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Abstract

In this paper, Differential Evolution (DE) based channel equalization is proposed
and an in-depth comparison of the performance of different variants of DE is
made. Adaptive equalization involves training of parameters such that the
transmitted data is faithfully received. The equalization task is viewed as an
optimization problem where the mean square error between the delayed
transmitted signal and the equalizer output is minimized iteratively. In this paper,
the equalizer coefficients are achieved using different variants of DE and the
performance is compared in terms of convergence rate, optimality of solution and
Bit Error Rate. Thus, the DE-based learning technique is an efficient method for
adaptive nonlinear channel equalization.

Keywords: Differential evolution and its variants, Nonlinear channel equalization,
Optimization.
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1. Introduction

Channel equalization is a channel impairment improvement technique, which
compensates for the signal distortion and noise caused due to multipath in time-
dispersive channels. The channel equalization is an important aspect in high-
speed digital communication required for efficient and reliable data recovery and
reception when the data is transmitted over band-limited channel subjected to
noise and interference. The digital data is fed into a channel, which can be
modelled as an adaptive delay-tapped transversal filter having certain filter
coefficients [1]. Due to band-limited, dispersive channel and multipath fading,
the transmitted symbols overlap with each other and is distorted termed as inter-
symbol interference (I1SI).

In a wireless communication channel when the modulation bandwidth is
exceeding the coherence bandwidth ISI takes place as the transmitted pulses are
spread into the adjacent symbols [2, 3]. To combat the effects of ISI and noise and
to reconstruct the signal and minimize Bit Error Rate (BER), the adaptive channel
equalizer is used at the receiver end [4]. When the training is complete transfer
function of the equalizer becomes inverse to that of the channel and the filter
coefficients are adaptively optimized using adaptive optimization techniques so
that the output of the equalizer (estimated signal) matches to that of the delayed
version of the transmitted signal (desired signal) [5, 6]. Thus, adaptive channel
equalization can be viewed as an iterative optimization problem where the objective
is to minimize the mean-square error (MSE) such that an estimate of equalizer
coefficients is obtained which nullifies the effects of ISI and noise on the signal
transmitted through the channel.

Adaptive channel equalization is required as the wireless communication
channels are unknown, non-stationary and time-varying channels. Since the
adaptive channel equalizer compensates for the effects of the non-linear time-
varying channel, a suitable adaptive optimization algorithm is to be applied for
updating the equalizer coefficients and thus tracking the variations of the channel.
In the recent past, the adaptive channel equalization is developed using soft
computing approaches such as evolutionary and swarm intelligence algorithms
compared to conventional learning techniques such as Least Mean Squares (LMS),
Least Mean Fourth (LMF) and Recursive Least Squares (RLS) and their variants
where there is possibility of solution being trapped by local optima. Moreover, there
is performance degradation of gradient-based algorithms for non-linear channels
[7-9]. The artificial neural network is employed for adaptive non-linear channel
equalization [10-16] where the computationally efficient, single layered functional
link artificial neural network is proposed and compared with multi-layer perceptron
(MLP) and polynomial perceptron network (PPN).

The performance of the neural network based equalizer using a Genetic
algorithm (GA) is studied in [17, 18] where the convergence speed is improved.
Also, the neural network based equalizer is trained using swarm intelligence
techniques such as Particle Swarm Optimization (PSO), Firefly Algorithm (FA)
and their variants like hybrid GA-PSO algorithms [19, 20]. The Differential
Evolution (DE) algorithm compared to gradient-based algorithms is studied in [21-
23] where the performance of DE is shown to be superior in terms of convergence
rate, quality of solution and the BER. Robust non-linear channel equalizers are
developed based on Bacteria Foraging Optimization (BFO), which gives better
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performance in terms of optimality of the solution, convergence speed and BER
computation [24, 25]. However, with an increase in search space and the
complexity the convergence rate diminishes using BFO based training. Thus, a
modified BFO called self-adaptation BFO (SA-BFO) is proposed for the design of
an adaptive channel equalizer [26].

The SA-BFO algorithm strikes a balance between exploitation and exploration
by adaptively changing the size of run length, hence giving good results. Also, Cat
Swarm Optimization (CSO) is proposed for enhanced non-linear channel
equalization where the optimal key parameters for the algorithm are determined
[27]. The nonlinear time-varying channel equalization has been dealt with using
fuzzy adaptive filters in [28]. Although DE-based channel equalizers and their
superior performance compared to conventional optimization techniques and their
counterparts such as BFO has been demonstrated in the literature, yet there exists
a gap where channel equalizers based on different schemes of DE is studied. In this
paper, adaptive channel equalization based on different variants of DE has been
employed and a detailed comparison of performance has been established based on
convergence plots and bit-error-rate. Such type of performance comparison has not
been attempted so far.

The paper is organized as follows: Section 2 presents the non-linear adaptive
channel equalizer model where the problem is formulated as an optimization
problem. In section 3, the DE-based channel equalization is described where the
different variants of DE are dealt. Section 4 gives the simulation results and
discusses the performance of different variants of DE in terms of convergence rate
and BER. In section 5, the conclusion is drawn and the relevant future research
direction is mentioned.

2. Adaptive Channel Equalization Model

Channel equalization is a key area in a digital communication system where the
objective is compensation for the channel distortion, which can be achieved by
minimization of squared error between the equalizer output and the delayed
version of the transmitted signal. The equalization in digital communication
scenario is illustrated in Fig. 1, where x(k) represents the symbol sequence
transmitted through the non-linear channel. The Additive White Gaussian Noise
(AWGN) is the channel noise contaminated to the channel output. This output of
the channel acts as input to the adaptive non-linear equalizer. The output of the
channel equalizer y(k) is subtracted from the delayed version of the desired
signal d (k) to compute the error e(k). The square of error e?(k) is considered as
cost function, which is to be minimized such that the equalizer output matches
with delayed transmitted source signal. The coefficients of the equalizer are
iteratively updated using DE algorithm to achieve the best possible minimum
squared error.

Digital communication channels are often modelled as low pass FIR filter.
Figure 2 shows the digital channel as a 3-tapped delay filter whose output is
associated with nonlinearities and noise, hence it is highly distorted. Therefore, to
restore, the transmitted signal the output of the channel is passed as input to the
equalizer, which is also modelled as an adaptive delay tapped filter.
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Fig. 2. The adaptive channel equalizer model.

Then, the delayed version of the input signal which is the desired signal, is
compared with the output of the equalizer to evaluate the mean square error (MSE).
The channel equalization problem is viewed as a minimization problem of the MSE
using different variants of DE such that the estimated output of the equalizer
progressively matches with the source input signal. The output of channel 7, (k),
which is fed as input to the equalizer, is given by Eq. (1) as:

(k) = ¥ ax(k — i) + n(k) 1)
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where, a(i)=channel coefficients, i = 0,1,2,...N — 1 for N number of taps (N=3
for the given illustration) x(k)=binary input sample, and n(k)=AWGN noise. The
output of the equalizer which is the estimated signal is given by Eq. (2):

y(k) = hT (l)r, (k) )

where, h(k) = [h(0),h(1),..,h(M — 1)]7 represents weight vector or filter
coefficients of the equalizer having M number of delay taps which are adaptively
updated by the optimization algorithm and ., (k) = [r.(k),7,(k — 1), ..., 7. (k —
M + 1)]7 is the input vector to the equalizer.The output of the non-linear channel
is obtained by passing the above output signal y(k) through a non-linear
function. The desired signal is the delayed version of the source signal denoted
as Eq. (3):

d(k) = x(k —m) (3)

where m being the number of delays. The output of the equalizer, which is the
estimated signal is expected to match with the desired signal and the difference
between the two gives the error signal e(k) represented in Eq. (4) as:

e(k) = d(k) — y(k) (4)

The MSE is computed over S number of samples. This is the cost function
which is to be minimized iteratively using the adaptive optimization algorithm is
given by Eq. (5)

S-1_2
MSE = M )

3. DE Based Channel Equalization

The general steps of Differential Evolution (DE) algorithm followed by adaptive
equalization using DE is focussed below:

3.1. DE steps

DE algorithm proposed by Storn and Price [29] is an efficient population-based bio-
inspired meta-heuristic and derivative-free optimization technique used for complex
real-world engineering applications. This algorithm is very much similar to Genetic
Algorithm (GA) except that the mutation precedes the crossover operation. The DE
is known to have a faster convergence rate and the algorithms follow four steps:
initialization, differential mutation, crossover and selection. The principal operators
of this tool are population size, scaling factor and probability of crossover.

3.1.1. Initialization

The initialization step involves generation of NP number of initial parameter vector
solutions. Each vector has p humber of parameters and the lower and upper bounds
of each parameter are fixed. Each of the parameters are random numbers within
the specified range. The initial i*" vector for j** parameter in generation g is
denoted as v; ;(g) and given by Eqg. (6) as follows:

vy j(9) = rand;(0,1). (py — p) (6)
where py; and p,, are upper and lower bounds.
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3.1.2. Differential mutation

Let us consider the first vector of the population as the target vector. With respect
to this targetting vector, three random vectors (v, j, vy, j, Vr3 j)are chosen. Then
the difference between the corresponding elements of the last two vectors is taken
and each element of the difference vector is multiplied by scaling factor F. The
resultant vector becomes the mutant vector of first target vector. This process is
continued until the last number of population. Thus, for each number of target
vector the corresponding mutant vectors m; ;(g + 1) are generated. The equation
used to generate the mutant vector is given Eq. (7):

mi,j(g + 1) = vrl,j(g) +F. (vrz,j(g) - vr3,j(g)) (7)

This variant of differential mutation is referred to as DE/rand/1. Based on different
mutation strategies the other variants of DE are DE/rand/2, DE/best/1 and
DE/best/2. The mutation operation carried out in various variants of DE are:

m; (g +1) = vp5;(g) + F.(0r1,;(9) + Vr,;(9) — vy3,;(g) — V14 ;(9)) (8)
m; (g +1) = Vpest j(g) + F. (V12;(9) — vy3,;(9)) 9)
m; (g + 1) = Vpet j(g) + F.(Vr1,;(9) + V12,j(g) — Vr3,;(9) — vraj(g))  (10)

where, Fis areal constant € [0, 2]. This control parameter amplifies the differential
variation. vy, ; is the best member of the population.

3.1.3. Crossover

The crossover operation involves the exchange of parameters between the initially
chosen target vector and the mutant vector based on the probability of the crossover
ratioCR. The resultant vector called the trial vector u; ;(g + 1) is obtained as given
in Eq. (11).

m;;(g + 1) if rand(0,1) < CR 07 j = jrgna

v ;(9)if rand(0,1) > CR o7 j # jrana (1)

uj(g+1) = {

The crossover ratio (CR) lies between 0 and 1 and decides the probability of
parameters from a mutant vector that is to be copied to trial vector. A random
number rand (0,1) is generated and if its value is less than or equal to CR then the
parameter from mutant vector is inherited to trial vector, otherwise, the trial vector
takes the parameter from the target vector. This process is repeated for all pairs of
target and mutant vectors.

3.1.4. Selection

The cost function is evaluated for the resultant trial vector u; ;(g). If the cost of
trial vector is better compared to that of the target vector, then the trial vector
survives and replaces the target vector in the next generation otherwise the target
vector is retained for another generation. Mathematically, the expression for the
process of selection is presented in Eq. (12):

u; ;j(9) if flu) < f(vi))

v;;(g) otherwise (12)

v;;(g+1)= {
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where, f(u; ;) and f(v; ;) represents the cost of trial and target vector respectively.

3.2. Channel equalization using DE

The channel equalization using DE is discussed through the following steps:

Step 1: The channel coefficients are initialized. Random binary input (k samples)

is generated and passed through the channel.

Step 2: The output of the channel added with AWGN of certain SNR is passed

through a nonlinear channel.

Step 3: The population of parameter vectors corresponding to equalizer

coefficients are initialized randomly. First target vector is taken from NP
number of vectors, which consists of p no. of parameters.

Step 4: The nonlinear channel output subject to noise and distortion is passed

as input to the equalizer. Thus, the estimated output of the equalizer
is computed.

Step 5: The delayed transmitted signal is considered as the desired signal.
Step 6: The difference between the estimated output of the channel equalizer and

the desired signal gives the error signal. Thus, k no. of error signals are
generated and the mean of the squared error gives the MSE and this
process is repeated for NP no. of times.

Step 7: The mutation, crossover and fitness evaluation and selection processes are

carried out (discussed in sub-section 3.1).

Step 8: The above steps are repeated iteratively until MSE decreases gradually.

Once the MSE further ceases to decrease and attains the lowest level all
the parameters become identical and the stopping criterion is met. At this
stage, the final equalizer coefficients are obtained.

Table 1 and Fig. 3 illustrate the flow diagram and pseudo-code of nonlinear
channel equalization using the DE algorithm respectively.

Table 1. Pseudo-code of DE algorithm
for adaptive nonlinear channel equalization.

=
=

=
=

Generate random binary input x(k) and;

Compute the output of channel A(z)

Population initialization: v; ; (g) parameter vector of equalizer

Evaluate the cost function MSE for each individual solution

While (stopping condition not satisfied) {

Choose a target vector

Randomly select two vectors v, ;(g) and v, ;j(g)

Compute weighted difference vector F (v,1,;(g) — vy2,;(9))

Mutation: Evaluate mutant vector m; ;(g + 1) for different schemes of DE

Crossover: Evaluate trial vector by computing parameters from mutant vector and
target vector based on probability of CR

Fitness Evaluation and Selection: Select target vector or trial vector, the one with
lower cost survives for the next generation}
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START
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\

\

\
using Eq. (1) Generate weighted difference vector F(vj(g) - |
vi2(g)) where F= scaling factor € [0,2] ‘
\

\

\

\

\

'

Compute the different variants of mutant vector
mij(g+1) using Eq (7)-(10)

Initialize the equalizer parameter vectors vij(g) where
‘ 1 is the population no., j= no. of equalizer
‘ coefficients and g= generation no. using Eq.(6).

MUTATION

- 4
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— |
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‘ using Eg. (5) | ‘ |
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Generation=
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Fig. 3. Flow-diagram of DE algorithm
for adaptive nonlinear channel equalization.

4. Results and Discussion

The simulation results are obtained for the DE-based channel equalization problem
where two different linear channels are considered for the simulation purpose as
given in Eq. (13):

A1 =0.2600 + 0.9300z"* + 0.2600z 2
A2 =0.3482 + 0.8769z71 + 0.3482z72 (13)

In order to simulate the non-linear condition, the output of the linear channel is
passed through three types of non-linearity functions given in Eq. (14)

NLF1 = tanh(y(k))
NLF2 = y(k) + 0.2y2(k) — 0.1y3(k)
NLF3 = y(k) + 0.2y?(k) — 0.1y3(k) + 0.5cos(my(k)) (14)
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The AWGN noise of 30 dB is added to the channel output which serves as the
input to the adaptive channel equalizer.

The typical values of key parameters of DE algorithm used in the computer
simulation study are population size NP=40, Scaling factor F=0.9, Cross-over ratio
CR=0.9. The number of input samples k = 100 and the number of iterations
N1=100.

The convergence characteristics of the MSE and BER plot using different
variants of DE are presented in Figs. 4-6 for channel 1 corresponding to three
different nonlinearities. Similarly, Figs. 7-9 presents the learning curves for the
second channel using the same three nonlinear channels.

The BER is plotted for different variants of DE based equalization using
channel 1 corresponding to three nonlinearities given in Figs. 10-12. Similarly, for
channel 2 the BER plot is presented in Figs. 13-15 for four variants of DE
corresponding to Egs. (7)-(10).

convergence graph convergence graph
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The minimum MSE (MMSE) attained at the convergence using different
variants of DE are shown in Table 2. From the MMSE values, it is evident that the
DE/Rand/2 performs the best in terms of providing the least MSE as 0.011089(NL-
1), 0.011422(NL-2), 0.055107(NL-3) for channel 1 and 0.019072(NL-1),
0.018898(NL-2), 0.058644(NL-3) for channel 2. Based on MMSE the order of
various variants based equalizers are DE/rand/2 < DE/rand/1 < DE/best/1 <
DE/best/2. Also, it is observed that as the nonlinearity present in the channel
becomes mild to severe the MMSE accordingly increases.

Table 2. Convergence MSE Value attained using different variants of DE.

Minimum MSE performance NL-1 NL-2 NL-3

DE/Best/1 0.011712 0.012271 0.056235

CH-1 DE/Best/2 0.013164 0.012884 0.057641
DE/Rand/1 0.011207 0.011882 0.05619
DE/Rand/2 0.011089 0.011422 0.055107

CH-2 DE/Best/1 0.020309 0.019821 0.058919
DE/Best/2 0.020620 0.021433 0.059817
DE/Rand/1 0.019709 0.019543 0.059556
DE/Rand/2 0.018898 0.019072 0.058644

A comparative performance analysis is summarized for four schemes of DE
corresponding to channel 1 and channel 2 in Table 3. In terms of convergence rate,
the DE/best/2 converges faster compared to others whereas in terms of MMSE it
performs worst compared to other variants. The DE/rand/1 yields the least BER.
There is not much difference in terms of BER performance using different schemes
of DE. From the BER plots is seen that as the SNR increases the probability of error
decreases. The DE/rand/2 performs well in terms of MMSE compared to other
schemes because the trial vector is obtained using two difference vectors multiplied
with the scaling factor compared to only one difference vector in DE/rand/1
scheme. Whereas, the convergence rate is fastest for DE/best/2 as trial vector is
obtained by adding the scaled difference vectors to the vector having best fitness
value in that generation.

Further, the proposed DE-based channel equalizer (DE/rand/1) is compared
with that of existing BFO based equalizer model [24-26]. Figures 16 and 17 show
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the bit-error-rate plots taking the above channels (nonlinearity NLF1) into
consideration, which shows that DE-based channel equalizer performs better as
compared to that of BFO.

Table 3. Comparison analysis for CH-1.

Performance Fastest Least Least
criteria convergence MSE BER
NL 1 DE/best/2 DE/rand/2 DE/rand/1
NL 2 DE/best/2 DE/rand/2 DE/rand/1
NL 3 DE/best/2 DE/rand/2  Same for all 4
variants
o Plot of Bit Error
10 . . .
——DE |]
—— BFO|]

Probability of error

10 1 1 1 1 L 1
2 4 B g 10 12 14 16

SMNR in dB

Fig. 16. BER vs SNR CH1 for DE and BFO.

Plat of Bit Error

— DE
— BFO

D.
T

Probability of errar

10 1 1 1 1 1 1
2 4 B g 10 12 14 16

SMNR in dB

Fig. 17. BER vs SNR CH2 for DE and BFO.
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5. Conclusions

The data transmitted through a band limited communication channel suffers from
linear, nonlinear and additive distortions. Equalization compensates for this ISl
caused by multipath within time-dispersive channels. The DE-based adaptive non-
linear channel equalization is modelled as an iterative optimization problem where
the weights of the equalizer are adaptively tuned by different DEs to recover the
source signal transmitted through the channel. The results of variants of DE are
evaluated in terms of convergence speed, optimality of the solution and BER plots.
The DE algorithm, in general, performs well for the recovery of the transmitted
signals during training. The convergence rate is faster and this algorithm updates the
equalizer weights to best possible values and gives satisfactory MSE during training.
Thus, the learning capability of different variants of DE is studied and compared for
different channel conditions and nonlinearities, which shows that the DE algorithm
performs efficiently for nonlinear adaptive channel equalization tasks. This work can
further be extended by applying newer and hybrid optimization algorithms for
training equalizer parameters such as self-adaptive DE [30, 31], etc. This optimization
principle can also be applied to fading and recursive channels.

Nomenclatures

a Channel coefficients

d Delayed signal

F Scaling factor

e Error signal

f Cost function

g Generation

h Equalizer filter coefficients

k k" sample

M Delay taps

m No. of delays

mij i" mutant vector for jt"* parameter
N No. of taps

NP No. of initial parameter vector solutions
n AWGN noise

p No. of parameters

pL Lower bound

pu Upper bound

re Equalizer input

S Total no. of samples

Uij it" Trial vector for j¢* parameter
Vij it" initial vector for jt* parameter
X Transmitted symbol sequence

y Channel equalizer output

7! Delay element

Abbreviations

AWGN Additive White Gaussian Noise
BER Bit Error Rate
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BFO Bacteria Foraging Optimization
CR Crossover Ratio

CsO Cat Swarm Optimization

DE Differential Evolution

FA Firefly Algorithm

GA Genetic algorithm

ISI Inter-Symbol Interference
LMF Least Mean Fourth

LMS Least Mean Square

MLP Multi-layer Perceptron

MMSE Minimum MSE

MSE Mean Square Error

NL Non-linearity

PPN Polynomial Perceptron Network
PSO Particle Swarm Optimization
RLS Recursive Least Squares
SA-BFO  Self-adaptation BFO

SNR Signal to Noise Ratio
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