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Abstract 

The need to use sustainable materials for construction is growing. This study 

investigated the effect of incorporating 0.5 and 1% coir fibre content on the 

workability, density, compressive strength, splitting tensile strength, and 

durability of concrete. The splitting tensile strength was determined at 7, 14 and 

28 days while the compressive strength was determined up to 56 days following 

relevant code procedures. The durability of coir fibre reinforced concrete was 

investigated by subjecting hardened cube specimens to 1, 3 and 5% magnesium 

sulphate solutions for 28 and 56 days after curing in water for an initial period of 

28 days. The compressive strength loss and mass losses were determined with 

reference to the control mixes. The incorporation of coir fibre in concrete reduced 

its workability and seemed to have no effect on the density. Coir fibre slightly 

improved the compressive and tensile strength of concrete, especially at 0.5% 

while its resistance to sulphate attack was only improved at 1% coir fibre content. 

Keywords: Coir fibre, Compressive strength, Durability, Fibre reinforced concrete, 

Tensile strength. 
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1.  Introduction 

For developing regions in Africa where conventional fibres are elusive, the need to 

search for similar alternatives cannot be overemphasised. Moreover, some of the 

natural fibres are waste materials that are left to constitute a menace in the 

environment where they are dumped. Examples of natural plant fibres are coconut 

(coir) fibre, bamboo fibre, wood fibre, sisal fibre, elephant grass, etc. [1-3]. For coir 

fibre that is in abundance in Nigeria, its application for building purposes is in 

reinforcing roofing materials and celling boards.  

Beyond these, the fibre serves as environmental waste. Since cracks in concrete, 

particularly in foundation slab is a major challenge due to the inherent weakness of 

concrete in tension, exposing it to deterioration from chemical substances, an 

investigation into the use of coir fibre in concrete is worthwhile. It is now common 

knowledge that fibres in concrete generally can enhance its toughness, ductility, shear 

strength, energy absorption capacity, damage tolerance, stress distribution, volume 

changes, among others [4, 5]. 

Concrete is often designed to be adequate in strength and durability. However, 

incompatibility of the elastic moduli of the aggregate-paste interface leads to 

stress-strain concentrations [6, 7]. This coupled with creep-fatigue due to 

sustained loads, give rise to internal disruptions in concrete [8]. Due to these and 

other factors such as shrinkage, thermal movements and loading conditions, 

microscopic cracks (2-5 µm) spread and interconnect [6, 7, 9, 10]. With crack 

propagation, there will be increased transport of the aggressive fluid leading to 

self-propagated deterioration cracks and expansive disruptions [7]. The 

incorporation of coir fibre (CF) in the matrix will distribute stress-strain 

concentrations, bridge internal and expansive disruptions; and limit crack 

initiation and propagation. 

Coir fibres are obtained from the husks of the coconut fruit. The common name, 

scientific name and plant family of coconut fibre are Coir, Cocos nucifera and 

Arecaceae (Palm), respectively [11]. There are two types of coconut fibres, brown 

fibres extracted from matured coconuts and white fibres extracted from immature 

coconuts [11-13]. Brown fibres are thick, strong and have high abrasion resistance.  

White fibres are smoother and finer, but weaker. These types of fibres have 

different uses depending upon the application requirement. According to 

Satyanarayana et al. [14] and Munawar et al. [15], coir fibre has the highest 

toughness out of other natural fibres. Due to environmental sustainability and its 

abundant sources in Nigeria (especially for rural housing schemes), brown coir 

fibres were used for this study. 

In the present study, varying proportions of discrete brown coir fibres were 

incorporated in concrete mixes to examine its effect on the compressive strength, 

tensile strength and resistance to magnesium sulphate. Due to fibre inclusion, the 

improvement in plain concrete’s stress distribution (compressive and tensile 

strengths) and microstructure by limiting expansive disruption and crack 

initiation/propagation due to aggressive sulphate ingression by determining 

deterioration factors in terms of mass loss and compressive strength loss are to 

be investigated. 

 



1484        A. J. Babafemi et al. 

 
 
Journal of Engineering Science and Technology               June 2019, Vol. 14(3) 

 

2.  Materials and methods  

2.1. Cement and aggregates 

CEM I Ordinary Portland Cement (OPC) of grade 42.5R confirmed to the 

requirements of BS EN 197-1 [16] was used. Fine sand passed through 4.75 mm to 

63 µm sieve sizes while granite of size ranging from 20 mm to 6.3 mm was used. 

Sieve analyses carried out on the sand and granite show that they complied with 

the requirements of BS EN 12620 [17]. Table 1 shows the physical properties of 

the aggregates while Fig. 1 shows the grading curves. 

Table 1. Physical properties of aggregates used. 

 
Specific 

gravity 
Fineness 

modulus 

Coefficient of 

uniformity 

(Cu) 

Coefficient of 

curvature 

(Cc) 

Sand 2.65 2.5 6 1 

Granite 2.8 7.1 2 1.1 

 

 

Fig. 1. Grading curves of aggregates used. 

2.2.  Coir fibre 

Coir Fibre (CF) was extracted into strands from its husk using cutlass and knife 

after which, it was washed thoroughly in warm water and left to dry before cutting 

into specified dimensions [5]. Figure 2 shows the fibres in the raw and processed 

states, Table 2 shows the physical properties, while Table 3 shows the typical 

chemical properties of coir fibre. An extensive study by Yalley and Kwan [18] 

reported a maximum of 125 aspect ratio for CF in concrete in order to achieve 

good results. 

Table 2. Physical properties of coir fibre. 

Properties Coir fibre 

Colour Brown 

Average length (mm) 40 

Average diameter (mm) 0.36 

Aspect ratio 111 
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Table 3. Chemical properties of coir fibre. 

Items Percentages 

Water soluble 5.25% 

Pectin and related compounds 3.00% 

Hemicellulose 0.25% 

Lignin 45.84% 

Cellulose 43.44% 

Ash 2.22% 
Source: Verma et al. [19]. 

 

  

(a) (b) 

Fig. 2. Removed coir fibre: (a) Before pre-treatment and sizing, (b) After 

pre-treatment and cutting to average 40 mm length and diameter of 3.6 µm. 

2.3.  Concrete mix design 

The experimental mix design was in two batches. For the first batch (A), concrete 

mixes of ratio 1:2:3.5 with water-cement (w/c) ratio of 0.55 and coir fibre contents 

of 0, 0.5, and 1% (by wt. of cement) were produced. Similarly, for the second batch 

(B), concrete mixes of ratio 1:3:5.8 with a water-cement ratio of 0.55 and coir fibre 

contents of 0 and 1% (by wt. of cement) were produced. Batch A specimens were 

used for compressive and tensile strengths, and durability tests. Batch B specimens 

were used for only compressive and tensile strength tests. The mix of proportions 

and denotations are given in Table 4. Batches A and B mix were separate studies 

formulated to represent structural and non-structural concrete applications 

respectively but combined for this paper. Therefore, higher inclusion of CF (1%) 

and 28 days testing were only adopted for Batch B (typical of rural housing use).  

Table 4. Mix proportion of coir fibre 

reinforced concrete with water-cement ratio of 0.55. 

Batch 

label 

CF 

(%) 

Mix 

ratio 

Cement 

(kg/m3) 

Water 

(kg/m3) 

CF 

(kg/m3) 

Fine aggregate 

(kg/m3) 

Coarse 

aggregate 

(kg/m3) 

A0 0 

1:2:3.5 353 194 

0 699 1258 

A1 0.5 1.765 698 1257 

A2 1 3.53 697 1256 

B0 0 
1:3:5.8 243 133 

0 709 1420 

B1 1 2.43 708 1417 
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2.4.  Compressive and splitting tensile strength tests 

The concrete specimens were prepared and cured according to the requirements of 

BS EN 12390-2 [20]. Sand and OPC were manually mixed before adding coir fibre; 

thereafter, thoroughly remixed before granite was added. Slump values of the 

various mixes were also determined according to BS EN 12350-2 [21]. The 

concrete was thereafter placed into moulds in three layers; each layer was 

compacted manually (25 strokes) by a 25 mm compacting steel rod. Concrete 

specimens of 100 mm cubes were made from the various mixes and demoulded 

after 24 hours of casting. After demoulding, the specimens from Batch A were 

cured in water for 7, 14, 28 and 56 days.  

After 28 days of water curing, some specimens were transferred to a 100 L 

magnesium sulphate (MgSO4) solution container for another 28 and 56 days for 

durability tests. Of all sources of chemical attack, magnesium sulphate is the most 

detrimental; it attacks all concrete products such as Calcium Silicate Hydrate (CSH), 

Calcium Aluminate Hydrate (CAH) and Calcium Hydroxide (CH) [22-25], with the 

known concentrations of the MgSO4 (C1), volume of solutions to be prepared (V2) 

and concentration of solutions needed (C2), the volume of MgSO4 (V1) needed to be 

mixed with the 100 L of water to give a concentration of 1, 3 and 5% were 

determined. Specimens from Batch B were only cured in water for 7, 14 and 28 days. 

All curing was by complete immersion and at room temperature. After the specified 

days of water curing, Batches A and B specimens were tested for compressive and 

splitting tensile strengths in accordance with the requirements of BS EN 12390-3 [26] 

and BS EN 12390-6 [27], respectively, using an ELE 2000 kN compression testing 

machine conforming to BS EN 12390-4 [28]. Three replicates and 100 mm cubes 

were used for all the tests (compressive, tensile and durability). 

2.5.  Durability test 

For Batch A specimens cured further in MgSO4 after 28 days of water curing, Mass 

Deterioration Factor (MDF) and compressive Strength Deterioration Factor (SDF) 

were determined as given in Eqs. 1 and 2 [29, 30]. 

Mass deterioration factor (MDF) =
𝑀𝑐𝑡𝑟𝑙− 𝑀𝑐𝑜𝑛𝑐

𝑀𝑐𝑡𝑟𝑙
 × 100%             (1) 

Strength deterioration factor (SDF) =
𝐹𝑐𝑡𝑟𝑙− 𝐹𝑐𝑜𝑛𝑐

𝐹𝑐𝑡𝑟𝑙
 × 100%             (2) 

where Mctrl  = average mass of control specimen (0% MgSO4); Mconc = average mass 

of specimen after curing in the MgSO4; Fctrl = average compressive strength of 

control specimen (0% MgSO4); Fconc = average compressive strength of specimen 

after curing in MgSO4 (1%, 3%, 5%). 

3.  Results and Discussion 

3.1.  Workability 

Slump test was used as a measure of the workability of Coir Fibre Reinforced 

Concrete (CFRC) at an initial w/c ratio of 0.5. It was observed that at both levels 

of CF inclusion (0.5 and 1%), slump value was reduced to zero, making the CFRC 

barely workable. Therefore, the w/c ratio was increased to 0.55, which produced a 

fair, workable mix with slump values ranging from 5-20 mm. Various authors have 

attested to the fact that fibres reduce the slump of concrete significantly. The works 
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of Abhishek et al. [31], Al-Kadi et al. [32] and Shreeshail et al. [33] revealed that 

the inclusion of CF in concrete at varying proportions decreased its workability 

drastically using various test methods (slump, slump flow, V-Funnel, compaction 

factor, vee bee test, flow table test). Furthermore, Ali et al. [34] reported that at 

0.48 w/c ratio, prepared CFRC (with 1-3%, 5% CF) was not workable until an 

increment of the w/c ratio from 0.49 to 0.62. Despite low slumps recorded for this 

study, the CFRC was fairly workable. Hence, the use of slump cone and value for 

workability test for Fibre Reinforced Concrete (FRC) has been discouraged as a 

general discourse among researchers. 

The low workability observed for the CFRC can be due to various reasons. CF 

is a water-absorbent material, absorbing water to the tune of 71.3-150% [35, 36]. 

Therefore, during mixing of the matrix, the fibres can absorb the mixing water and 

swell, thereby pushing away the concrete matrix [36]. This initially reduced 

workability and later improved it minimally when w/c ratio was increased [34]. The 

CF is more elongated than the aggregates; this will promote interlocking and 

friction in the matrix [37] thereby reducing workability. Furthermore, the specific 

surface area of CF is higher than that of the aggregates [38, 39], resulting in 

increased water demand [37], thereby making CF require more water to lubricate 

its surface. Sivaraja et al. [3] limited their CF to 1% to avoid the balling effect on 

concrete during mixing. Likewise, the study opined that optimum fraction of 1.5% 

is evident in literature for concrete without water reducing admixtures. Other 

studies that went above 1% CF inclusion either made use of superplasticizer [4, 18, 

31, 32] or were silent on the workability requirements [35, 40-43]. Hence, CFRC 

at >1% may require the use of water reducers. 

3.2.  Density 

This study revealed that the inclusion of CF (0.5 and 1%) in concrete has a negligible 

effect on its density. The density of plain concrete, 0.5 and 1% CFRC was averagely 

25 g/cm3 at all curing ages. This is expected as the density of CF (1.18 g/cm3 [27]) is 

relatively low to that of normal concrete. Hence, the level of incorporation of CF in 

concrete for this study is relatively low to affect its density. This result follows the 

study of Hassan et al. [36] where CF reduced concrete density significantly only at 5 

and 7% and not at 1 and 3%. The result of Ali et al. [34] also reported a density 

reduction of 0.4% at 1% CF, and 4% at 5% CF in concrete. 

3.3.  Compressive strength result 

Figures 3 and 4 show the results obtained for the compressive strength of the 

specimens at 7, 14, 28 and 56 days. Generally, as the curing age increases, the 

compressive strength also increases for both batch mixes. The inclusion of CF 

slightly improved the compressive strength of concrete with 0.5% CF having higher 

compressive strength than 1% CF. For Batch A mixes, 0.5% CF improved the 

compressive strength of the plain concrete by 21.8, 7.6 and 14.3% at 7, 14 and 28 

days, respectively. At 1% CF content for Batch A mixes, compressive strength only 

marginally increased at 7 and 56 days. For Batch B mixes, 1% CF has no significant 

improvement on the compressive strength of the plain concrete. Similar to this 

study, Santra and Chowdhury [12] reported an increase in compressive strength at 

0.2 and 0.4% CF. This implies that potential for improvement in compressive 

strength may reach its limit at 0.5% CF; from some literature, slightly increasing 

CF above 0.5% may not drastically reduce the compressive strength (around 1%) 
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but there’s often a downward trend as CF content increases further. Such studies 

have at least CF ≥ 1% and optimum CF that yields lower strength than the control 

[4, 36, 41, 44]. 

Since there are only slight or no improvement from the variation of CF content 

for each batch, other variables could have been responsible for the slight differences 

(such as manual mixing and compaction) and not necessarily a direct relationship 

with the CF. 

 

Fig. 3. Variation of compressive strength with CF content. 

 

Fig. 4. Variation of compressive strength with mix proportion. 

This implies CF slightly improves the compressive strength of concrete. 

Likewise, the mix ratio influences the effectiveness of CF in improving the 

compressive strength of concrete. The richer mix (Batch A) will have more cement 

to hydrate and bind the matrix together; this may improve the CF bond to the 
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matrix. Ali et al. [5] opined that increased CF bond strength improves CFRC 

resistance to compressive stress. 

Figure 4 shows the effect of the mix proportion on the compressive strength at 

various ages of curing. At all the curing ages and CF content (0 and 1%), Batch B 

specimens had slightly less strength than those of Batch A. However, the inclusion 

of CF in Batch B makes its 7-day strength equal to that of the plain concrete in 

Batch A. Results of this study are in line with that of previous studies, which 

indicate that optimum inclusion of CF in concrete range from 0.6 to 1%. Ramli et 

al. [4] reported an optimum increase of 3.1% in compressive strength for 0.6% 

CFRC. Likewise, Abhishek et al. [31] reported an optimum of 0.8% CF inclusion 

in concrete. Ali et al. [45] reported an increase of 9% for 1% CFRC and a decrease 

of 6 and 10% for 2 and 3% CFRC, respectively. However, the CF used by Ali [11] 

was pre-treated by soaking in boiling water for 2 hours. This could have been 

responsible for the improved strength. On the other hand, Hassan et al. [36] reported 

a decrease of 17, 40, 50, and 73% in compressive strength due to the inclusion of 

1, 3, 5 and 7% CF (volume percentage), respectively, in concrete. Sai et al. [41] 

reported a decrease of 4% at 2% CF without detailing the properties of the CF while 

Ogunbode et al. [44] had the closest compressive strength to the control at 0.5% 

CF at a reduction of 4% and 1% yielded a reduction of 11%. 

3.4. Splitting tensile strength result 

Figure 5 shows the splitting tensile strength results of the 0, 0.5 and 1% CFRC. 

Generally, the same pattern observed for the compressive strength is also observed. 

As the curing age increases, the tensile strength increases; inclusion of coir fibre 

marginally improved the early strength (7 days) of the concrete for both mix 

proportions. At 14 and 28 days, the coir fibre had little or no effect on the splitting 

tensile strength. At 7 days curing, Batch A had an increment of 7.4 and 13.8% for 

Batch B. At 14 days, Batches A and B had a decrease of 1.2 and 1.5%, respectively; 

while at 28 days, Batch A improved in strength by 2.6% and Batch B decreased in 

strength by 11.5%. However, it should be noted that Batch A had inclusion of 0.5% 

CF and Batch B had 1% CF inclusion. 

 

Fig. 5. Variation of tensile splitting strength with CF content. 
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Previous studies on the tensile strength of CFRC gave varied results. The study 

by Ali [11] revealed that the inclusion of 1, 2 and 3% CF (5 cm fibre length) in 

concrete improved the tensile strength by 11, 13 and 8%, respectively, while 5% 

CF reduced the tensile strength by 2%. The work of Shreeshail et al. [33] revealed 

that 1, 2 and 3% CF in concrete improved the tensile strength by 6, 29 and 23%, 

respectively, while Yalley and Kwan [18] reported that 0.25% CF did not improve 

the splitting tensile strength of concrete but 0.5 and 0.8% improved the strength by 

15 and 3.2%, respectively. Furthermore, Ogunbode et al. [44] reported an increase 

of 1.19, 6.87 and 3.28% for 0.5, 1, 1.5% CF content. 

3.5. Durability test result 

Durability test of the CFRC was investigated by total immersion in 0 (control), 1, 

3 and 5% MgSO4 after curing in water for an initial 28 days. Compressive strength 

and mass were recorded after 28 and 56-day immersion. Thereafter, compressive 

strength loss and mass loss were calculated as Strength Deterioration Factor (SDF) 

and Mass Deterioration Factor (MDF).  

3.5.1. Strength deterioration factor 

Figure 6 shows the effect of coir fibre on the resistance of concrete to MgSO4 

attack. Firstly, it is interesting to observe that at 28 days of curing in 0% MgSO4 

(making a total of 56 days water curing), the compressive strength had been 

improved by 47 and 24% at 0.5 and 1% CF contents, respectively, above specimens 

with 0% CF content. The result at 28-day immersion in 1% MgSO4 reveals that the 

compressive strength of 0 and 1% CFRC in 1% MgSO4 is higher than that in water 

(0% MgSO4) by 10 and 2.95%, respectively. This reveals that at 28 days in 1% 

MgSO4, the concrete specimens (0 and 1% CFRC) were still gaining strength. This 

would mean that the formation of disruptive gypsum and ettringite is still filling 

available voids [46]. 

 

Fig. 6. Variation of coir fibre with compressive strength 

at various percentages of MgSO4 concentration. 
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From Fig. 7, at 0.5 and 1% content of CF, an SDF of ±2% was recorded on the 

28-day in 1% MgSO4. The strength loss/gain is therefore negligible. At 3% MgSO4, 

0.5% and 1% CFRC underwent more deterioration (SDF = 18.8 and 6.3%, 

respectively) than the plain concrete (SDF = 3.3%). The higher SDF obtained for 

0.5% CF could have resulted because the available voids are partly filled up by CF 

while the disruptive ettringite and gypsum have overfilled the remaining voids and 

causing internal cracks that weaken the strength. However, unlike the 1% CFRC, 

the 0.5% CF inclusion is not enough to adequately resist (by bridging internal 

cracks) the expansive nature of ettringite and gypsum. At 5% MgSO4, 1% CF has 

same strength deterioration as plain concrete (SDF = 10.7%), with 0.5% CFRC 

deteriorating more in strength than the plain concrete (0% CF). At 56 days of 

immersion of specimens in MgSO4, the deleterious effect of MgSO4 attack has 

begun to set in (all immersed specimens had positive SDF). This sulphate resistance 

pattern can also be explained by the same reason given for the 28-day immersion. 

Generally, the higher the MgSO4 concentration, the higher the strength 

deterioration as expected. From the foregoing, incorporation of 1% CF improved 

the concrete resistance to MgSO4 attack at all concentrations (1, 3 & 5%) more than 

0% and 0.5% CF. 

 

Fig. 7. Variation of strength deterioration  

factor with CF content in MgSO4 solution. 
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content, the higher the concentration of MgSO4, the more the mass deterioration 

with 56-day immersion having slightly less deterioration than 28 days. At 1% CF 

content, 28-day immersion specimens increased in mass in 1% MgSO4 solution, 

remain unchanged in 3% MgSO4, and reduced in 5% MgSO4. However, when 

immersed for 56 days, 1 and 3% MgSO4 increased its mass while 5% MgSO4 

increased its mass proportionately. From the results, it is clear that 0.5% of CFRC 

underwent the worst mass deterioration at both immersion periods, followed by the 

plain concrete (0% CFRC). Furthermore, Fig. 8 reveals that the variation in mass 

due to deterioration is not much as that of strength. This could be because the 

disruptive gypsum and ettringite in the specimens are not leaching away easily 

(especially with the CF bridging the mass together), thereby contributing to the 

mass of the specimen. This explains the lower MDF at 56 days as compared to that 

of 28 days for the CFRC. 

 

Fig. 8. Variation of mass deterioration  

factor with CF content in MgSO4 solution. 
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- 13.8%). 0.5% CF content improved the strength of concrete more than 1% 

CF content. 

 Richer mix proportion improves the effectiveness of CF in concrete, implying 

that its bond strength with concrete matrix was improved. 

 CF incorporation in concrete improved its resistance to sulphate attack (in 

terms of mass loss and compressive strength loss); 1% CF inclusion improved 

concrete’s resistance (SDF = 5.47, 10.32, 22.68%) more than 0.5% CF 

inclusion (SDF = 13.56, 21.36, 22.68%). 

 Unlike the compressive strength loss, there was no definite pattern as to 

the effects of MgSO4 concentration and immersion period on the mass loss 

of CFRC. 

As a recommendation for future study, other factors that influence the properties 

of CFRC can be investigated. These include CF pre-treatment, aspect ratio, w/c 

ratio, tensile pull-out test, flexural strength.  

 

Nomenclatures 
 

Cc Coefficient of curvature 

Cu Coefficient of uniformity 

Fconc Average compressive strength of specimen after 

curing in the MgSO4 

Fctrl Average compressive strength of control specimen 

(0% MgSO4) 

Mconc Average mass of specimen after curing in MgSO4 

Mctrl Average mass of control specimen (0% MgSO4) 
 

Abbreviations 

CF Coir Fibre 

CFRC Coir Fibre Reinforced Concrete 

FRC Fibre Reinforced Concrete 

MDF Mass Deterioration Factor 

MgSO4 Magnesium Sulphate 

OPC Ordinary Portland Cement 

SDF Strength Deterioration Factor 
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