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Abstract 

Fault detection and classification in transmission lines is an important problem 

in power system protection. This paper proposes a novel fault detection and 

classification approach based on the fine-tuned LSTM model and dbN wavelet 

transform. Specifically, the selection of the optimal decomposition scale is 

proposed. An improved Arithmetic Optimisation Algorithm (IAOA) to enhance 

the accuracy of the LSTM model by optimizing its hyperparameters and reducing 

model (RMSE) error is implemented. The proposed method makes a significant 

advancement in the field of fault detection and classification. A simulated version 

of the model is run through MATLAB using the Three-Phase Series 

compensation network (735kV, 60 Hz, and 300 km of fault distance) to classify 

faults. Features are extracted to a depth of three using the dbN, which is modelled 

as a wavelet function in this investigation. Finally, the IAOA-LSTM model 

achieves 99.99% accuracy and 0.0010 loss when testing 2545 simulated samples 

with five different fault types. Maintaining the stability and reliability of power 

systems relies heavily on fault detection and classification, which is aided greatly 

by the proposed method. Implementing the IAOA algorithm for hyperparameter 

optimization and model error reduction has also been shown to enhance the 

accuracy of the LSTM model further. Therefore, the proposed approach can 

significantly contribute to developing more advanced and efficient protection 

systems for power transmission lines. 

Keywords: dbN wavelet transform, Ground Faults, Improved AOA, LSTM 

model, Modulus maximum matrix Short-circuit faults.  
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1. Introduction 

Modern society depends heavily on the critical infrastructure that power systems 

provide. A power system comprises various parts that deliver electricity from 

power plants to end users, including generators, transformers, and transmission 

lines. The backbone of the power system is comprised primarily of transmission 

lines, and any fault in these lines can severely damage the system's ability to 

function. Therefore, it is essential for maintaining the dependability and safety of 

power systems that faults in transmission lines are promptly discovered and 

accurately identified. The conventional approach to fault identification in 

transmission lines involves using traditional signal processing techniques, which 

have limitations in detecting and accurately classifying faults. Recently, machine 

learning techniques such as recurrent neural networks, long short-term memory 

(LSTM), and CNN networks have shown great promise in fault detection and 

diagnosis [1].    

The application of time series forecasting can be a useful tool for maintenance 

teams in electric power utilities to predict the possibility of equipment failures [2]. 

Equipment failures are often closely related to weather conditions, with a higher 

probability of failures during rainy seasons. Therefore, understanding the patterns 

of this variation through time series analysis is crucial in this context. Wavelet 

transform can reduce noise in time series with significant nonlinearity. Since 

wavelet transform investigates signal energy, high frequencies are not eliminated. 

Hence, a hybrid deep learning model and Wavelet transform technique may be an 

effective strategy. 

Several studies have explored using LSTM networks for fault identification in 

transmission lines. [3] proposed a combination of Transfer learning and CNN-

based methods for detecting and classifying faults in power systems. This technique 

uses information from a resource convolutional neural network (CNN) to anticipate 

a target dataset distinct from the source dataset to diagnose defects for various 

electrical transmission lengths and characteristic impedance, using Wavelet 

transform and time-frequency analysis. The simulation outcomes show that 

employing this combo technique reduces overall training time. [4] introduce a 

novel method for fault identification and categorization on transmission networks 

that combines a wavelet transform and a Support vector machine (SVM) classifier. 

The results of this study suggested that the proposed technique is very efficient and 

accurate in the case of digital distance protection. [5] proposed a fault diagnosis 

method using a combination of wavelet transform and LSTM recurrent neural 

networks. The proposed method used Wavelet transform to extract the fault 

features and LSTM to classify the fault type. The results showed that the proposed 

method achieved high accuracy in fault diagnosis. The author presented a combined 

model of LSTM and an autoencoder for fault classification and detection. In this 

proposed method, offline data trains the autoencoder for anomaly detection. The 

LSTM network then classifies autoencoder-predicted errors. According to 

experimental results, the combined technique accurately diagnoses deviations from 

expected behaviour and the different glitches within the valuable time.   

Naïve Bayes classifier is used to classify faults in transmission lines [6]. This 

study [6] uses wavelet transformation for feature extraction. By leveraging the 

multi-resolution property of the wavelet transform, the authors effectively capture 

and analyse the irregular transient changes that occur during fault events. This 
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allows for accurate identification and classification of different types of faults [7]. 

Wavelet packet transform detects and classifies the fault within half a cycle [8]. 

The Wavelet transform is used in [9] to denoise the fault-based current and voltage 

signals, and the self-attention CNN is used to classify. 

However, the hyperparameter tuning is not considered in these above studies. 

In detecting a motor fault, a PSO-BP (particle swarm optimization-back 

propagation) based Neural network is employed [10]. However, this study uses 

Wavelet transform for feature extraction from signals. Similarly, PSO is used for 

hyperparameter tuning of the SVM model for fault location in transmission lines 

[11]. Other machine learning algorithms, like KNN [12], are used for fault detection 

in AC/HVDC lines. Although Wavelet transform is employed, no hyperparameter 

tuning is considered. However, these studies have not involved hyperparameter 

tuning, summarized in Table. 1. Similar to [3-5], [6-9] used machine learning 

models for fault classification but lacked the consideration of hyperparameter 

tuning. The methods used are summarized in Table 1. Though hyperparameter 

tuning is used like in [10], the convergence speed is compromised. Based on the 

discussion above, a summarized table is made based on the method used and 

whether hyperparameter tuning is used.  

Table 1. Review of Studies. 
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Transfer learning provides up to 90.11% 

accuracy for 800km of transmission line. 

However, the clustering process shows less 

accuracy. The study constructs the approach 

robustness regarding training time, which does 
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world and other studies. 
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The study shows the classification for varying 

lengths ranging from 50 to 8008%. However, 

the model should be extended and classified 

with the location and considering the series of 

compensated lines. 
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LSTM model shows improvement over the 

conventional CNN. However, only one 

benchmark dataset is used, and it can be 

recommended to demonstrate various data for 

fault detection. 
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The study shows 100% accuracy for Naïve 

Bayes but less accuracy in the MLP model. 

This shows inconsistency, and the study is 

recommended to explore other deep learning 

models.  
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Like [7], the authors used the ANN model with 

DWT for feature extraction. However, the 

model results are compared to the Decision tree 
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The proposed method shows remarkable 

accuracy. The study does not extensively 

discuss the potential challenges posed by 

varying fault severities or imbalanced datasets, 

which can impact the generalization ability of 

the classifier. 
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Unlike the study in [4], authors here in [11] use 

various other wavelet-based feature extraction 

and comparison. However, DWT shows better 

results with automatic operation for reliable 

results.  
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Compared to previous studies, in this [13], 

Bayesian optimization is considered for tuning 

the CNN model for fault classification. Further, 

exploring better methods to generalize the 

model can be recommended. 

 

It is also concluded from the above literature and Table. 1, LSTM effectively 

captures long-term dependencies in the fault signal. Still, subjective choices in 

determining the model parameters used for training in realizing the faults can lead 

to suboptimal performance of the model. Therefore, optimizing the process of fine-

tuning the LSTM model parameters will improve the performance, as seen in [10-

11, 14]. Moreover, the combination of Wavelet transforms, and LSTM can further 

enhance the performance of fault feature identification in transmission lines by 

extracting the relevant features and reducing noise. However, the model's accuracy 

can be improved by automating the process of finding hyperparameters and 

optimizing such that the model's error is reduced, as seen in [14]. 

However, fault detection in transmission lines can be difficult because of the 

unique characteristics of high-resistance ground faults and arc faults [15]. It's 

possible that standard techniques for finding and categorizing faults won't be up to 



80       M. Al Sultan et al. 

 
 
Journal of Engineering Science and Technology               Special Issue 6/2023 

 

the task. In addition, an increase in transition resistance can cause high-frequency 

signals to become nonlinear and distorted, making it hard to detect and classify 

short-circuit faults in networks with intricate topologies [16]. However, if the 

decomposition scale is not carefully selected, information loss or distortion can 

occur when using the Wavelet transform as a feature extraction technique [17].  

In addition, the model's performance may suffer if the training parameters were 

determined subjectively [14]. Considering these challenges, the paper aims to 

propose novel approaches for fault detection and classification in transmission 

lines. Three major contributions can be attributed to the proposed transmission line 

fault detection method. Primarily, it uses the modulus maximum matrix of the dbN 

wavelet to construct a fault characteristic matrix from the highest energy values 

within frequency bands, allowing for optimal selection of the decomposition scale. 

Additionally, by taking advantage of the model's capability to learn complex 

patterns and temporal dependencies within the data, using a fine-tuned LSTM 

shows the efficacy of applying deep learning techniques for fault identification. 

Moreover, the proposed fault identification system's performance and robustness 

are improved using the enhanced Arithmetic Optimization Algorithm (IAOA) to 

optimize hyperparameters. These contributions, taken as a whole, provide a 

sophisticated and thorough infrastructure for reliable and efficient transmission line 

fault detection. 

2.  Problem Conceptualization   

Fault detection and diagnosis are critical in transmission lines as it is an integral 

part of power systems, as faults can lead to power outages, equipment damage, and 

safety hazards [18]. Some of the challenges in the detection of faults in transmission 

lines are: 

• Detecting high-resistance ground faults and arc faults is particularly 

challenging due to the complex characteristics of these faults [15]. 

• Traditional fault detection methods may struggle to accurately detect and 

classify these faults [19] [20].  

• An increase in transition resistance causes a sharpening and nonlinearity 

in high-frequency signals [15]. This nonlinear behaviour can make it 

challenging to accurately detect and classify short circuit faults in systems 

with many components and complex network configurations.  

• Extraction of features using Wavelet transform is popular. However, 

Wavelet functions may not always be able to accurately identify the 

location of a fault in a power system due to factors such as noise and other 

interferences. If the decomposition scale is not chosen carefully, it can 

lead to information loss or distortion [17][21] [23]. 

• However, subjective choices in determining the model parameters used 

for training in realizing the faults can lead to suboptimal performance of 

the model [16][22]. 

Further, the study addresses these issues. Hence, a balance must be struck 

between reducing harmonic interference and accurately identifying the location of 

faults in the power system. The authors in [17] use a characteristic matrix 𝑓𝑓1 to 

analyze normal and faulty signals based on wavelet decomposition layers and 

types. This matrix extracts relevant features from the signal and distinguishes 

between different types of faults. This suggests that a modulus maximum matrix 
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can be utilized to analyze signals and extract relevant decomposition scales to 

construct the feature matrix. Based on the above discussion, the energy of the 

feature frequency band is given as [17], 

𝐸𝑑,𝑘 = ∑ |𝑑𝑖,𝑘|
2𝑛

𝑘=1                                                                                                 (1) 

whereas 𝑗 is the decomposition level and 𝑘 is the index of wavelet coefficient at the 

𝑗𝑡ℎ decomposition level. Hence, the summation represents the sum of the absolute 

values of the wavelet coefficients at the 𝑗𝑡ℎ  decomposition level, which 

corresponds to the signal's energy in the frequency band associated with that 

decomposition level.  

However, in this paper, the modulus matrix [18] is constructed with three fault 

lines and 6 times the decomposition of the Wavelet. It is given as, 𝑀36. In the case 

of high resistance fault, the elements of the matrix 𝑀36 represent the maximum 

absolute value of the wavelet coefficients for the fault mode at each decomposition 

level and line. Hence, the decomposition level is determined using the condition 

below, 

𝑀36𝑖𝑗
 =  𝑚𝑎𝑥{|𝐶𝑑𝑗,𝑘|} 𝑓𝑜𝑟 𝑖 =  1, 2, 3 𝑎𝑛𝑑 𝑗 =  6                                           (2) 

where 𝑖 corresponds to the line number, 𝑗 corresponds to the decomposition level, 

and |𝐶𝑑𝑗,𝑘| represents the absolute value of the wavelet coefficients at level 𝑗 and 

position 𝑘. After determining the scale, the energy value is calculated using Eq. (1). 

The maximum energy value is considered for forming a feature matrix, 𝐹𝑖𝑗. Where 

𝑖 is the fault line, and 𝑗 is the decomposition scale. 

3.  Proposed Methodology 

In the interest of resolving the issues which are highlighted in the above section, 

this paper proposes a deep learning-based method. For the classification of faults, 

the research suggests an LSTM model. However, the model's optimization was 

accomplished by resorting to mathematical definitions. The LSTM network's error 

is a fitness function, and the main task of AOA is to find the optimal set of 

hyperparameters to minimize this error.  

The input data, which is a line-ground fault, line-to-line fault, two-lines-to-

ground fault, and three-phase fault, are generated from the fault breaker setup in 

the transmission line. This input signal is broken down using wavelet transform, 

and features are extracted. The training samples from the data are fed to the 

Enhanced LSTM model in which the hyperparameters are optimized using the 

Improved Arithmetic Optimisation Algorithm. The process flow is detailed in Fig. 

1. The methodology is divided into three parts: input data and feature extraction 

and Model training, including the LSTM model tuned using IAOA. These methods 

employed are explained in detail in the next sections. 
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Fig. 1. Process Flow. 

3.1 Input data and feature extraction 

When considering the faults in 735 kV transmission lines (TL) [24], the fault 

transient component during a transient process is typically much higher than the 

steady component. As a result, this paper studies fault transient electrical to identify 

single-phase ground faults and short circuit faults. 

The three-phase compensated network is considered here, which consists of 6 

350 MVA generators as expressed in [25]. However, TL is split into two halves 

(each of 300𝑘𝑚) and is connected to the buses (B1, B2, B3). The three-phase block 

to the circuit discussed in [24] is given in [25] and is considered in the study as 

simulations. The fault breaker unit is connected to the Series Compensation (unit 

1). As the fault is introduced, after the simulation, the fault is studied at B2 [25]. 

The compensator is shown in Fig. 2. In this study, the faults (line-ground fault, line-

to-line fault, two-lines-to-ground fault, and three-phase fault) are applied at line 1 

and parameters are specified using MATLAB toolbox as in [25]. A line-ground 

fault, also known as a single-line-to-ground fault, is a type of electrical fault that 
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occurs when one of the three phases, A, B, and C, as seen in Fig. 2, of a three-phase 

power system encounters the ground or any other conductive object that is 

connected to the ground. In this type of fault, the current flows from the phase 

conductor to the ground [26], which can cause damage to electrical equipment and 

pose a safety risk to people in the vicinity. 

Whereas line-to-line fault results in short circuit faults and occurs when two 

phases of the three meet each other [12]. A two-lines-to-ground fault is a type of 

electrical fault that occurs when two phases of a three-phase system meet the 

ground. In this type of fault, two of the three phases contact the ground, causing a 

short circuit between them. The third phase remains unaffected and continues to 

operate normally [12]. This type of fault is also called a Phase-to-Phase-ground-

fault. 

The three-phase fault is considered one of the most severe and can result in high 

short-circuit current levels [12]. Hence, these faults are considered and modelled 

using MATLAB by applying the fault current of 10 𝑘𝐴 at the series compensation 

subsystem at line 1 and measured at Bus 𝐵2. The duration of time considered from 

𝑡 =  0.01 𝑡𝑜 0.1 that the system is in the settling mode [26]. The Line-to-ground 

fault is seen in Fig. 3 (a). 

 

Fig. 2. Fault Breaker [26]. 

Based on Fig. 3 (c), when the fault to Phase A and B Phase C has a phase 

difference of 180 𝑑𝑒𝑔𝑟𝑒𝑒𝑠 . In this case, the fault current for the fault Phases 

increases suddenly, which is over 15 (as seen in Fig. 3 (e)) compared to the no-fault 

condition. Similarly, as seen in Fig. 3 (b), the fault on phases A and B records a 

high fault current during the fault time compared to phase C from MATLAB. This 

explains the Two lines to Ground fault. Further, when the 3-phase fault occurs, the 

fault current spikes out of the limit, a high-short circuit fault, as seen in Fig. 3 (d). 
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Fig. 3. Fault current variation. 

3.2 Wavelet transforms for feature extraction of the faults. 

The approach utilized in the paper involves using Wavelet transforms for breaking 

down the zero sequences current signal of a fault simulated at 𝐵2 as seen in Fig. 2 

[27]. This method is effective in dealing with abrupt and nonlinear signals. To 

maintain the fault information's accuracy following the decomposition process, the 

paper employs the modular maximum matrix (Eq. (2)) to identify the appropriate 

decomposition scale. Additionally, the energy value, i.e., Eq. (1), is employed to 

compute the energy value of each frequency band and develop a fault characteristic 

matrix (𝐹𝑖𝑗). This matrix represents the unique features of four types of faults, thus 

aiding in their precise identification. 

In this study, db6 is considered a wavelet function, and features are extracted to 

3 levels. The idea of wavelet transform is considered from Multilevel 1-D discrete 

wavelet transform. The input current is divided into components (𝐶𝐴1, 𝐶𝐴2) and 
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further divided into 3 levels (𝐶𝐴3) as seen in Fig. 4. If 𝑠 is the input signal and 

analyzed till 𝑗 level the following tree is generated. 

 

Fig. 4. Structure of Wavelet Decomposition 

Finally, the approximation coefficient from Fig. 4 is considered as a feature. 

Considering this, the original signal dimension is 4001, and after decomposition, 

up to 3 levels, the approximation coefficient is 509 (features). These features are 

trained using IAOA-optimized LSTM. 

3.3 Optimizing LSTM model parameters using an improved 

arithmetic optimization algorithm (IAOA) 

The proposed model for training in this work is the LSTM. This recurrent neural 

network (RNN) type is designed to process data sequences with long-term 

dependencies [28]. Unlike traditional RNNs, which can suffer from problems with 

vanishing or exploding gradients, LSTM models include input, forget, and output 

gates that control the flow of information through the network, as seen in Fig. 1. 

Mathematical representation and working are seen in [28]. As discussed above, it 

is suggested that if the subjective choices made in determining the LSTM model 

parameters are not optimal, then the model's performance in detecting faults may 

also be less effective. The meta-heuristics algorithm improved- AOA (IAOA) is 

considered for finding the optimal model parameter value to reduce the error of the 

LSTM model.  

The improved Arithmetic Optimization Algorithm (IAOA) is used to optimize 

the hyperparameters of an LSTM network to minimize the network's error, which 

is measured using the root mean square error as seen in Fig. 1. The generic view of 

LSTM can be given as, The LSTM takes in a sequence of input values, denoted by 

𝑥(𝑡) or the output of a convolutional neural network (CNN). Both ℎ(𝑡 − 1) and 

𝑐(𝑡 − 1) come from the LSTM used in the preceding timestep. For this timestep, 

the LSTM's output is denoted by 𝑜(𝑡). The LSTM also produces the 𝑐(𝑡) and ℎ(𝑡) 
that the subsequent time step LSTM will use as input. 

The forget gate can be explained as,  

𝑓𝑡 = 𝜎𝑔(𝑊𝑓 ∗ 𝑥𝑡 + 𝑈𝑓 ∗ ℎ𝑡−1 + 𝑏𝑓)                                                                    (3) 

The input gate and the output gate are explained as,  
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𝑖𝑡 = 𝜎𝑔(𝑊𝑖 ∗ 𝑥𝑡 + 𝑈𝑖 ∗ ℎ𝑡−1 + 𝑏𝑖)                                                                      (4) 

𝑜𝑡 = 𝜎𝑔(𝑊𝑜 ∗ 𝑥𝑡 + 𝑈𝑜 ∗ ℎ𝑡−1 + 𝑏𝑜)                                                                    (5) 

The cell state and Hidden state is given as,    

𝑐𝑡
′ = 𝑓𝑡 . 𝑐𝑡−1 + 𝑖𝑡 . 𝑐𝑡

′                                                                                    (6) 

Whereas 𝑐𝑡
′ = 𝜎𝑐(𝑊𝑐 ∗ 𝑥𝑡 + 𝑈𝑐 ∗ ℎ𝑡−1 + 𝑏𝑐)                                          (7) 

ℎ𝑡 = 𝑜𝑡 . 𝜎𝑐(𝑐𝑡)                                                                                                  (8) 

 In these equations, sigmoid and tanh is given as 𝜎𝑔 𝑎𝑛𝑑 𝜎𝑐. The weights and 

bias matrices are given as 𝑊𝑓 ,𝑊𝑖 ,𝑊𝑜,𝑊𝑐 , 𝑈𝑓 , 𝑈𝑖 , 𝑈𝑜 , 𝑈𝑐  𝑎𝑛𝑑 𝑏𝑓 , 𝑏𝑖 , 𝑏𝑜, 𝑏𝑐 .  

The optimized hyperparameters include the number of hidden layers, epochs, 

and learning rates. During the algorithmic exploration phase, the IAOA algorithm 

employs a cognitive factor (𝑎), in addition to multiplication and division strategies 

as seen in Eq. (4), to improve the spread of solutions and boost global search. This 

prevents the algorithm from being prematurely convergent, hindering its search for 

the optimal solution. The mathematical formulation of IAOA is given as the 

coefficient Math Optimizer Accelerated (MOA) is given as in [27]. 

𝑀𝑂𝐴(𝑡𝑐) = 𝑚𝑖𝑛 + 𝑡𝑐 × (
𝑚𝑎𝑥−𝑚𝑖𝑛

𝑡𝑚
)                                                               (9) 

whereas 𝑡𝑐  is the current iteration and 𝑡𝑚  is the maximum iteration, as seen in 

Fig.1. 𝑀𝑎𝑥 and 𝑀𝑖𝑛 denote the accelerated function of maximum and minimum 

value. 

The exploration phase is improved, as seen in Eq. (10), 

ℎ𝑖,𝑗(𝑡𝑐 + 1) =  

{
 
 

 
 𝑎 × (𝑏𝑒𝑠𝑡(ℎ𝑗) ÷ 𝑀𝑂𝑃 + 𝜖) × ((𝑈𝐵𝑗 − 𝐿𝐵𝑗) × 𝜇 + 𝐿𝐵𝑗))

+(1 − 𝑎) × (𝑏𝑒𝑠𝑡(ℎ𝑗) − 𝑙𝑜𝑐𝑎𝑙(𝑗)) , 𝑖𝑓 𝑟2 < 0.5

𝑏𝑒𝑠𝑡(ℎ𝑗) × ((𝑈𝐵𝑗 − 𝐿𝐵𝑗) × 𝜇 + 𝐿𝐵𝑗) × 𝑀𝑂𝑃, 𝑒𝑙𝑠𝑒

    (10) 

Whereas 𝑀𝑂𝑃 is given as, 

𝑀𝑂𝑃(𝑡𝑐) = 1 −
𝑡𝑐

1
𝛼

𝑡𝑚

1
𝛼

                                             (11) 

where 𝑥𝑖,𝑗(𝐶𝑖𝑡𝑒𝑟 + 1)  defines the 𝑖𝑡ℎ  solution in the next iteration,  𝑥𝑖,𝑗(𝐶𝑖𝑡𝑒𝑟) 

denotes the 𝑗𝑡ℎ position of the 𝑖𝑡ℎ solution at the current iteration,  𝑈𝐵𝑗 and 𝐿𝐵𝑗 

denotes the upper bound and lower bound value of 𝑗𝑡ℎ position. The exploitation 

phase is explained in [29].  

However, as seen in Fig.1, when the condition is satisfied (𝑡𝑐 > 𝑡𝑚), the optimal 

parameters are generated and fed to the model for training. The parameters obtained 

(best solution obtained) are fed through the fitness function to continue the 

predictions until the process is converged. The Pseudo code for IAOA is explained 

in Appendix A. Finally, the model is evaluated based on the prediction accuracy 

and time taken for training for a different setting of fault distances and phase angles. 
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4.  Results and Evaluation 

The effectiveness of the proposed method has been demonstrated through 

simulations using MATLAB, and the transmission line is modelled as [24][25].  

4.1 Simulation environment 

This is a single-line of a 735 𝑘𝑉, three-phase, 60 𝐻𝑧 power system that transfers 

energy from a power plant with 6 350 𝑀𝑉𝐴 generators to an equivalent system 

located 600 kilometers away. Buses 𝐵1, 𝐵2,  and  𝐵3  are connected to the 

transmission line via separate 300 𝑘𝑚 lines. The transmission line parameters are 

seen in Table 2 [25]. Based on the simulated transmission line, the four faults are 

analyzed. 

Table 2. Parameter Specification of Three-phase Series Compensation 

Network. 

Parameter Value 

Shunt compensation 300 Mvar 
Shunt Reactance 330 Mvar 
Transformer 300 MVA, 73 5/230 kV 

Tertiary Winding 25 kV 

Load 230 kV, 250 MW 

Series Capacitor Included in each phase of the series compensation module 

Generator Model Simplified Synchronous Machine block 

Transformer Model Universal transformer blocks (two-windings and three-windings) 

Saturation Implemented on transformer connected at bus 𝐵2 

Measurement 

Locations 
B1, B2, and B3 blocks 

Type of Faults 
Line-to-ground fault, line-to-line fault, Two-line-to-ground fault, 

three-phase Fault, and No-fault condition 

4.2  Simulation of LSTM model with IAOA technique 

The input to the network is a sequence of features represented by a 

𝑠𝑒𝑞𝑢𝑒𝑛𝑐𝑒𝐼𝑛𝑝𝑢𝑡𝐿𝑎𝑦𝑒𝑟. The number of hidden units in the LSTM layer is set by 

𝐵𝑒𝑠𝑡_𝑃(1), which is defined as 183 in this case. The output of the LSTM layer is 

connected to a fully connected layer, which maps the LSTM output to the number 

of output classes. The output of the fully connected layer is then fed to a 

𝑠𝑜𝑓𝑡𝑚𝑎𝑥𝐿𝑎𝑦𝑒𝑟 for classification. The parameters are detailed in Table 3. 

Table 3. Hyper-parameter specification of LSTM Model 

Parameter Value 

Best from IAOA [183, 0.001, 2000] 

Num Hidden Units 183 

Mini batch Size 128 

Learning rate 0.001 

Max epoch 2000 
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The experimental results demonstrate the effectiveness of the proposed IAOA-

LSTM model for fault detection and classification. After feature extraction, 509 

samples were available for each fault condition, including the non-fault condition, 

resulting in a dataset of 2545 samples. Among these samples, 2036 (80%) were 

used to train the model, while the remaining samples were used for validation. After 

feature extraction, there were 509 samples for each fault (including the non-fault 

condition), as seen in Table 2. Which is 2545 samples, out of which 2036 samples 

are considered for training the IAOA-LSTM model (80%), and the remaining 

samples are considered for validation. The simulated model for 2000 epochs is 

evaluated based on accuracy and loss, as shown in Fig. 5. 

The performance of the IAOA-LSTM model was evaluated over 2000 epochs, 

focusing on accuracy and loss metrics. Fig. 5 illustrates the model's training 

progress, showcasing the accuracy and loss values across 1400 iterations. Notably, 

a high learning rate can lead to the problem of exploding gradients, causing 

difficulties in effectively training the model and impacting accuracy. However, the 

proposed IAOA algorithm (Appendix A) effectively addresses this concern by 

providing optimal hyperparameters for the LSTM model, as shown in Table 3. 

As observed in Fig. 5, the IAOA-LSTM model consistently achieved an 

accuracy of 99.9% throughout the training process. This remarkable accuracy 

demonstrates the model's capability to effectively detect and classify different types 

of faults in the power transmission system. Moreover, the loss value remained 

negligible at 0.0010, indicating minimal discrepancies between the predicted and 

actual values. 

 

Fig. 5. Progress of LSTM model based on Accuracy and Loss. 

In the case of LSTM models, a high learning rate can also cause the gradients 

to explode, leading to the problem of exploding gradients [30]. This can make it 

difficult to train the model effectively and cause accuracy to suffer. Hence, IAOA 

is employed in this paper to provide the optimal hyperparameter of the LSTM 
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model, as seen in Table 2. Due to this, the output in Fig. 5 shows the training 

progress over 1400 iterations and maintains an accuracy of 100% and negligible 

loss of 0.0010. Eventually, the accuracy and loss will be reasonable as the training 

iteration converges. 

The convergence of accuracy and loss metrics over the training iterations 

signifies the robustness and stability of the IAOA-LSTM model. It can be inferred 

that the model has successfully learned the underlying patterns and features of the 

dataset, leading to reliable fault detection and classification performance. The high 

accuracy and negligible loss values demonstrate the model's ability to generalize 

well to unseen samples and make accurate predictions. 

The quantitative analysis of the results further supports the effectiveness of the 

proposed approach. Significant performance improvements were achieved by 

leveraging the IAOA algorithm to optimize the LSTM model's hyperparameters. 

The model's accuracy reaching 99.99% indicates its capability to correctly identify 

and classify various faults in the power transmission system. The negligible loss 

value further highlights the model's accuracy in predicting fault conditions 

accurately. 

In conclusion, the experimental evaluation results demonstrate the IAOA-

LSTM model's superiority in fault detection and classification. The model 

consistently achieved high accuracy, and the negligible loss values indicate its 

ability to handle the complexities of the power transmission system effectively. The 

proposed approach provides a robust and reliable solution for detecting and 

classifying faults, thereby reducing downtime and losses in industrial applications. 

4.3 State-of-the-art Comparison of Proposed with Various Studies 

Based on Table 4, the proposed model has achieved the highest accuracy of 99.99% 

with the lowest loss of 0.0010 among all the listed models. However, it is important 

to note that the fault distance in the proposed model is the furthest among all the 

models at 300km, and the IAOA method is employed for the optimal selection of 

hyperparameters, which could contribute to its higher accuracy. As seen in [31], 

the paper suggests using Grid search CV for a similar purpose. However, compared 

to [31], the proposed model shows a 0.03% improvement in accuracy with higher 

fault distance. 

Compared to the model [32], the proposed model shows an improvement of 

2.33% in accuracy and a decrease in the loss by 2400. while compared to the model 

[33], the proposed model has improved accuracy by 1.85% without providing 

information about the loss. In Table 4, 0.54% and 0.55% of improvement in 

accuracy is seen when compared to Model [34][31]. The fault distance of the 

models in [34][31] is less when compared to the proposed model. The proposed 

model is a competitive state-of-the-art method for fault diagnosis, particularly for 

faults occurring at long distances. 
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Table 4. Comparative Analysis of Various Studies. 
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5.  Conclusions 

The proposed approach using the fine-tuned LSTM model and dbN wavelet 

transform for fault detection and classification in transmission lines has shown to 

be a promising and effective method. The MATLAB simulation results 

demonstrate the proposed method's high accuracy, quick identification, and robust 

adaptability in identifying five types of faults. Implementing the IAOA algorithm 

for hyperparameter optimization and model error reduction has also demonstrated 

its ability to improve the accuracy of the LSTM model further. Therefore, the 

proposed approach can contribute significantly to developing more advanced and 

efficient protection systems for power transmission lines, ultimately ensuring the 

stability and reliability of power systems.  

    Further studies can explore the potential of the proposed method on a larger 

dataset with more complex scenarios and investigate its applicability in real-world 

power systems. Future studies can explore the potential of the proposed method on 

a larger dataset encompassing more complex scenarios, allowing for a 

comprehensive evaluation of its performance. Additionally, investigating the 

applicability of the proposed approach in real-world power systems would provide 

valuable insights into its practicality and scalability. 

     To quantify the main research findings, it is essential to present specific 

performance metrics such as accuracy, precision, recall, or F1-score for each fault 

type. These metrics would provide a quantitative evaluation of the proposed 

method's efficacy and allow for a direct comparison with existing approaches in the 

field.  

References 

1. Maduako, I.; Igwe, C.F.; Abah, J.E.; Onwuasaanya, O.E.; Chukwu, G.A.; 

Ezeji, F.; and Okeke, F.I. (2022). Deep learning for component fault detection 

in electricity transmission lines. Journal of Big Data, 9(1), 1-34. 

2. Branco, N.W.; Cavalca, M.S.M.; Stefenon, S.F.; and Leithardt, V.R.Q. 

(2022). Wavelet LSTM for fault forecasting in electrical power grids. Sensors, 

22(21), 8323. 

3. Shakiba, F. M.; Shojaee, M.; Azizi, S.M.; and Zhou, M. (2022). Transfer 

learning for fault diagnosis of transmission lines. arXiv preprint 

arXiv:2201.08018. 

4. Singh, M.; Panigrahi, B.K.; and Maheshwari, RP (2011). Transmission line 

fault detection and classification. Proceedings of the 2011 International 

Conference on Emerging Trends in Electrical and Computer Technology, 15-

22. IEEE. 

5. Park, P.; Marco, P.D.; Shin, H.; and Bang, J. (2019). Fault detection and 

diagnosis using combined autoencoder and long short-term memory 

network. Sensors, 19(21), 4612. 

6. Aker, E.; Othman, M.L.; Scilit, V.V.; Aris, I.; Abdul Wahab; NI,  and Hizam, 

H. (2020). Fault detection and classification of shunt compensated 

transmission line using discrete wavelet transform and Naive Bayes 

classifier. Energies, 13(1), 243.  

7. Malla, P.; Coburn, W.; Keegan, K.; and Yu, XH. (2019). Power system fault 

detection and classification using wavelet transform and artificial neural 

networks. In Advances in Neural Networks–ISNN 2019: 16th International 



92       M. Al Sultan et al. 

 
 
Journal of Engineering Science and Technology               Special Issue 6/2023 

 

Symposium on Neural Networks, ISNN 2019, Moscow, Russia, July 10–12, 

2019, Proceedings, Part II 16, 266-272.  

8. Hong, Y.Y.; and Cabatac, M.T.A.M. (2019). Fault detection, classification, 

and location by static switch in microgrids using wavelet transform and 

Taguchi-based artificial neural network. IEEE Systems Journal, 14(2), 2725-

2735. 

9. Fahim, S.R.; Sarker, Y.; Sarker, SK; Sheikh, M.R.I.; and Das, S.K. (2020). 

Self attention convolutional neural network with time series imaging based 

feature extraction for transmission line fault detection and 

classification. Electric Power Systems Research, 187, 106437. 

10. Lee, C.Y.; and Cheng, Y.H. (2020). Motor fault detection using wavelet 

transform and improved PSO-BP neural network. Processes, 8(10), 1322. 

11. Parsi, M.; Crossley, P.; Dragotti, P.L.; and Cole, D. (2020). Wavelet based 

fault location on power transmission lines using real-world travelling wave 

data. Electric Power Systems Research, 186, 106261. 

12. Naik, S.; and Koley, E. (2019). Fault detection and classification scheme 

using KNN for AC/HVDC transmission lines. In 2019 International 

Conference on Communication and Electronics Systems (ICCES), 1131-1135. 

IEEE. 

13. Tang, S.; Zhu, Y.; and Yuan, S. (2022). Intelligent fault identification of 

hydraulic pump using deep adaptive normalized CNN and synchrosqueezed 

wavelet transform. Reliability Engineering & System Safety, 224, 108560,  

14. Shao, B.; Li, M.; Zhao, Y.; and Bian, G. (2019). Nickel price forecast based 

on the lSTM neural network optimized by the improved PSO 

algorithm. Mathematical Problems in Engineering. 

15. Cong, Y.; Wu, J.; Wang, G.; Dai, Z.;  and Song, D. (2022). Ground fault 

identification and key feature extraction method for distribution network 

based on waveform analysis. In 2022 Global Reliability and Prognostics and 

Health Management (PHM-Yantai), 1-8. IEEE. 

16. Belagoune, S.; Bali, N.; Bakdi, A.; Baadji, B.;  and Atif, K. (2021). Deep 

learning through lstm classification and regression for transmission line fault 

detection, diagnosis and location in large-scale multi-machine power 

systems. Measurements, 177, 109330. 

17. Adly, A.R.; El Sehiemy R.A.; Elsadd, M.A.; and Abdelaziz, A.Y. (2019). A 

Novel wavelet packet transform based fault identification procedures in hv 

transmission line based on current signals. International Journal of 

Applied, 8(1), 11-21. 

18. Fathabadi, H. (2016). Novel filter based ANN approach for short-circuit faults 

detection, classification and location in power transmission 

lines. International Journal of Electrical Power & Energy Systems, 74, 374-

383. 

19. Azizi, R.; and Seker, S. (2021). Microgrid fault detection and classification 

based on the boosting ensemble method with the Hilbert-Huang 

transform. IEEE Transactions on Power Delivery, 37(3), 2289-2300. 

20. Esmail, EM; Mahmoud M. Elgamasy, MM; Tamer A. Kawady, T.A.; Taalab, 

A.M.I.; Elkalashy, N.I.; and Elsadd, M.A. (2022). Detection and experimental 

investigation of open conductor and single-phase earth return faults in 

distribution systems. International Journal of Electrical Power & Energy 

Systems, 140, 108089. 



Enhanced Fault Detection and Classification in Transmission Lines . . . . 93 

 
 
Journal of Engineering Science and Technology               Special Issue 6/2023 

 

21. Dong, X.; Li, G.; Jia, Y.; Li, B.; and He, K. (2021). Non-iterative denoising 

algorithm for mechanical vibration signal using spectral graph wavelet 

transform and detrended fluctuation analysis. Mechanical Systems and Signal 

Processing, 149, 107202. 

22. Zhi-hong, D.; Song, Z.; Zi-fan, L.; Chang, R.; Zhi-feng, Y.; and Bin, W. 

(2022). Sensor fault diagnosis based on wavelet analysis and lstm neural 

network. IEEE 20th International Power Electronics and Motion Control 

Conference (PEMC2022), 249-255. IEEE. 

23. Jing, G.; and Yingzi, L. (2009). Realization of single-phase ground fault line 

selection by self-adaptive choice of decomposition scale in distribution 

network. International Conference on Energy and Environment Technology, 

2, 201-204. IEEE 

24. Sybille, G. (2023). Series-Compensated transmission system. Hydro-Quebec, 

Retrieved from 

https://in.mathworks.com/help/sps/powersys/ug/series-compensated-

transmission-system.html  

25. Sybille, G. (2023). Three-Phase series compensated network. Hydro-Quebec, 

Retrieved from 

 https://in.mathworks.com/help/sps/powersys/ug/series-compensated-

transmission-system.html  

26. Abbas, A.K.; Hamad, S.; and Hamad, N.A. (2021). Single line to ground fault 

detection and location in medium voltage distribution system network based 

on neural network. Indonesian Journal of Electrical Engineering and 

Computer Science, 23, 621,  

27. Hassan, J. U.; and Nizami, I. F. (2022). Machine learning algorithm analysis 

for detecting and classification faults in power transmission system. 2nd 

International Conference on Digital Futures and Transformative 

Technologies (ICoDT2), 24-26 May, IEEE Xplore, 1-5. 

28. Hochreiter, S.; and Schmidhuber, J. (1997). Long short-term memory. Neural 

computation, 9(8), 1735-1780. 

29. Abualigah, L.; Diabat, A.; Mirjalili, S.; Abd Elaziz, M.;  and Gandomi, A.H. 

(2021). The arithmetic optimization algorithm. Computer methods in applied 

mechanics and engineering,  376, 113609,  

30. Luo, L.; Xiong, Y.; Liu, Y.; and Sun, X. (2019). Adaptive gradient methods 

with dynamic bound of learning rate. arXiv preprint arXiv:1902.09843. 

31. Appiah, A.Y.; Zhang, X.; Ayawli, B.B.K.; and Kyeremeh, F. (2019). Long 

short-term memory networks based automatic feature extraction for 

photovoltaic array fault diagnosis. IEEE Access, 7, 30089-30101. 

32. Ou, S.; Qin, L.; Li, K.; Zhang, X.; and Zhang, W. (2022). Single-phase 

grounding fault type identification of distribution network based on LSTM. 

4th International Conference on Smart Power & Internet Energy Systems 

(SPIES2022), 1190-1195. IEEE Xplore. 

33. Elmasry, W.; and Wadi, M. (2022). EDLA-EFDS: A Novel ensemble deep 

learning approach for electrical fault detection systems. Electric Power 

Systems Research, 207, 107834. 

34. Rafique, F.; Fu, L.; and Mai, R. (2021). End to End machine learning for fault 

detection and classification in power transmission lines. Electric Power 

Systems Research, 199, 107430. 

 

 

https://in.mathworks.com/help/sps/powersys/ug/series-compensated-transmission-system.html
https://in.mathworks.com/help/sps/powersys/ug/series-compensated-transmission-system.html
https://in.mathworks.com/help/sps/powersys/ug/series-compensated-transmission-system.html
https://in.mathworks.com/help/sps/powersys/ug/series-compensated-transmission-system.html


94       M. Al Sultan et al. 

 
 
Journal of Engineering Science and Technology               Special Issue 6/2023 

 

 

Appendix A 

Pseudocode  

Algorithm 1: Pseudo code of IAOA 

Start IAOA parameters 𝛽, 𝜎 , set of values for 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 ℎ𝑖𝑑𝑑𝑒𝑛 𝑙𝑎𝑦𝑒𝑟,
𝑀𝑖𝑛𝑖 𝑏𝑎𝑡𝑐ℎ𝑠𝑖𝑧𝑒, 𝑙𝑒𝑎𝑟𝑛𝑖𝑛𝑔 𝑟𝑎𝑡𝑒 𝑎𝑛𝑑max𝐸𝑝𝑜𝑐ℎ. 

Start the outcomes position arbitrarily.  

 (𝑏𝑒𝑠𝑡 𝑂𝑢𝑡𝑐𝑜𝑚𝑒𝑠 (𝑦): 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 ℎ𝑖𝑑𝑑𝑒𝑛 𝑙𝑎𝑦𝑒𝑟,  
𝑀𝑖𝑛𝑖 𝑏𝑎𝑡𝑐ℎ𝑠𝑖𝑧𝑒, 𝑙𝑒𝑎𝑟𝑛𝑖𝑛𝑔 𝑟𝑎𝑡𝑒 𝑎𝑛𝑑max𝐸𝑝𝑜𝑐ℎ). 
While (current iteration< maximum iteration): 

For the provided solution calculate the evaluation function. 

   Get the ideal response. 

    Applying Eq. (9), modify the math optimizer acceleration (MOA) value. 

    Applying Eq. (11), modify the math optimizer probability (MOP) value. 

       For (𝑖 = 1 𝑡𝑜 𝑂𝑢𝑡𝑐𝑜𝑚𝑒𝑠) do 

         For (𝑗 = 1 𝑡𝑜 𝐿𝑜𝑐𝑎𝑡𝑖𝑜𝑛) do 

           Make a random range of values within [0,1] (𝑟1, 𝑟2, 𝑎𝑛𝑑  𝑟3) 
              If 𝑟1 > 𝑀𝑂𝐴 then 

// Exploration phase 

               If 𝑟2 > 0.5 then 

          Employ the Division procedure (𝐷 " ÷ ") 
          Update the ith outcome location by employing first rule in equation (9) 

             Else     

                   Employ the multiplication procedure (𝑀 " × ").              
                   Upgrade the ith outcome location utilizing the second rule in 

equation (11) 

             End if 

          Else 

 //Exploitation phase 

If 𝑟3 > 0.5 then 

             Employ the Subtraction procedure. 

             Upgrade the 𝑖th outcome location utilizing 1𝑠𝑡 rule equation (10) 

         Else 

            Employ the addition procedure (A "+"). 

            Upgrade the 𝑖 th outcome location utilizing the 2𝑛𝑑  rule equation 

(10) 

          End 

  End for 

     𝐶𝐼𝑡𝑒𝑟 = 𝐶𝐼𝑡𝑒𝑟 + 1 

End while 

Return to possible best outcome (𝑦) 

 


