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Abstract 

In this article, the effectiveness of newly developed simplified version of Random 

Search Algorithm (RSA) based strategy for design optimization of a composite 

laminate is tested against few selected case studies of classical buckling load 

maximization using two-ply stack constraint. Variable Thickness Approach 

(VTA) and Uniform Thickness Approach (UTA) used during simulation prove 

that this algorithm is capable of handling the number of design variables of 

different nature in discrete form, simultaneously. RSA defined here is capable of 

accepting user-defined limit bounds with increment value for design variables 

and non-linear constraints. This will help the designer to obtain practically 

acceptable optimum designs. The obtained optimum results show that RSA 

outperforms Harmony Search Algorithm. The optimum results obtained using 

RSA for UTA are validated using FEA. 

Keywords: Buckling load, Composite laminate, Genetic algorithm, OptiComp, 

Random search algorithm. 
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1.  Introduction 

Composite laminates have attracted the attention of many users in several 

engineering and other disciplines as a structural member because of the unlimited 

possibilities of deriving any characteristic material behaviour. To get required 

engineering properties for an application, multiple Fibre Reinforced Polymer (FRP) 

laminas/plies are connected together to constitute a structural element called a 

composite laminate.   

Unforeseen failure of mechanical components can be grouped into two major 

categories: material failure and structural instability. The second one is often called 

buckling. Composite laminates are seeing increased usage as structural members in 

engineering applications, which are subjected to heavy compressive loads. While 

designing such structural components, the buckling load carrying capacity becomes 

a key point. For the structural elements subjected to high compressive stresses, the 

buckling failure mode is characterised by sudden sideways failure. The buckling 

load factor is nothing but the factor of safety against buckling and it can be 

calculated as the ratio of the buckling loads to the currently applied loads. 

de Almeida [1] explored the effectiveness of Harmony search algorithm in 

buckling load maximization of the composite laminate plate. Harmony Search 

Algorithm (HAS) is inspired by the process of improvisation in music playing in 

order to search for the perfect set of harmony. A musician improvises a new melody 

by selecting a musical note on a random basis or improvises the previous melody 

with possible small pitch adjustments. HSA simulates this process by creating new 

solution vectors with the value of the design variables defined either on a random 

basis or selected from a pool of the best previously generated solutions and possibly 

applying small changes to the selected value, i.e., pitch adjustment. 

Karakaya and Soykasap [2] in various load cases, done for buckling load 

maximization of the composite laminate using the genetic algorithm and 

generalised pattern search algorithm. The results obtained for different load cases 

in the paper are compared with the results obtained by previous researchers. 

Aymerich and Serra [3] and Rao and Arvind [4] respectively used ant colony 

optimization algorithm and scatter search algorithm for maximizing buckling load 

carrying capacity of the composite laminate using maximum strain theory as a 

constraint. Chang et al. [5], Topal and Uzman [6] and Ho-Huu et al. [7] respectively 

used the optimization techniques like permutation discrete particle swarm 

optimization technique, modified feasible direction method and cell-based 

smoothed discrete shear gap method for predicting buckling behaviour of 

composite laminates. Jing et al. [8] and Jing et al. [9] proposed a single criterion 

and multi-criteria optimization including buckling load factor by using Permutation 

Search (PS) algorithm and sequential permutation table, which resulted in a 

reduction of number evaluations in stacking sequence optimization. Ovesy et al. 

[10] studied the buckling analysis of rectangular composite laminate plate by using 

a finite strip method, while by Baba and Baltaci [11]. Kumar et al. [12] studied the 

effects of anti-symmetric laminate configuration, cutout and length/thickness ratio 

on the buckling behaviour of the composite laminate plate and investigated the 

buckling behaviour of laminated curved composite stiffened panels by considering 

different design parameters.  

Many researchers developed different techniques for optimization of composite 

laminates as described in the earlier paragraph. For finding the optimum design of 

https://en.wikipedia.org/wiki/Structural_failure
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composite laminate using any one of such methods, the designer must have 

thorough knowledge about the optimization process and that particular technique.  

This may not be possible every time and become a hurdle to use these techniques. 

This article tries to overcome this hurdle by providing a simple and substantially 

accurate optimization strategy based on Random Search Algorithm (RSA).  

A composite laminate can be designed using two approaches, Uniform Thickness 

Approach (UTA) and Variable Thickness Approach (VTA). All laminas in a laminate 

will have the same thickness in UTA, while in VTA, the laminas in the laminate may 

have the same or different thicknesses. The use of ply thickness as a user-defined 

discrete variable is rarely observed [13-15] so far in the available literature because 

of manufacturing difficulty and mathematical complexity. The comparison of both 

the approaches yields that the number of design variables in VTA becomes more than 

the design variables in UTA. Moreover, the nature of variables, i.e., ply angle and ply 

thickness is different. A ply angle is an integer number while ply thickness is a real 

number. Fabrication of variable-thickness composite structures can be done by ply 

drops and splicing and can be preferred for designing highly critical aerospace 

components because of high manufacturing cost [16]. 

de Almeida [1] defined in the present study, in which, RSA is initially applied 

for maximizing buckling load carrying capacity of composite laminates for the 

different problems. Then capability of RSA to handle different design variables 

simultaneously is demonstrated using Variable Thickness Approach. As results 

obtained using RSA show significant improvement over the reference results, the 

optimum results obtained using UTA are validated at the end. RSA is simple to 

understand and any common designer can implement it. The obtained results show 

that RSA is capable of finding a near-optimal solution and its performance in this 

regard depends on sample size. The mathematical development of the problem is 

described in the next section. 

2.  Development of Optimization Problem 

A composite laminate plate with length ‘a’ and width ‘b’; subjected to in-plane 

normal loads Nxx, Nyy and in-plane shear load Nxy is shown in Fig. 1. In the figure, 

X, Y and Z denote a global coordinate system of the composite laminate, while 1 

and 2 represent a local coordinate system for individual lamina. Axis 1 of the local 

coordinate system is along the length of the fibre and axis 2 is perpendicular to 

local axis 1 [17]. 

 

Fig. 1. Global and local coordinate systems for composite laminate. 
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The laminate selected for optimization in the problem under consideration is 

balanced symmetric laminate as these laminates avoid strength reducing bending- 

stretching effects by virtue of mid-plane symmetry. At the same time, mid-plane 

symmetry results in a reduction of the number of design variables and ultimately 

minimizes the computational time.  

2.1.  Development of objective function 

Buckling of the composite laminate plate into ‘e’ and ‘f’ half-waves (along with the 

length and width directions, respectively) occurs when the load multiplier 

𝛾𝑐𝑟 reaches to the value [4]. 

𝛾𝑐𝑟(𝑒, 𝑓) = 𝜋2 [
𝐷11

𝑒4

𝑎4 + 2(𝐷12+2𝐷66)(
𝑒

𝑎
)
2
(
𝑓

𝑏
)
2
+𝐷22

𝑓4

𝑏4

𝑁𝑥𝑥(
𝑒

𝑎
)
2
+ 𝑁𝑦𝑦(

𝑓

𝑏
)
2
+ 𝑁𝑥𝑦(

𝑒𝑓

𝑎𝑏
)

]              (1) 

The lowest value of 𝛾𝑐𝑟  is the critical buckling load, which can be obtained by 

substituting e and f equal to 1.  

𝛾𝑐𝑟 = 𝜋2 [
𝐷11
𝑎4  + 

2(𝐷12+2𝐷66)

𝑎2×𝑏2  + 
𝐷22
𝑏4

𝑁𝑥𝑥
a2  + 

𝑁𝑦𝑦

𝑏2  + 
𝑁𝑥𝑦

𝑎𝑏

]                (2) 

In this equation, 𝐷11, 𝐷12, 𝐷22 and 𝐷66 represent elements of bending stiffness 

matrix D. The matrix D can be calculated using stiffness matrices [𝑄̅] of individual 

laminas. The elements of [𝑄̅]matrix depend on the material properties and ply angle 

of the lamina under consideration. According to Malliac [17], matrix D can be 

calculated as the following. 

D = 
1

3
∑  (𝑛

𝑗=1 𝑄̅) (ℎ3
𝑗 − ℎ3

𝑗−1)                (3) 

where [𝑄̅] =  [

𝑄̅11 𝑄̅12 𝑄̅16

𝑄̅12 𝑄̅22 𝑄̅26

𝑄̅16 𝑄̅26 𝑄̅66

], 

𝑄̅11 =  𝑄11 𝑐𝑜𝑠
4𝜃 + 2 (𝑄12 + 2𝑄66)𝑠𝑖𝑛2𝜃𝑐𝑜𝑠2𝜃 + 𝑄22𝑠𝑖𝑛

4𝜃, 

𝑄̅12 =  𝑄12 ( 𝑠𝑖𝑛
4𝜃 + 𝑐𝑜𝑠4𝜃) +  (𝑄11 +  𝑄22 −  4 𝑄66)𝑠𝑖𝑛2𝜃  𝑐𝑜𝑠2𝜃 , 

𝑄̅22 =  𝑄11 𝑠𝑖𝑛
4𝜃 + 2 (𝑄12 + 2𝑄66)𝑠𝑖𝑛2𝜃𝑐𝑜𝑠2𝜃 + 𝑄22𝑐𝑜𝑠

4𝜃, 

𝑄̅16 =   (𝑄11 − 𝑄12 −  2 𝑄66) 𝑠𝑖𝑛𝜃𝑐𝑜𝑠3𝜃 + (𝑄12 − 𝑄22 +   2 𝑄66) 𝑐𝑜𝑠𝜃𝑠𝑖𝑛3𝜃, 

𝑄̅26 =   (𝑄11 − 𝑄12 −  2 𝑄66) 𝑐𝑜𝑠𝜃𝑠𝑖𝑛3𝜃 +  (𝑄12 − 𝑄22 +   2 𝑄66) 𝑠𝑖𝑛𝜃𝑐𝑜𝑠3𝜃 , 

𝑄̅66 =   (𝑄11 + 𝑄22 − 2𝑄12 −  2 𝑄66)𝑠𝑖𝑛2𝜃𝑐𝑜𝑠2𝜃 +   𝑄66( 𝑠𝑖𝑛
4𝜃 + 𝑐𝑜𝑠4𝜃), 

And              𝑄11 = 
𝐸11

1−𝛾12𝛾21
      ,      𝑄22 = 

𝐸22

1−𝛾12𝛾21
  ,  𝛾21 = (

𝐸22

𝐸11
) 𝛾12, 

𝑄12=  𝑄21 = 
𝛾21𝐸11

1−𝛾12𝛾21
  =  

𝛾12𝐸22

1−𝛾12𝛾21
    ,  𝑄66 = 𝐺12. 

In Eq. (3), ℎ𝑗−1 is the distance from the mid-plane to the top of the jth lamina 

and ℎ𝑗 is the distance from the mid-plane to the bottom of the jth lamina. These 

additional geometric parameters required during laminate analysis are shown in 

Fig. 2. The laminate is made of ‘n’ number of laminas. In Fig. 2, h0 denotes the 

distance from the laminate mid-plane to the top of the first lamina while ℎ1 is the 
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distance from the laminate mid-plane to the bottom of the first lamina.  The total 

thickness of the laminate is denoted with the letter ‘T’. 𝑍𝑗 is the distance from the 

laminate mid-plane to the mid-plane of the jth lamina. 

 

Fig. 2. Additional geometric parameters of laminate. 

2.2.  Optimization algorithms 

In the current article, the stacking sequence of the laminate, which will provide the 

maximum buckling load factor is obtained using ‘OptiComp’ developed in 

MATLAB [13]. OptiComp is a comprehensive optimization procedure developed 

for design optimization of the composite laminate, which can handle a variety of 

laminate design problems effectively with little selection effort. RSA demonstrated 

here is a part of OptiComp developed by the authors of this article. 

It provides a choice of two approaches, namely, Uniform Thickness Approach 

(UTA) and Variable Thickness Approach (VTA) to design a composite laminate. 

In UTA, all the plies will have uniform thickness while ply angles and a number of 

plies will be treated as design variables. In VTA, the number of plies, ply angles 

and ply thicknesses are treated as design variables. 

Random Search method (RSA) is based on the use of random numbers in 

finding the optimum point. Because of the availability of random number 

generators in most of the computer libraries, this method can be used quite 

effectively. Even though it is an old technique of optimization, its use for design 

optimization of a composite laminate is yet not observed in the available literature. 

In OptiComp, original RSA is moulded to accept various design variables of 

different nature in discrete form simultaneously. The process flow of RSA is 

explained in Fig. 3. 
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Along with the necessary geometric parameters and material properties, the user 

has to provide a number of solutions (samples) to be generated as user input, to 

begin with, RSA. The number of possible solutions (samples) to be generated 

depends on the criticality of constraints, available computational time and required 

accuracy. RSA initiates with the development of a trial design vector using one 

random number for each design variable as shown in Fig. 3. The size of the trial 

design vector is ‘2n’ while designing the composite laminate made of ‘2n’ laminas 

using VTA. The trial design vector is nothing but one of the possible configurations 

of the composite laminate in terms of ply angles and thicknesses.  

 

Fig. 3. Flowchart of random search algorithm for 

design optimization of composite laminate. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

    Possible solutions       x =  𝑋1  , 𝑋2 , …… . . , 𝑋ℎ   
calculate corresponding objective function values f =  𝑓1  , 𝑓2 , …… . . , 𝑓ℎ   
    select near optimum solution 𝑋∗ by comparing ‘f ’ values 

STOP 

START 

Input:  Material Properties, Force components, Maximum number of layers         

             (n) , Upper and lower  bounds for design variables with increments,   

             Number of possible solutions to be generated (h) 

Choices in OptiComp:  

 Objective function (f) and Constraint failure theory (𝐶) 

 

i = 1 

       Develop possible solution Xi on random basis 

              Xi =  𝜃1,𝜃1,, … . , 𝜃𝑛 ; 𝑡1,𝑡2, … . , 𝑡𝑛    OR 

              Xi =  𝜃1,𝜃1,, … . , 𝜃𝑛   
 

 

 apply classical lamination theory to xi for developing stresses 

and strains as per the requirement of constraint failure theory 

 
   No 

Yes 
Is C satisfied? 

i ≤ h 

Yes 

No 

i = i+1 

Xi  ∈ X 
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The first ‘n’ elements of the trail design vector denote ply angle stacking 

sequence of laminate and remaining ‘n’ elements denote ply thickness stacking 

sequence of the laminate. The first element of trial design vector, i.e., first ply angle 

is associated with (n+1)th element, i.e., first thickness value, the second element of 

trial design vector, i.e., second ply angle value is associated with (n+2)th element, 

i.e., second thickness value and so on. In the case of composite laminate design 

optimization using UTA, the size of the trial design vector will be ‘n’. In UTA, all 

the elements of trial design vector define one of the possible ply angle stacking 

sequences of the laminate and each lamina possess uniform thickness ‘t’. 

Each element of trial design vector is initially defined in terms of random 

numbers ranging from ‘0’ to ‘1’ and it is necessary to convert these random 

numbers in acceptable values of ply angles and ply thicknesses. Let𝜃𝐿 and 𝜃𝑈 be 

the lower and upper limiting values of the ply angles, while 𝑡𝐿and 𝑡𝑈be the lower 

and upper limiting values of the ply thicknesses. Let the increment values of ply 

angles and ply thicknesses within the given limit bounds be ∆𝜃 and ∆𝑡 respectively 

as provided by user. Each random number generated is converted into required 

angle value or thickness value using relations given below. 

Expected angle value ={∆𝜃 × 𝑟𝑜𝑢𝑛𝑑 (𝑟𝑎𝑛𝑑𝑜𝑚 𝑛𝑢𝑚𝑏𝑒𝑟 × (
𝜃𝑈−θL

∆𝜃
))} + θL  (4) 

Expected thickness value ={∆𝑡 × 𝑟𝑜𝑢𝑛𝑑 (𝑟𝑎𝑛𝑑𝑜𝑚 𝑛𝑢𝑚𝑏𝑒𝑟 × (
𝑡𝑈−tL

∆𝑡
))} + tL(5) 

The developed trial design vector for VTA is shown in Table 1. 

Table 1. Trial design vector for VTA. 

Element no. 1 2 n n+1 n+2 2n 

Trial vector 𝜃1 𝜃2 𝜃𝑛 𝑡1 𝑡2 𝑡𝑛 

Equations (4) and (5) facilitate the designer to choose own values for limit 

bounds and increments for different design variables as per the need and 

availability. Developed trial design vector indicates one of the possible stacking 

sequences of the laminate.  

If this trial design vector does not satisfy one or more constraints selected by 

the user, then the algorithm will continue generating new trial vectors until a trial 

vector that satisfies all the constraints is found. This trial vector, which satisfies all 

the constraints becomes the first possible solution for the problem under 

consideration and becomes one of the elements of solution set ‘X’. This procedure 

is repeated to generate the number of possible solutions (samples) as prescribed by 

the user for the given problem.   

The function values of all the solutions stored in solution set ‘X’ are then 

compared and best out of them will be approximate near the optimum solution of 

the problem. Apart from the flowchart, a time constraint is also applied as 

termination criteria while solving the problem under consideration.  

As per this constraint, the optimization will be terminated if the algorithm 

cannot develop a single possible solution in 15 minutes. The best individual found 

for one sample size is stored and forwarded to the next sample size as one of the 

individual solutions. 
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RSA defined in OptiComp differs the basic random search algorithm for 

constrained optimization [18] in the following ways. 

 The developed trial design vector is immediately discarded if it does not satisfy 

the constraint defined by the user instead of using any penalty approach.  This 

will ensure that all the design vectors stored in the solution set at the end of the 

process are the feasible solutions for the given problem. This will increase the 

probability of getting near the optimal solution with reduced sample size. 

 Intermediate comparison between the design vectors is eliminated. Instead of 

that, all the feasible solutions are stored in the solution set and objective 

function evaluation for all of them will take place in one stroke. This means 

that the constraint violation checking process and objective function evaluation 

process are completely separated in the current strategy. Both these changes 

are helpful in reducing the required computational time.   

Considering UTA, VTA, and RSA, it is now possible to develop two 

optimization problems of buckling load maximization. These two problems can be 

mathematically expressed as given below. 

2.2.1. Problem statement for UTA 

Find [𝜃𝑖]: 

For maximizing:  

𝛾𝑐𝑟 = 𝜋2 [

𝐷11

𝑎4 +
2(𝐷12+2𝐷66)

𝑎2×𝑏2 +
𝐷22

𝑏4

𝑁𝑥𝑥

𝑎2 +
𝑁𝑦𝑦

𝑏2 +
𝑁𝑥𝑦

𝑎𝑏

] 

Subjected to:  Two − ply stack constraint. 

                             −450 ≤ θi ≤ 900(Ply angle increment value 450). 

                              𝑖 = 1,2, … . . , 𝑛 and 𝑡𝑖 = 0.127 𝑚𝑚. 

Using a random search algorithm. 

2.2.2. Problem statement for VTA 

Find [𝜃𝑖 , 𝑡𝑖]. 

For maximizing  

𝛾𝑐𝑟 = 𝜋2 [

𝐷11

𝑎4 +
2(𝐷12+2𝐷66)

𝑎2×𝑏2 +
𝐷22

𝑏4

𝑁𝑥𝑥

𝑎2 +
𝑁𝑦𝑦

𝑏2 +
𝑁𝑥𝑦

𝑎𝑏

] 

Subjected to: Two − ply stack constraint. 

                          −450 ≤ 𝜃𝑖 ≤ 900( Ply angle increment value 450). 

                          0.125 ≤ 𝑡𝑖 ≤ 0.129. (Ply thickness increment value 0.002 mm)*. 

                     𝑖 = 1,2, … . . , 𝑛 

Using a random search algorithm. 

*Discrete ply thickness values used in the simulation are only for demonstration 

purpose and do not possess any practical relevance. The results obtained in terms 
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of stacking sequences and buckling load carrying capacity of composite laminate 

for both these problems are provided in the next section. 

3.  Results 

While designing a composite laminate plate subjected to in-plane compressive 

loads, buckling load carrying capacity becomes a crucial factor as it may result in 

premature failure of the structure. The random search algorithm explained in the 

earlier section is used for maximizing buckling load carrying capacity of a simply 

supported plate subjected to biaxial in-plane compressive loading.  

de Almeida [1] considered a symmetric simply supported laminate having 

length 500 mm and width 1000 mm, for buckling load maximization purpose. 

Optimization in this reference article is carried out using only two ply stack 

constraint (two consecutive plies must have same ply angle). The material 

properties of graphite/epoxy composite laminate plate used in the simulation are 

given in Table 2.  

Table 2. Material properties of graphite epoxy by de Almeida [1]. 

Property Value 

Elastic modulus E11 GPa 127.6 

Elastic modulus E22 GPa 13 

Shear modulus G12 GPa 6.4 

Poisson’s ratio 𝜸𝟏𝟐 0.3 

This laminate is subjected to biaxial compressive forces of magnitude Nxx = 

0.333 N/m and Nyy = 1 N/m as specified in the reference article. The uniform 

lamina thickness under consideration is 0.127 mm for UTA. The different design 

problems are formulated by varying number of plies associated with laminate as 

32, 48 and 64. 

3.1.  Results for problem 2.2.1 

The buckling load carrying capacities obtained by random search algorithm 

considering UTA are shown in Table 3 for various numbers of possible solutions 

(samples). For each sample size, best of five results are provided in Table 3 and the 

buckling load factors obtained for all the cases using random search algorithm are 

compared with the results obtained by de Almeida [1] in the same table.  

Table 4 represents optimum ply angle stacking sequences obtained by random 

search algorithm for various load cases. 

Table 3. Buckling load factors using random search algorithm for UTA. 

Number 

of 

Laminas 

(n) 

Buckling load factor for Buckling 

load factor 

by de 

Almeida [1] 

% rise 

considering 

maximum value 

obtained by RSA 

Samples 

8000 

Samples 

16000 

Samples 

32000 

32 52258 52258 52258 41250 26% 

48 173050 174210 175520 139348 25% 

64 403530 407440 408460 330326 22% 
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Table 4. Optimum stacking sequences obtained 

for different number of laminas using RSA for UTA. 

Number of 

Laminas (n) 
Buckling load factor Stacking sequence 

32 52258 [(08)2]s 

48 175520 [(09/-45/452)2]s 

64 408460 [(07/45/03/45/02/90/45)2]s 

Results provided in Table 3 show improvements in buckling load factor values 

with increased sample size. The obtained best result is reaching closer to the optimal 

solution for that problem with increased sample size. At the same time, the increased 

sample size results in more computational time. It can be seen that the optimum 

results obtained by RSA are better than the reference results for all the test cases. 

3.2. Results for problem 2.2.2 

In the earlier case, it is observed that the sample size 32000 provides better results. 

The capability of RSA to handle different design variables simultaneously is 

demonstrated by solving earlier optimization problems using VTA. Ply thicknesses 

are varying in discrete form along with ply angles in VTA. Ply angles are having 

integer nature in solution space, while ply thicknesses are the real numbers in 

discrete form. The buckling load carrying capacities obtained by random search 

algorithm considering VTA and stacking sequences obtained for ply angles and ply 

thicknesses are shown in Table 5 for 32000 possible solutions (samples). Best of 

five results obtained for each test case is provided in Table 5. 

Table 5. Buckling load factors using random search algorithm for VTA. 

Number of  

Laminas (n) 

Buckling load factor 

for samples 32000 

Stacking sequence 

(Ply angles and ply thicknesses) 
32 53816 𝜃 = [(08)2]s 

t = [(0.129/0.127/0.129/0.127/0.129/ 

0.127/0.1292)2]s 

48 179300 𝜃 = [(011/90)2]s 

t = [(0.1276/0.129/0.127/0.1292/0.1272)2]s 

64 419540 𝜃 = [(09/-45/03/-45/0/45]s 
t = [(0.0.1274/0.1292/0.125/0.129/ 

0.127/0.1292/0.1273/0.129/0.127)2]s 

The buckling load factors obtained using VTA are greater than UTA as well as 

reference results. It is expected as the maximum value of discrete ply thickness 

used in VTA is greater than the uniform ply thickness used in UTA.  

The ply thickness stacking sequences show that most of the optimum ply 

thicknesses are reached to this maximum value. Further improvement in the results 

can be achieved by increasing the sample size. 

The buckling load factors obtained by reference article (R), UTA (U) and VTA 

(V) for different test cases are compared in Fig. 4.  
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Fig. 4. Comparison of buckling load factors 

obtained by different considerations. 

3.3.  FEA validation of results obtained by RSA for problem 1 

It is necessary to validate the results obtained by RSA (provided in Tables 3 and 4) 

as these results show significant improvement in buckling load factors (minimum 

22%) over the reference results. For this purpose, a quarter model of the simply 

supported plate with given dimensions is prepared in Ansys software.  

The optimum stacking sequences provided in Table 4 are separately applied to 

this model. The quarter model of the plate is meshed using Shell 181, four noded 

elements. The Finite Element Analysis (FEA) model of the plate is shown in Fig. 

5(a). Symmetric boundary conditions are applied on the lower and left edge of the 

model while remaining edges are simply supported.  

Already defined compressive forces are applied on simply supported edges in 

pressure form. The buckling load factors obtained for all the cases using FEA are 

provided in Table 6 and one representative result of the buckling load analysis using 

FEA is shown in Fig. 5(b). It is observed that buckling load factors obtained by 

FEA for optimum stacking sequences of all the test cases are closely matching with 

the buckling load factors shown by RSA. 

Table 6. Buckling load factors obtained using RSA and FEA for UTA. 

Number of  

Laminas 

Buckling load factor using RSA 

for UTA (Samples 32000) 

Buckling load factor 

using FEA 

32 52258 52171 

48 175520 172320 

64 404860 393284 
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(a)Boundary conditions used. (b) Buckling load factor for 

laminate with 32 plies. 

Fig. 5. FEA analysis for buckling load factor using quarter plate model. 

4.  Conclusions 

The current study demonstrates the effectiveness of random search algorithm based 

optimization strategy in design optimization of the composite laminate plate. 

Buckling load maximization of the composite laminate using this strategy results 

in the following conclusions. 

 The buckling load factors and optimum results obtained by RSA (UTA as well 

as VTA) for all the case studies are far better than the optimum results, in 

which, obtained by Harmony Search Algorithm. 

 The computational accuracy of RSA improves with an increase in the number 

of samples at the cost of computational time. 

 The results obtained by VTA are better than the results obtained by UTA. This 

is because the upper limit of ply thickness used in VTA is more than the 

uniform lamina thickness used in UTA. Ply thickness stacking sequences show 

that all the laminas are trying to reach to the upper limit of thickness in VTA. 

This shows that RSA is capable of handling a large number of design variables 

in a discrete form with different nature.  

 Even though RSA is simple to implement, it possesses substantial 

computational accuracy. Therefore, RSA has the potential to become famous 

in the researchers' community working in the field of design optimization of 

the composite laminate.  
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Nomenclatures 
 

a Length of the laminate, mm 

b Width of the laminate, mm 

𝐷𝑖,𝑗 Elements of bending stiffness matrix 

E11 Elastic Modulus in longitudinal direction, GPa 

E22 Elastic modulus in transverse direction, GPa 

G12 In plane shear modulus, GPa 

n Number of plies  

𝑄𝑖,𝑗
̅̅ ̅̅  Elements of stiffness matrix of individual lamina 

t Thickness of lamina 

𝛾12 Major poisson’s ratio 

𝛾𝑐𝑟 Buckling load factor 

 

Greek Symbols 

∆𝑡 Ply thickness increment value 

∆𝜃 Ply angle increment value 

𝜃 Ply orientation angle 
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