to HABC. However, HABC excelled with the 

WHITCH, TVG and PICT strategies. 

8. Threats to Validity 

There are many threats that confront the validity of any study during the research. 

Therefore, it is necessary to reduce and validate these threats as soon as possible. 

Reducing these threats is not an impossible task, by designing and development 

experiments can achieve the mitigation of threats. There are many t-way testing 

strategies that can be compared with the proposed HABC strategy. However, a few 

strategies support the VSCA. These strategies have been selected in order to 

compare the performance of HABC results. 

The effectiveness of the proposed HABC strategy is one of the most important 

threats to validity. As such, we cannot use statistical hypothesis tests method such 

as the t-test in order to evaluate and compare HABC strategy with other existing 

strategies for producing the VSCA because we do not have the source code of any 

of them. Based on the previously mentioned reason, we cannot make a comparison 

in terms of the efficiency of generating time with existing strategies. All VSCA 

strategies have been implemented in a different environment. Therefore, our 

benchmarking result has been based on the published results. 

9.  Conclusion 

This paper proposed a hybridization of ABC algorithm and PSO algorithm. This 

hybridization is aimed to generate the perfect test set size for t-way and VSCA. The 

HABC strategy exploits the advantage of both ABC and PSO algorithm. The 

experiments revealed that HABC strategy delivers phenomenal performance in 

comparison to the old strategies for both t-way and VSCA except GS and SA due 

to sub-configuration regarding VSCA when performed on various problems. 

Whereas the generated result was competitive and close with SA and GS in terms 

of VSCA. As part of our future work, we plan to improve the performance of the 

HABC strategy for generating the better result and to support the constraints within 

variable strength interaction. 
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Nomenclatures 
 

C1&C2 Learning Vector 

fit Fitness Value 

gbest Dimension of best particle 

ne Number Of Unemployed Honeybees 

pbest Personal best of particle 

r1&r2 independent random numbers 

rand Scaling factor 

V Velocity of particle 

Xi Test case 
𝑋𝑖,𝑑

𝑡  Position of particle 

Xmax Upper Boundary Parameter 

Xmin Lower Boundary Parameter 
 

Abbreviations 

ABC Artificial Bee Colony 

ACS Ant Colony System 

AETG Automatic Efficient Test Generator 

AI Artificial Intelligent 

CA Covering Array 

CS Cuckoo search 

CT Combinatorial Testing 

CTE-

XL 

Classification-Tree Editor (eXtended Logics 

HABC Hybrid Artificial Bee Colony 

HSS Harmony Search Strategy 

IPOG In-Parameter-Order Generator 

ITCH Intelligent Test Case Handler 

ITTDG Integrated t-way Test Data Generation 

MCA Mixed Covering Array 

OA Orthogonal Array 

PICT Pairwise Independent Combinatorial Testing 

PSO Particle Swarm Optimization 

PSTG Particle Swarm Test Generator 

SA Simulated Annealing 

SI swarm intelligence 

TCG Test Case Generation Tool 

TVG Test Vector Generator 

VS Variable Strength 

VSCA Variable Strength Covering Array 
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