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Abstract 

In this paper, Differential Evolution (DE) based channel equalization is proposed 

and an in-depth comparison of the performance of different variants of DE is 

made. Adaptive equalization involves training of parameters such that the 

transmitted data is faithfully received. The equalization task is viewed as an 

optimization problem where the mean square error between the delayed 

transmitted signal and the equalizer output is minimized iteratively. In this paper, 

the equalizer coefficients are achieved using different variants of DE and the 

performance is compared in terms of convergence rate, optimality of solution and 

Bit Error Rate. Thus, the DE-based learning technique is an efficient method for 

adaptive nonlinear channel equalization. 

Keywords: Differential evolution and its variants, Nonlinear channel equalization, 

Optimization. 
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1.  Introduction 

Channel equalization is a channel impairment improvement technique, which 

compensates for the signal distortion and noise caused due to multipath in time-

dispersive channels. The channel equalization is an important aspect in high-

speed digital communication required for efficient and reliable data recovery and 

reception when the data is transmitted over band-limited channel subjected to 

noise and interference. The digital data is fed into a channel, which can be 

modelled as an adaptive delay-tapped transversal filter having certain filter 

coefficients [1]. Due to band-limited, dispersive channel and multipath fading, 

the transmitted symbols overlap with each other and is distorted termed as inter-

symbol interference (ISI). 

In a wireless communication channel when the modulation bandwidth is 

exceeding the coherence bandwidth ISI takes place as the transmitted pulses are 

spread into the adjacent symbols [2, 3]. To combat the effects of ISI and noise and 

to reconstruct the signal and minimize Bit Error Rate (BER), the adaptive channel 

equalizer is used at the receiver end [4]. When the training is complete transfer 

function of the equalizer becomes inverse to that of the channel and the filter 

coefficients are adaptively optimized using adaptive optimization techniques so 

that the output of the equalizer (estimated signal) matches to that of the delayed 

version of the transmitted signal (desired signal) [5, 6]. Thus, adaptive channel 

equalization can be viewed as an iterative optimization problem where the objective 

is to minimize the mean-square error (MSE) such that an estimate of equalizer 

coefficients is obtained which nullifies the effects of ISI and noise on the signal 

transmitted through the channel. 

Adaptive channel equalization is required as the wireless communication 

channels are unknown, non-stationary and time-varying channels. Since the 

adaptive channel equalizer compensates for the effects of the non-linear time-

varying channel, a suitable adaptive optimization algorithm is to be applied for 

updating the equalizer coefficients and thus tracking the variations of the channel. 

In the recent past, the adaptive channel equalization is developed using soft 

computing approaches such as evolutionary and swarm intelligence algorithms 

compared to conventional learning techniques such as Least Mean Squares (LMS), 

Least Mean Fourth (LMF) and Recursive Least Squares (RLS) and their variants 

where there is possibility of solution being trapped by local optima. Moreover, there 

is performance degradation of gradient-based algorithms for non-linear channels 

[7-9]. The artificial neural network is employed for adaptive non-linear channel 

equalization [10-16] where the computationally efficient, single layered functional 

link artificial neural network is proposed and compared with multi-layer perceptron 

(MLP) and polynomial perceptron network (PPN).  

The performance of the neural network based equalizer using a Genetic 

algorithm (GA) is studied in [17, 18] where the convergence speed is improved. 

Also, the neural network based equalizer is trained using swarm intelligence 

techniques such as Particle Swarm Optimization (PSO), Firefly Algorithm (FA) 

and their variants like hybrid GA-PSO algorithms [19, 20]. The Differential 

Evolution (DE) algorithm compared to gradient-based algorithms is studied in [21-

23] where the performance of DE is shown to be superior in terms of convergence 

rate, quality of solution and the BER. Robust non-linear channel equalizers are 

developed based on Bacteria Foraging Optimization (BFO), which gives better 
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performance in terms of optimality of the solution, convergence speed and BER 

computation [24, 25]. However, with an increase in search space and the 

complexity the convergence rate diminishes using BFO based training. Thus, a 

modified BFO called self-adaptation BFO (SA-BFO) is proposed for the design of 

an adaptive channel equalizer [26].  

The SA-BFO algorithm strikes a balance between exploitation and exploration 

by adaptively changing the size of run length, hence giving good results. Also, Cat 

Swarm Optimization (CSO) is proposed for enhanced non-linear channel 

equalization where the optimal key parameters for the algorithm are determined 

[27]. The nonlinear time-varying channel equalization has been dealt with using 

fuzzy adaptive filters in [28]. Although DE-based channel equalizers and their 

superior performance compared to conventional optimization techniques and their 

counterparts such as BFO has been demonstrated in the literature, yet there exists 

a gap where channel equalizers based on different schemes of DE is studied. In this 

paper, adaptive channel equalization based on different variants of DE has been 

employed and a detailed comparison of performance has been established based on 

convergence plots and bit-error-rate. Such type of performance comparison has not 

been attempted so far.  

The paper is organized as follows: Section 2 presents the non-linear adaptive 

channel equalizer model where the problem is formulated as an optimization 

problem. In section 3, the DE-based channel equalization is described where the 

different variants of DE are dealt. Section 4 gives the simulation results and 

discusses the performance of different variants of DE in terms of convergence rate 

and BER. In section 5, the conclusion is drawn and the relevant future research 

direction is mentioned. 

2.  Adaptive Channel Equalization Model 

Channel equalization is a key area in a digital communication system where the 

objective is compensation for the channel distortion, which can be achieved by 

minimization of squared error between the equalizer output and the delayed 

version of the transmitted signal. The equalization in digital communication 

scenario is illustrated in Fig. 1, where 𝑥(𝑘)  represents the symbol sequence 

transmitted through the non-linear channel. The Additive White Gaussian Noise 

(AWGN) is the channel noise contaminated to the channel output. This output of 

the channel acts as input to the adaptive non-linear equalizer. The output of the 

channel equalizer 𝑦(𝑘)  is subtracted from the delayed version of the desired 

signal 𝑑(𝑘) to compute the error 𝑒(𝑘). The square of error 𝑒2(𝑘) is considered as 

cost function, which is to be minimized such that the equalizer output matches 

with delayed transmitted source signal. The coefficients of the equalizer are 

iteratively updated using DE algorithm to achieve the best possible minimum 

squared error. 

Digital communication channels are often modelled as low pass FIR filter. 

Figure 2 shows the digital channel as a 3-tapped delay filter whose output is 

associated with nonlinearities and noise, hence it is highly distorted. Therefore, to 

restore, the transmitted signal the output of the channel is passed as input to the 

equalizer, which is also modelled as an adaptive delay tapped filter. 
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Fig. 1. Schematic block diagram of channel equalization. 
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Fig. 2. The adaptive channel equalizer model. 

Then, the delayed version of the input signal which is the desired signal, is 

compared with the output of the equalizer to evaluate the mean square error (MSE). 

The channel equalization problem is viewed as a minimization problem of the MSE 

using different variants of DE such that the estimated output of the equalizer 

progressively matches with the source input signal. The output of channel 𝑟𝑒(𝑘), 

which is fed as input to the equalizer, is given by Eq. (1) as: 

𝑟𝑒(𝑘) = ∑ 𝑎(𝑖)𝑥(𝑘 − 𝑖) +  𝑛(𝑘)𝑘
𝑖=0                                                (1) 
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where, 𝑎(𝑖)=channel coefficients, 𝑖 = 0,1,2, … 𝑁 − 1 for 𝑁 number of taps (N=3 

for the given illustration) 𝑥(𝑘)=binary input sample, and 𝑛(𝑘)=AWGN noise. The 

output of the equalizer which is the estimated signal is given by Eq. (2): 

𝑦(𝑘) = ℎ𝑇(𝑘)𝑟𝑒(𝑘)                               (2) 

where, ℎ(𝑘) = [ℎ(0), ℎ(1), . . , ℎ(𝑀 − 1)]𝑇  represents weight vector or filter 

coefficients of the equalizer having M number of delay taps which are adaptively 

updated by the optimization algorithm and 𝑟𝑒(𝑘) = [𝑟𝑒(𝑘), 𝑟𝑒(𝑘 − 1), … , 𝑟𝑒(𝑘 −
𝑀 + 1)]𝑇 is the input vector to the equalizer.The output of the non-linear channel 

is obtained by passing the above output signal 𝑦(𝑘)  through a non-linear 

function. The desired signal is the delayed version of the source signal denoted 

as Eq. (3): 

𝑑(𝑘) = 𝑥(𝑘 − 𝑚)                               (3) 

where 𝑚 being the number of delays. The output of the equalizer, which is the 

estimated signal is expected to match with the desired signal and the difference 

between the two gives the error signal 𝑒(𝑘) represented in Eq. (4) as: 

𝑒(𝑘) = 𝑑(𝑘) − 𝑦(𝑘)                                (4) 

The MSE is computed over 𝑆  number of samples. This is the cost function 

which is to be minimized iteratively using the adaptive optimization algorithm is 

given by Eq. (5) 

𝑀𝑆𝐸 =
∑ 𝑒2(𝑘)𝑆−1

𝑘=0

𝑆
                                             (5) 

3.  DE Based Channel Equalization 

The general steps of Differential Evolution (DE) algorithm followed by adaptive 

equalization using DE is focussed below: 

3.1.  DE steps 

DE algorithm proposed by Storn and Price [29] is an efficient population-based bio-

inspired meta-heuristic and derivative-free optimization technique used for complex 

real-world engineering applications. This algorithm is very much similar to Genetic 

Algorithm (GA) except that the mutation precedes the crossover operation. The DE 

is known to have a faster convergence rate and the algorithms follow four steps: 

initialization, differential mutation, crossover and selection. The principal operators 

of this tool are population size, scaling factor and probability of crossover. 

3.1.1. Initialization 

The initialization step involves generation of 𝑁𝑃 number of initial parameter vector 

solutions. Each vector has 𝑝 number of parameters and the lower and upper bounds 

of each parameter are fixed.  Each of the parameters are random numbers within 

the specified range. The initial 𝑖𝑡ℎ  vector for 𝑗𝑡ℎ  parameter in generation 𝑔  is 

denoted as  𝑣𝑖,𝑗(𝑔)  and given by Eq. (6) as follows: 

𝑣𝑖,𝑗(𝑔) = 𝑟𝑎𝑛𝑑𝑗(0,1). (𝑝𝑈 − 𝑝𝐿)                              (6) 

where 𝑝𝑈 and 𝑝𝐿  are upper and lower bounds. 
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3.1.2. Differential mutation 

Let us consider the first vector of the population as the target vector. With respect 

to this targetting vector, three random vectors (𝑣𝑟1,𝑗 , 𝑣𝑟2,𝑗 , 𝑣𝑟3,𝑗)are chosen. Then 

the difference between the corresponding elements of the last two vectors is taken 

and each element of the difference vector is multiplied by scaling factor 𝐹. The 

resultant vector becomes the mutant vector of first target vector. This process is 

continued until the last number of population. Thus, for each number of target 

vector the corresponding mutant vectors 𝑚𝑖,𝑗(𝑔 + 1) are generated. The equation 

used to generate the mutant vector is given Eq. (7):  

𝑚𝑖,𝑗(𝑔 + 1) = 𝑣𝑟1,𝑗(𝑔) + 𝐹. (𝑣𝑟2,𝑗(𝑔) − 𝑣𝑟3,𝑗(𝑔))                                             (7) 

This variant of differential mutation is referred to as DE/rand/1. Based on different 

mutation strategies the other variants of DE are DE/rand/2, DE/best/1 and 

DE/best/2. The mutation operation carried out in various variants of DE are:  

𝑚𝑖,𝑗(𝑔 + 1) = 𝑣𝑟5,𝑗(𝑔) + 𝐹. (𝑣𝑟1,𝑗(𝑔) + 𝑣𝑟2,𝑗(𝑔) − 𝑣𝑟3,𝑗(𝑔) − 𝑣𝑟4,𝑗(𝑔))          (8) 

𝑚𝑖,𝑗(𝑔 + 1) = 𝑣𝑏𝑒𝑠𝑡,𝑗(𝑔) + 𝐹. (𝑣𝑟2,𝑗(𝑔) − 𝑣𝑟3,𝑗(𝑔))                                           (9) 

𝑚𝑖,𝑗(𝑔 + 1) = 𝑣𝑏𝑒𝑠𝑡,𝑗(𝑔) + 𝐹. (𝑣𝑟1,𝑗(𝑔) + 𝑣𝑟2,𝑗(𝑔) − 𝑣𝑟3,𝑗(𝑔) − 𝑣𝑟4,𝑗(𝑔))     (10) 

where, 𝐹is a real constant ∈ [0, 2]. This control parameter amplifies the differential 

variation. 𝑣𝑏𝑒𝑠𝑡,𝑗 is the best member of the population. 

3.1.3. Crossover 

The crossover operation involves the exchange of parameters between the initially 

chosen target vector and the mutant vector based on the probability of the crossover 

ratio𝐶𝑅. The resultant vector called the trial vector 𝑢𝑖,𝑗(𝑔 + 1) is obtained as given 

in Eq. (11). 

𝑢𝑖,𝑗(𝑔 + 1) = {
𝑚𝑖,𝑗(𝑔 + 1) 𝑖𝑓 𝑟𝑎𝑛𝑑(0,1) ≤ 𝐶𝑅 𝑜𝑟 𝑗 = 𝑗𝑟𝑎𝑛𝑑

𝑣𝑖,𝑗(𝑔)𝑖𝑓 𝑟𝑎𝑛𝑑(0,1) > 𝐶𝑅 𝑜𝑟 𝑗 ≠ 𝑗𝑟𝑎𝑛𝑑
                         (11) 

The crossover ratio (𝐶𝑅) lies between 0 and 1 and decides the probability of 

parameters from a mutant vector that is to be copied to trial vector. A random 

number 𝑟𝑎𝑛𝑑(0,1) is generated and if its value is less than or equal to 𝐶𝑅 then the 

parameter from mutant vector is inherited to trial vector, otherwise, the trial vector 

takes the parameter from the target vector. This process is repeated for all pairs of 

target and mutant vectors. 

3.1.4. Selection 

The cost function is evaluated for the resultant trial vector 𝑢𝑖,𝑗(𝑔). If the cost of 

trial vector is better compared to that of the target vector, then the trial vector 

survives and replaces the target vector in the next generation otherwise the target 

vector is retained for another generation. Mathematically, the expression for the 

process of selection is presented in Eq. (12):  

𝑣𝑖,𝑗(𝑔 + 1) = {
𝑢𝑖,𝑗(𝑔) 𝑖𝑓 𝑓(𝑢𝑖,𝑗) ≤ 𝑓(𝑣𝑖,𝑗)

𝑣𝑖,𝑗(𝑔) 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
                (12) 
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where, 𝑓(𝑢𝑖,𝑗) and 𝑓(𝑣𝑖,𝑗) represents the cost of trial and target vector respectively.  

3.2.  Channel equalization using DE 

The channel equalization using DE is discussed through the following steps: 

Step 1: The channel coefficients are initialized. Random binary input (𝑘 samples) 

is generated and passed through the channel.  

Step 2: The output of the channel added with AWGN of certain SNR is passed 

through a nonlinear channel.  

Step 3: The population of parameter vectors corresponding to equalizer 

coefficients are initialized randomly. First target vector is taken from 𝑁𝑃 

number of vectors, which consists of 𝑝 no. of parameters. 

Step 4: The nonlinear channel output subject to noise and distortion is passed              

as input to the equalizer. Thus, the estimated output of the equalizer                     

is computed. 

Step 5: The delayed transmitted signal is considered as the desired signal. 

Step 6: The difference between the estimated output of the channel equalizer and 

the desired signal gives the error signal. Thus, 𝑘 no. of error signals are 

generated and the mean of the squared error gives the MSE and this 

process is repeated for 𝑁𝑃 no. of times. 

Step 7: The mutation, crossover and fitness evaluation and selection processes are 

carried out (discussed in sub-section 3.1). 

Step 8: The above steps are repeated iteratively until MSE decreases gradually. 

Once the MSE further ceases to decrease and attains the lowest level all 

the parameters become identical and the stopping criterion is met. At this 

stage, the final equalizer coefficients are obtained. 

Table 1 and Fig. 3 illustrate the flow diagram and pseudo-code of nonlinear 

channel equalization using the DE algorithm respectively. 

Table 1. Pseudo-code of DE algorithm 

for adaptive nonlinear channel equalization. 

1: Generate random binary input x(k) and; 

2: Compute the output of channel A(z) 

3: Population initialization: 𝑣𝑖,𝑗(𝑔) parameter vector of equalizer 

4: Evaluate the cost function MSE for each individual solution 

5: While (stopping condition not satisfied) { 

6: Choose a target vector 

7: Randomly select two vectors 𝑣𝑟1,𝑗(𝑔) and 𝑣𝑟2,𝑗(𝑔) 

8: Compute weighted difference vector 𝐹(𝑣𝑟1,𝑗(𝑔) − 𝑣𝑟2,𝑗(𝑔))  

9: Mutation: Evaluate mutant vector 𝑚𝑖,𝑗(𝑔 + 1) for different schemes of DE 

10: Crossover: Evaluate trial vector by computing parameters from mutant vector and 

target vector based on probability of CR 

11: Fitness Evaluation and Selection: Select target vector or trial vector, the one with 

lower cost survives for the next generation} 
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Fig. 3. Flow-diagram of DE algorithm 

for adaptive nonlinear channel equalization. 

4.  Results and Discussion 

The simulation results are obtained for the DE-based channel equalization problem 

where two different linear channels are considered for the simulation purpose as 

given in Eq. (13): 

𝐴1 = 0.2600 + 0.9300𝑧−1 + 0.2600𝑧−2 

𝐴2 = 0.3482 + 0.8769𝑧−1 + 0.3482𝑧−2                                        (13) 

In order to simulate the non-linear condition, the output of the linear channel is 

passed through three types of non-linearity functions given in Eq. (14) 

𝑁𝐿𝐹1 = tanh(𝑦(𝑘)) 

𝑁𝐿𝐹2 = 𝑦(𝑘) + 0.2𝑦2(𝑘) − 0.1𝑦3(𝑘) 

𝑁𝐿𝐹3 = 𝑦(𝑘) + 0.2𝑦2(𝑘) − 0.1𝑦3(𝑘) + 0.5cos (𝜋𝑦(𝑘))                         (14) 
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The AWGN noise of 30 𝑑𝐵 is added to the channel output which serves as the 

input to the adaptive channel equalizer. 

The typical values of key parameters of DE algorithm used in the computer 

simulation study are population size 𝑁𝑃=40, Scaling factor 𝐹=0.9, Cross-over ratio 

𝐶𝑅 =0.9. The number of input samples 𝑘 = 100  and the number of iterations 

𝑁1=100. 

The convergence characteristics of the MSE and BER plot using different 

variants of DE are presented in Figs. 4-6 for channel 1 corresponding to three 

different nonlinearities. Similarly, Figs. 7-9 presents the learning curves for the 

second channel using the same three nonlinear channels. 

The BER is plotted for different variants of DE based equalization using 

channel 1 corresponding to three nonlinearities given in Figs. 10-12. Similarly, for 

channel 2 the BER plot is presented in Figs. 13-15 for four variants of DE 

corresponding to Eqs. (7)-(10). 

 

Fig. 4. Learning curves 

for CH-1, NLF-1. 

 

Fig. 5. Learning curves 

for CH-1, NLF-2. 

 

Fig. 6. Learning curves 

for CH-1, NLF-3. 

 

Fig. 7. Learning curves 

for CH-2, NLF-1. 
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Fig. 8. Learning curves 

for CH-2, NLF-2. 

 

Fig. 9. Learning curves 

for CH-2, NLF-3.  

 

Fig. 10. BER vs. SNR plot 

for CH-1, NLF-1. 

 

Fig. 11. BER vs. SNR plot 

for CH-1, NLF-2. 

 

Fig. 12. BER vs. SNR plot 

for CH-1, NLF-3. 

 

Fig. 13. BER vs. SNR plot 

for CH-2, NLF-1. 
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Fig. 14. BER vs. SNR plot 

for CH-2, NLF-2. 

 

Fig. 15. BER vs. SNR plot 

for CH-2, NLF-3. 

The minimum MSE (MMSE) attained at the convergence using different 

variants of DE are shown in Table 2. From the MMSE values, it is evident that the 

DE/Rand/2 performs the best in terms of providing the least MSE as 0.011089(NL-

1), 0.011422(NL-2), 0.055107(NL-3) for channel 1 and 0.019072(NL-1), 

0.018898(NL-2), 0.058644(NL-3) for channel 2. Based on MMSE the order of 

various variants based equalizers are DE/rand/2 < DE/rand/1 < DE/best/1 < 

DE/best/2. Also, it is observed that as the nonlinearity present in the channel 

becomes mild to severe the MMSE accordingly increases. 

Table 2. Convergence MSE Value attained using different variants of DE. 

Minimum MSE performance NL-1 NL-2 NL-3 

CH-1 

DE/Best/1 0.011712 0.012271 0.056235  

DE/Best/2 0.013164 0.012884 0.057641 

DE/Rand/1 0.011207 0.011882 0.05619 

DE/Rand/2 0.011089 0.011422 0.055107 

CH-2 DE/Best/1 0.020309  0.019821 0.058919 

DE/Best/2 0.020620 0.021433 0.059817 

DE/Rand/1 0.019709  0.019543 0.059556 

DE/Rand/2 0.018898 0.019072 0.058644 

A comparative performance analysis is summarized for four schemes of DE 

corresponding to channel 1 and channel 2 in Table 3. In terms of convergence rate, 

the DE/best/2 converges faster compared to others whereas in terms of MMSE it 

performs worst compared to other variants. The DE/rand/1 yields the least BER. 

There is not much difference in terms of BER performance using different schemes 

of DE. From the BER plots is seen that as the SNR increases the probability of error 

decreases. The DE/rand/2 performs well in terms of MMSE compared to other 

schemes because the trial vector is obtained using two difference vectors multiplied 

with the scaling factor compared to only one difference vector in DE/rand/1 

scheme. Whereas, the convergence rate is fastest for DE/best/2 as trial vector is 

obtained by adding the scaled difference vectors to the vector having best fitness 

value in that generation. 

Further, the proposed DE-based channel equalizer (DE/rand/1) is compared 

with that of existing BFO based equalizer model [24-26]. Figures 16 and 17 show 
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the bit-error-rate plots taking the above channels (nonlinearity NLF1) into 

consideration, which shows that DE-based channel equalizer performs better as 

compared to that of BFO. 

Table 3. Comparison analysis for CH-1. 

Performance 

criteria 

Fastest 

convergence 

Least 

MSE 

Least 

BER 

NL 1 DE/best/2 DE/rand/2 DE/rand/1 

NL 2 DE/best/2 DE/rand/2 DE/rand/1 

NL 3 DE/best/2 DE/rand/2 Same for all 4 

variants 

 

Fig. 16. BER vs SNR CH1 for DE and BFO. 

 

Fig. 17. BER vs SNR CH2 for DE and BFO. 
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5.  Conclusions 

The data transmitted through a band limited communication channel suffers from 

linear, nonlinear and additive distortions. Equalization compensates for this ISI 

caused by multipath within time-dispersive channels. The DE-based adaptive non-

linear channel equalization is modelled as an iterative optimization problem where 

the weights of the equalizer are adaptively tuned by different DEs to recover the 

source signal transmitted through the channel. The results of variants of DE are 

evaluated in terms of convergence speed, optimality of the solution and BER plots. 

The DE algorithm, in general, performs well for the recovery of the transmitted 

signals during training. The convergence rate is faster and this algorithm updates the 

equalizer weights to best possible values and gives satisfactory MSE during training. 

Thus, the learning capability of different variants of DE is studied and compared for 

different channel conditions and nonlinearities, which shows that the DE algorithm 

performs efficiently for nonlinear adaptive channel equalization tasks. This work can 

further be extended by applying newer and hybrid optimization algorithms for 

training equalizer parameters such as self-adaptive DE [30, 31], etc. This optimization 

principle can also be applied to fading and recursive channels. 

 
 

Nomenclatures 
 

a Channel coefficients 

d Delayed signal 

F Scaling factor 

e Error signal 

f Cost function 

g Generation 

h Equalizer filter coefficients 

k kth sample 

M Delay taps 

m No. of delays 

mi,j 𝑖𝑡ℎ mutant vector for 𝑗𝑡ℎ parameter 

N No. of taps 

NP No. of initial parameter vector solutions 

n AWGN noise 

p No. of parameters 

pL Lower bound  

pU Upper bound 

re Equalizer input 

S Total no. of samples 

ui,j 𝑖𝑡ℎ Trial vector for 𝑗𝑡ℎ parameter 

vi,j 𝑖𝑡ℎ initial vector for 𝑗𝑡ℎ parameter  

x Transmitted symbol sequence 

y Channel equalizer output 

z-1 Delay element 
 

Abbreviations 

AWGN Additive White Gaussian Noise 

BER Bit Error Rate 
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BFO Bacteria Foraging Optimization 

CR Crossover Ratio 

CSO Cat Swarm Optimization 

DE Differential Evolution 

FA Firefly Algorithm 

GA Genetic algorithm 

ISI Inter-Symbol Interference 

LMF Least Mean Fourth 

LMS Least Mean Square 

MLP Multi-layer Perceptron 

MMSE Minimum MSE 

MSE Mean Square Error 

NL Non-linearity 

PPN Polynomial Perceptron Network 

PSO Particle Swarm Optimization 

RLS Recursive Least Squares 

SA-BFO Self-adaptation BFO 

SNR Signal to Noise Ratio 
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