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Abstract 

Quantum Computing is a new and potential way of computing. It uses a different 

approach and mechanics compare to the current classical computing. The 

potential or highest boundaries of quantum computing is still unknown. Thus, the 

goal is to develop a quantum algorithm robot to solve the maze using tree diagram 

maze. A tree diagram maze has 2n possible paths, and the task is to find the 

shortest path among the paths. The quantum algorithm uses ratio-based as the 

approach in solving the maze. Qiskit from IBM has been used as the library where 

quantum algorithm is developed to solve the maze by executing the quantum 

circuit built from quantum gates. Two quantum algorithms have been developed 

and tested. The shortest path accuracy for the two quantum algorithms was 

averaging at 78% and 84%, respectively. Both quantum algorithms won over 

their corresponding classical opponents with the same approach. 

Keywords: Maze-solving, Qiskit, Quantum algorithms, Quantum computing, Tree 

diagram maze. 
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1. Introduction 

Quantum computing in robotic science and its applications is becoming more 

popular as years pass by. The demand for more powerful and intelligent robots via 

quantum computation is also rising. According to an article from [1], the quantum 

computing market is projected to reach $64.98 billion by 2030 from just $507.1 

million in 2019. One of the applications of quantum computing in robotics is maze 

navigation. Quantum algorithms can be used to replace classical algorithms for 

maze solving and provide a quicker number of paths solving for better navigation 

of the robot.  

Maze solving is a research area that can benefit people. By solving the number of 

paths in a maze, people can gather every possible path to the destination, which will 

benefit the most in the map navigation. Undoubtedly, a classical algorithm can 

perform the tasks quickly and simultaneously in finding possible paths between two 

cities. However, suppose the decision of the directions increases hugely such as 

finding the possible paths between two countries or even two continents. In that case, 

a massive increment in the decision will require a colossal increment of computation 

power and computation time. It might take a few hours to a few days for the decisions 

to be calculated. A quantum robot can be realised by using the open-source library 

through microprocessor. Here, a quantum algorithm will be developed using open-

source library software to calculate all possible paths, and the result will then be used 

to navigate the robot in the maze. The formatter will need to create these components, 

incorporating the applicable criteria that follow. 

2. Literature Review 

Table 1 reviewed journals in method to solve maze-related problems in a quantum 

way. The first method is Quantum Parallelism or Quantum Walk due to the existence 

of a superposition state for quantum particle. The second method is implementing 

Grover’s Search Algorithm, which has been proven to take lesser iteration in finding 

the solution. The simplest way to solve the maze in a quantum way is by building a 

circuit of Quantum Parallelism from quantum logic gates. This method is proposed 

and testified in [2, 3]. It required lesser hardware resources to perform the operations 

as no actual quantum devices such as quantum annealer is needed.  

Table 2 reviewed journals in comparison between the quantum software 

platforms. Some of the well-known platforms are the pyQuil, Qiskit, ProjectQ, Q# 

and Cirq. These platforms were mainly compared in term of features, supported 

libraries and documentation resources. As a result, Qiskit from IBM has the upper 

hand among these platforms. The reasons are it is beginner-friendly in term of 

enormous resources available. Furthermore, Qiskit is also user-friendly as it has a 

lower degree of complexity in implementation. Table 3 reviewed journals in 

showing or teaching of the quantum gates or quantum circuit. By researching on 

this area, the characteristic and function of each quantum gates have been learnt. 

Besides, the effect of different combination of quantum gates have also been 

observed. Lastly, the programming method to build the quantum circuit from the 

quantum gates have also been explained. 
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Table 1. Summary of literature review in quantum algorithm research. 

No. Author 
Method to solve 

maze 
Advantages Limitations 

1. [2] 

Quantum 

Parallelism using 

Quantum Gates 

Simple 
Not applicable for all 

maze  

2. [3] 

Quantum 

Parallelism using 

Quantum Gates in 

simulation 

Simple 

Not entirely 

autonomous (require 

manual inputs) 

3. [4] 

Quantum version 

of Dijkastra 

algorithm by using 

Quantum circuit 

design 

Simple 

Conversion is 

complicated and 

unclear 

4. [5] 

Quantum Walk by 

generating 

quantum particle to 

‘walk’ in the maze 

Rapid and 

genuine 

Unstable and require 

actual quantum 

hardware 

5. [6] 

Quantum Walk of 

state transfer with 

Grover’s Search 

Speedup in 

required steps 

Not applicable for all 

types of maze and 

tasks are complicated 

6. [7] 

Grover’s Search 

for maximum 

fitness value 

Significant 

Speedup 

Not fully suited for 

shortest path problem 

and Inconvenient due 

to large number of 

loops 

7. [8] 

Simulate in 

Quantum 

Annealing 

- 
Only applicable in 

certain condition 

Table 2. Summary of literature review in quantum software platform. 

No. Author Aim Outcome 

1 [9] 
To compare the open- source 

quantum software 

pyQuil and Qiskit perform 

better 

2 [10] 
To compare the quantum 

software platform 

Qiskit wins with its all-

aroundness 

3 [11] 
To compare the quantum 

software platform 

Selected Qiskit due to low 

degree of complexity 

Table 3. Summary of literature review in quantum gates and circuit. 

No. Author Outcome 

1 [12] 
Fundamental quantum gates’ characteristic and function have 

been learnt 

2 [13] 
The simulation effect of combining the quantum gates have 

been learnt 

3 [14] 
The method for building the quantum circuit from quantum 

gates have been learnt 
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3. Concept Design and Research Methodology 

3.1. Selection of quantum software platform 
Quantum Software Platform is the platform for the user to program the quantum code 

or simulate the quantum circuit. With the additional help from the literature review, 

three platforms created by the solid and well-known institution will be compared. The 

three platforms are the pyQuil from Google, Qiskit from IBM and QDK from 

Microsoft as shown in Table 4. In comparison, a programming language will 

determine the microprocessor or control board in building the robot. In this case, 

pyQuil and Qiskit are using Python while the QDK is using C#. On the other hand, 

the number of simulation qubits will determine the maximum limitation of the 

generated maze. As for a basic quantum algorithm, a qubit can perform one decision. 

Thus, a platform will 20 qubits can solve a maze with around 20 decisions. Therefore, 

the higher the available simulation qubits, the better the project can be.  

Next, the feature of simulating in an actual backend quantum device is also 

essential. Simulating the results in a real quantum computer can provide more realistic 

results. Only pyQuil and Qiskit can perform the simulation in the backend quantum 

computer, and Qiskit can perform an actual simulation up to 20 qubits. Lastly, pyQuil 

and Qiskit have vast libraries of resources on the internet, including tutorials and 

projects. QDK has been eliminated in the first place as it does not provide simulation 

on a real quantum computer. Next, Qiskit has the upper hand in performing real 

quantum device simulation up to 20 qubits compared with eight qubits from pyQuil. In 

conclusion, Qiskit is selected as the quantum software platform. 

Table 4. Comparison table of quantum software platform. 

 pyQuil Qiskit QDK 

Institution Google IBM Microsoft 

Programming 

Language 
Python Python C# 

Quantum 

Language 
Quil OpenQASM - 

No. of simulation 

qubits 

(for free) 

Local: 20 

API key: 25 

Local: 25 

Cloud: 30 

Local: 30 

Cloud: 40 

Actual Quantum 

Device 

8 qubits 

device 

IBMQX2 

(5 qubits), 

IBMQX4 

(5 qubits), 

IBMQX5 

(16 qubits), 

QS1 1 

(20 qubits) 

- 

Resources High High Low 

3.2. Concept design derived from fundamental engineering principles  

In quantum mechanics, Bra-Ket notation is used. ‘Ket’ notation is the 

combination of the vertical bar “|” and the right-angle bracket “>” to represent 
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the state of the quantum system. Thus, |0⟩  is representing the ‘0’ and |1⟩  is 

representing the ‘1’. Additionally, the matrix form of |0⟩ is [
1
0

] and |1⟩ is [
0
1

]. 

Hadamard Gate is a quantum logic gate that acts on a qubit. If a qubit moves 

through the Hadamard Gate, it will convert into a superposition state of having 

‘0’ and ‘1’ at the same time. The Hadamard Gate is represented by the symbol 

‘H’ as shown in Fig. 1. Table 5 shows the truth table of Hadamard Gate. In 

conclusion, when the Hadamard Gate is applied, the output will be in the 

superposition of having ‘0’ and ‘1’ at the same time. This output will help in the 

realisation of Quantum Parallelism. 

Table 5. Truth table of Hadamard gate. 

Input Logic Gate Output 

|0⟩  

Fig. 1. Hadamard gate. 

|0⟩  +  |1⟩

√2
 

|1⟩ 
 

|0⟩  −  |1⟩

√2
 

Pauli-X is a quantum gate that acts on a qubit. If a qubit moves through the Pauli-

X Gate, it will convert into the opposite state. In this case, the Pauli-X Gate works 

exactly like the NOT Gate in a classical way. The Pauli-X Gate will be showed in the 

symbol ‘X’ as showed in Fig. 2. Table 6 shows the truth table of Pauli-X Gate. In 

summary, when |0⟩ moves into the Pauli-X Gate, the output will be |1⟩. On the other 

side, when |1⟩ moves into the Pauli-X Gate, the output will be |0⟩. 

Table 6. Truth table of Pauli-X gate. 

Input Logic Gate Output 

|0⟩  

Fig. 2. Pauli-X gate. 

|1⟩ 

|1⟩ 
 

|0⟩ 

Controlled Pauli-X Gate as shown in Fig. 3 is a quantum logic gate that requires 

two qubits to operate. One qubit will be the controlled qubit, while the other one 

will be the target qubit. The controlled qubit will determine when will the target 

qubit to undergo the NOT Gate effect. The controlled qubit is represented by a dot, 

while the NOT-type target qubit is represented by a ‘+’ inside a circle. Table 7 

shows the truth table of Controlled Pauli-X Gate. In summary, when the controlled 

qubit is |0⟩, the operated qubit will remain the same. However, when the controlled 

qubit is |1⟩, the operated qubit will perform NOT gate effect.  

Controlled Hadamard Gate as shown in Fig. 4 is a logic gate that requires one 

controlled qubit and one target qubit. The target qubit is controlled to perform 



82       Y. C. Lee et al. 

 
 
Journal of Engineering Science and Technology                Special Issue 6/2022 

 

Hadamard Gate by the controlled qubit. Similarly, the controlled qubit is 

represented by a dot, while the Hadamard-type target qubit is represented by a block 

with symbol ‘H’. Table 8 shows the truth table of Controlled Hadamard Gate. In 

summary, when the controlled qubit is |1⟩, the target qubit will perform Hadamard 

Gate to produce the superposition state. 

Table 7. Truth table of controlled Pauli-X gate. 

Input 
Logic Gate 

Output 

Controlled Target Controlled Target 

|0⟩ |0⟩  
Fig. 3. Controlled 

Pauli-X gate. 

|0⟩ |0⟩ 

|0⟩ |1⟩ 

 

|0⟩ |1⟩ 

|1⟩ |0⟩ 

 

|1⟩ |1⟩ 

|1⟩ |1⟩ 

 

|1⟩ |0⟩ 

Table 8. Truth table of controlled Hadamard gate. 

Input 
Logic Gate 

Output 

Controlled Target Controlled Target 

|0⟩ |0⟩  
Fig. 4. Controlled 

Hadamard gate. 

|0⟩ |0⟩ 

|0⟩ |1⟩ 
 

|0⟩ |1⟩ 

|1⟩ |0⟩ 
 

|1⟩ 
|0⟩  + |1⟩

√2
 

|1⟩ |1⟩ 
 

|1⟩ 
|0⟩ − |1⟩

√2
 

4. Final Design and Implementation 

4.1. Overall block diagram 

Figure 5 shows the overall block diagram of the project. In order to run the system, 

a maze problem must be identified. Next, the useful maze information must be able 

to extract from the maze problem. There are two ways of extracting the usable maze 

information to use in the system. The first way is by manually key in the maze 

information, such as the number of junctions and all path length values. On the 

other hand, the second way is by importing the image of the maze problem into the 

system. Then, the system will extract all useful information by itself through the 
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image processing method. After collecting all necessary information, the maze 

problem can now be solved using the maze solving algorithm. There are four types 

of mazes solving algorithms, including two quantum algorithms and two classical 

algorithms. As for clarification, the two quantum algorithms are the main ones in 

this project, while the two classical algorithms are only developed as a comparison 

target in the testing part. Then, the shortest path result will be obtained after solving 

the maze by one of these algorithms. Lastly, the shortest path result can have two 

outputs. The first output is by displaying the results on the python IDE as a 

simulation purpose of solving the maze. On the other hand, the second output is by 

decoding the shortest path result and run the result in a real-time prototype in the 

actual maze. 

 

Fig. 5. Overall block diagram of the project. 

4.2. Construction details (maze) 

The first constructional details will be the details of the maze. The type of maze is set 

to use the tree diagram maze as shown in Fig. 6. This type of maze will have a single 

starting point and multiple destination points. The target of solving this type of maze 

is to determine which combination of paths will provide the shortest route. Several 

simple rules have to follow to build this kind of maze. Firstly, the maze will be 

divided into several layers. For each layer, it must have 2𝑛−1 junctions. Then, for 

each junction, it must have two possible paths. Therefore, the total number of possible 

paths will depend fully on how many layers are in the maze with a formula of  2𝑛. 

For instance, a ten layers maze will have 210 = 1024 possible paths. 

 

Fig. 6. Example of tree diagram maze. 
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4.3. Construction details (algorithm) 

The second constructional section will be the details of the development of the 

algorithm. A new maze solving approach will be built. The same approach will be 

implemented into the quantum way and classical way for comparison in accuracy 

tests. The newly designed approach is a ratio-based method in solving the maze. 

The main logic of this approach is to help the robot determine the decision of going 

left or going right when encountering the junctions to move in the calculated 

shortest path. The determination of going left or going right will be based on the 

ratio of the left paths with the right paths. Each layer will have to calculate its own 

ratio. The basic formula of this approach will be listed in Eq. (1) below. 

Ratio =  
∑ 𝐴𝑙𝑙 𝐿𝑒𝑓𝑡 𝑃𝑎𝑡ℎ𝑠

∑ 𝐴𝑙𝑙 𝑅𝑖𝑔ℎ𝑡 𝑃𝑎𝑡ℎ𝑠
                                                                                         (1) 

Figure 7 shows an example of one layer maze. If the length of ‘a’ is 10 unitless 

while ‘b’ is 8 unitless, the ratio will be  
a

b
=

10

8
= 1.25. If the ratio is larger than 1, it 

means that the left path is longer than the right path. Thus, by going right, it has a 

higher possibility of getting the shortest path. 

Similarly for a two layers maze, a two layers maze will have one junction at 

Layer 1 and two junctions at Layer 2. Based on Fig. 8, the Layer 1 ratio will be  
𝑎

𝑏
  

while the Layer 2 ratio will be  
𝑐+𝑒

𝑑+𝑓
 . Assume that both layer ratios are more than 1, 

which means that the robot is taught to turn right when encountering the first 

junction and the second junction. Therefore, the calculated shortest path result by 

the system will be START → b → f. Therefore, based on the two examples above, 

the system’s output teaches the robot to decide whether to turn left or turn right 

when seeing the junctions. This maze solving approach that has been written in a 

quantum way will be known as the ‘Quantum Algorithm’ throughout the entire 

report. On the other hand, the same approach that has been written in a classical 

way will be assigned with the name of ‘Classical Algorithm’ throughout the whole 

report. Furthermore, a higher degree of consideration has been applied to the above 

approach to increase accuracy. Even though it is logical and should be working fine 

from the above approach, some scenarios still disobey the above approach. 

Assume a maze with the path length listed in Table 9 above. The focus point in 

this example is that the average path length values in Layer 2 are significantly way 

higher than the average path length values in Layer 1. Thus, Layer 2 should be more 

focused or more dominant in calculating the shortest path results for logical 

thinking. The path length values in Layer 1 will only contribute a minor effect in 

the final path length values. The shortest path ranking can be stated in Table 10. 

Average Path Length (Layer 1) = 
5+7

2
= 6                                                            (2) 

Average Path Length (Layer2) = 
50+45+20+33

4
 = 37  (3) 

Based on the previous mentioned approach, the Layer 1 ratio will be  
5

7
= 0.714 

which is lower than 1. Next, the Layer 2 ratio will be  
50+20

45+33
= 0.897 which is also 

lower than 1. Thus, the calculated shortest path result of using the above approach 

will be left at the first junction and left at the second junction with the code result of 
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‘00’. This example shows that the above approach has weaknesses in several cases, 

such as huge value differences in average path length values between the layers. 

 

Fig. 7. Example of one layer maze. 

 

Fig. 8. Example of two layers maze. 

Table 9. Example of two layers maze with path length. 

 Path Length 

Layer 2 50 45 20 33 

Layer 1 5 7 

Table 10. Shortest path ranking for the paths. 

 
Path 

00 01 10 11 

Total Path Length 55 50 27 40 

Shortest Path Ranking 4th 3rd 1st 2nd 

Therefore, modifications have been added to the original approach to come out 

with an improved approach version.  There is one sentence to conclude the whole 

modifications, which is the following layer’s information must also be a part to 

affect the previous layer’s ratio. The modifications are adding more linkages or 

relationships between the layer’s ratios. In this improved approach, the first layer 

(Layer 1) ratio will also be affected by the following layer’s information.  
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Assume that the scenario has calculated to turn left at the first junction; the robot 

or the human follows the instruction to turn left at the first junction. However, after 

turning left at the first junction, the following two paths are extremely long 

compared to the other two paths on the right side. In this case, turning left at the 

first junction might be a wrong decision in the first place. Therefore, this scenario 

has proved that the following layers must also be considered when calculating the 

decision in the first layer (Layer 1). 

This improved approach has also been written in both quantum and classical 

ways for comparison. The quantum way with the improved approach will be called 

the ‘Improved Quantum Algorithm’, while the classical way with the improved 

approach will be called the ‘Improved Classical Algorithm’. 

To summarise, four algorithms will be tested: the ‘Quantum Algorithm’, ‘Improved 

Quantum Algorithm’, ‘Classical Algorithm’, and ‘Improved Classical Algorithm’. 

4.4. Construction details (quantum circuit) 

The third construction detail will be the details for building the quantum circuit. 

After getting all the layer's ratios, the information will be run into the quantum 

circuit for the' Quantum Algorithm' and' Improved Quantum Algorithm'. The 

quantum circuit will start the calculation and output all the path's possibilities. The 

path with the highest possibility value will be the shortest path. On the other hand, 

the path with the lowest possibility value will be the longest path. However, the 

entire project will mainly focus on the shortest path only.  

Build a quantum circuit requires quantum gates. For the project, three types of 

quantum gates have been used: the Hadamard Gate, Controlled Hadamard Gate, and 

Pauli-X Gate. By combining different gates, it will represent different scenarios. For 

example, applying a single Hadamard Gate to a qubit will output a result of 50% '0' 

and 50% '1'. This output can represent the scenario when the left and right paths have 

similar lengths of equal lengths. Therefore, the scenario should be 50% going left and 

50% going right, which is exactly similar to the output from the quantum circuit. 

Figure 9 shows the quantum circuit of one Hadamard Gate and its simulation result 

in histogram for the scenario when layer ratio is 1. 

 

Fig. 9. Quantum circuit and simulation result for ratio = 1 scenario. 

If the layer ratio is 0.5, the left path is two times shorter than the right path. 

Thus, the possibility of going left should be 66.67%, and going right should be 

33.33%. The scenario can also be represented by combining one Hadamard Gate, 
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one Pauli-X Gate and two Controlled Hadamard Gates. Figure 10 shows the 

quantum circuit and simulation results in histogram for scenario when ratio is 2. 

For the opposite of the previous scenario, if the layer ratio is 2, the right path is 

now two times shorter than the left path. Thus, the possibility of going left and 

going right will be 66.67% and 33.33%. In this case, the gates' combination will be 

the same as the previous example but with an extra Pauli-X gate added at the most 

end of the circuit. Figure 11 shows the quantum circuit and simulation result in 

histogram for scenario when layer ratio is 2. 

 

Fig. 10. Quantum circuit and simulation result for ratio = 0.5 scenario. 

 

Fig. 11. Quantum circuit and simulation result for ratio = 2 scenario. 

Thus, ratio = x  and ratio =
1

x
  such as ratio = 0.5  and ratio = 2 are using 

almost the same combination of quantum gates. The only difference will be adding 

an extra Pauli-X Gate at the end of the circuit for ratio > 1 part. In this case, the 

ratio = 2 case will be the one that needs an extra Pauli-X Gate. The combination 

of quantum gates in building the quantum circuit to represent ten different ratio 

scenarios has been listed in Table 11. It has listed out the scenarios for  ratio = x   
when  x < 1. On the other hand, add an extra Pauli-X Gate at the end of the 

combination for ratio =
1

x
  to obtain the combinations for representing the other ten 

different ratio scenarios. By having these 10+10 combinations of gates, it can 

represent 20 different scenarios of the layers in the maze. 
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Table 11. Combination of quantum gates circuit for different ratio scenario. 

Ratio Quantum Circuit 

% 

getting 

‘0’ 

% 

getting 

‘1’ 

𝑅𝑎𝑡𝑖𝑜
< 0.03  

 

0.97 0.03 

0.03
≤ 𝑅𝑎𝑡𝑖𝑜
< 0.11   

 

0.95 0.05 

0.11
≤ 𝑅𝑎𝑡𝑖𝑜
< 0.2   

 

0.875 0.125 

0.2 ≤ 𝑅𝑎𝑡𝑖𝑜
< 0.3 

 

0.8 0.2 

0.3 ≤ 𝑅𝑎𝑡𝑖𝑜
< 0.4 

 

0.75 0.25 

0.4 ≤ 𝑅𝑎𝑡𝑖𝑜
< 0.47 

 

0.7 0.3 

0.47
≤ 𝑅𝑎𝑡𝑖𝑜
< 0.65 

 

0.667 0.333 

0.65
≤ 𝑅𝑎𝑡𝑖𝑜
< 0.9 

 

0.55 0.45 

0.9 ≤ 𝑅𝑎𝑡𝑖𝑜
< 1 

 

0.5 0.5 
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4.5. Construction details (prototype) 

The fourth construction detail is the details of the prototype building. It shows the 

construction requirements and steps in building the prototype robot, as shown in Fig. 

12. The wiring connections of the components’ wires to the Raspberry Pi pin are 

shown in Table 12. Since the maze solving algorithm result only outputs the decisions 

of turning left or turning right at the junction, the path detecting approach must 

identify the junctions correctly so that the decisions can be applied as shown in Table 

13. Therefore, making the prototype capable of running in real-time mazes requires a 

path detecting approach to identify and differentiate the maze’s roads/paths. The 

general logic behind constructing the path detecting approach is simple. If the robot 

detects the junction, the robot will use the algorithm’s calculation results, such as 

turning left at the first junction and turning right at the second junction. On the other 

hand, if the junctions have not been detected, the robot will move in the maze based 

on a line follower alike logic until it encounters a junction. Next, to move in the real-

time maze successfully, it must fully utilise the motion of two wheels to perform 

several movements such as turn right, turn left, backward or forward movement. The 

motion of two wheels is controlled by the motor driver with the method of Pulse 

Width Modulation (PWM) as shown in Table 14. The PWM method relies on the 

voltage supply to the motor driver. Thus, the details of the voltage supply will be 

listed below. For the prototype, the voltage is supplied from two 3.7V Li-Ion Battery 

in series, contributing to a total of 7.4V voltage supply. 

 

Fig. 12. Prototype of the project. 

Table 12. Wiring table of the project. 

No. Component’s Wire GPIO 

1 Left Wheel Enable 1 

2 Left Wheel Input 1 8 

3 Left Wheel Input 2 7 

4 Right Wheel Enable 14 

5 Right Wheel Input 1 18 

6 Right Wheel Input 2 15 

7 IR Sensor 1 22 

8 IR Sensor 2 27 

9 IR Sensor 3 17 

10 IR Sensor 4 3 

11 IR Sensor 5 2 
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Table 13. Combination of IR sensors values to corresponding motion. 

IR Sensor 
Motion 

IR1 IR2 IR3 IR4 IR5 

0 0 1 0 0 Forward 

0 1 1 1 0 Forward 

0 0 1 1 0 Slightly Turn Right 

0 1 1 0 0 Slightly Turn Left 

0 X 1 X 1 Turn Right 

1 X 1 X 0 Turn Left 

1 X 1 X 1 JUNCTION 

0 0 0 0 1 Slightly Turn Right 

1 0 0 0 0 Slightly Turn Left 

1 0 0 0 1 Backward 

0 0 0 0 0 Stop 

X 0 0 1 X Slightly Turn Right 

X 1 0 0 X Slightly Turn Left 

ELSE Backward 

Table 14. PWM (%) of the motors in performing the motions. 

Motion 
PWM (%) 

Left Wheel Motor Right Wheel Motor 

Forward 40 40 

Backward 40 40 

Stop 0 0 

Slightly Turn Left 0 40 

Slightly Turn Right 40 0 

Turn Left 0 50 

Turn Right 50 0 

4.6. Discussion–project finding and testing 

4.6.1. Introduction 

The two quantum algorithms are the primary testing target for the tests. Six tests are 

carried out on the shortest path accuracy test for different path layers maze, the shortest 

path accuracy test for random maze images, the shortest path accuracy test for random 

path length difference, the shortest path accuracy test for different quantum shot values, 

the computation time test, and the compatibility test for the prototype. 

4.6.2. Shortest path accuracy test for different path-layers maze 

The first test will be the shortest path accuracy test for different path layers maze. 

Due to system limitations, the test can only be done using one layer maze up to 

seven layers maze. The test was set to discover the ability of quantum algorithms 

in solving different layers of mazes. It is also a test for the quantum algorithms to 

compare and compete with their same approach classical version algorithms. The 

two quantum algorithms and two classical algorithms had been applied in this 

shortest path accuracy test. The maze information, such as the path length for the 

test were randomly generated by the system using the random key in mode. In the 

end, 1000 sets of maze information were generated for each number of layers maze, 
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which will contribute to a total of 7000 sets of different mazes for testing purposes. 

The term ‘accuracy’ has been defined as the ability or correctness of the algorithm 

in finding the shortest path. It uses similar logic as calculating the marks for any 

exam. For example, assume that a person answered 90 questions correctly out of 

100 questions; that person should be marked as 90% for the exam. Similarly, if 

there are 100 paths in the mazes, the system that output the second shortest path 

among all paths should be granted 98% ~ 99% for the correctness or accuracy of 

the system.  

When the number of layers in a maze increases, the number of paths will increase 

exponentially, leading to a massive number of possible paths. In this case, although 

the system may not be able to output the shortest path, the system that can output the 

second shortest paths out from few thousand or a few hundred thousand paths should 

also be considered as high accuracy or high correctness. Throughout the testing, there 

are several values to be calculated and recorded for the algorithms. Firstly, the 

shortest path accuracy percentage of each algorithm will be calculated. From the 

formula, the ranking index is the output path result ranking of the algorithm. If the 

algorithm outputs the second shortest path result, the ranking index will be ‘2’, which 

indicates the second shortest path. On the other hand, the number of paths in the 

formula is the total number of possible paths in the maze. For example, a three layers 

maze will have a total of eight possible paths. 

Shortest Path Accuracy (%) = 100 − (
Ranking Index−1

Number of Paths−1
× 100%)                  (4) 

Secondly, the average shortest path accuracy percentage will also be calculated 

and displayed. For the accuracy test, each layer maze has been generated 100 sets 

of maze data per time and continuing generated ten times. The ten sets of 100 mazes 

data will be recorded in tabular form. The average percentage is the average value 

for the ten sets of 100 mazes data which can also be known as the average shortest 

path accuracy percentage for the 1000 mazes data. 

Average Shortest Path Accuracy (%) =
∑ Shortest Path Accuracy (%)

10
                    (5) 

Figure 13 shows the average shortest path accuracy for the four algorithms 

including two quantum algorithms and two classical algorithms. The analysis of 

the testing results will be classified into simple analysis and advanced analysis. As 

a simple analysis, the quantum algorithms and classical algorithms can be 

compared by comparing the average shortest path accuracy for all layers as shown 

in Table 15. 

From the above Fig. 14 and Table 15, there are two conclusions. Firstly, the two 

quantum algorithms have a better accuracy compared to their classical algorithms’ 

opponents. Secondly, it is undeniable that the accuracy can be increased by a deeper 

consideration of the algorithm approach. The analysis has shown that the algorithm 

is capable and can improve in the future by modifying and improving the current 

logic approach. Microsoft Excel can produce the trendline equation for the plotted 

graph. Since the testing was done only for up to seven layers due to system 

limitations, it will be great to have a trendline equation to forecast the future number 

of layers’ conditions. Thus, the trendline equation will be produced to further 

extend the accuracy percentage graph for each algorithm. The trendline equation 

for both algorithms is set to be in the logarithmic equation as shown in Table 16. 
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Fig. 13. Average shortest path accuracy for algorithms. 

 

Fig. 14. Average shortest path accuracy histogram. 

Table 15. Average all layer’s shortest path accuracy. 

Number of 

Layers 

Algorithm 

Classical Quantum 
Improved 

Classical 

Improved 

Quantum 

1-L 99.2 95.2 99.2 96.9 

2-L 84.568 83.967 89.635 89.867 

3-L 76.428 77.115 85.188 86.456 

4-L 71.646 74.78 81.36 81.979 

5-L 68.425 73.436 79.848 80.507 

6-L 67.996 71.705 78.174 78.655 

Average 76.09 77.9 84.16 84.35 
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Table 16. Trendline equation for the algorithms. 

Algorithm Trendline Equation 

Classical y = -17.62ln(x) + 97.545 

Quantum y = -12.93ln(x) + 93.653 

Improved Classical y = -11.75ln(x) + 98.471 

Improved Quantum y = -10.52ln(x) + 97.165 

For the advanced analysis, the algorithms can be further analysed in terms of 

their workable range. The workable range is the current capable range for the 

algorithm to solve the maze. As the number of layers increases, it might be more 

challenging for the system to maintain the correctness or output a good accuracy 

since there are more possibilities and more complex. At that time, the system might 

output an accuracy of around 0%, which is unusable as it can no longer calculate 

the shortest path. However, the system might be useless earlier way before reaching 

0%. Thus, 50% accuracy was set as the minimum usable range for the system. 

Using the accuracy trendline equation of the algorithms can calculate the workable 

range of the algorithms in solving the mazes. The variable ‘y’ in the equation is the 

accuracy percentage, while the ‘x’ in the equation is the number of layers. Table 17 

can conclude that the quantum algorithms have a more extensive workable range 

and usable range than the classical algorithms. It has another inner meaning: the 

accuracy of classical algorithms drops faster or more significantly than quantum 

algorithms. Thus, the quantum algorithms are better than the classical algorithms 

in terms of accuracy. 

Table 17. Workable range for the algorithms. 

Algorithm 
Number of Layers 

50% Accuracy 0% Accuracy 

Classical 14 layers 253 layers 

Quantum 29 layers 1398 layers 

Improved Classical 61 layers 4361 layers 

Improved Quantum 88 layers 10262 layers 

4.6.3. Shortest path accuracy test for random maze image  

The second test is the shortest path accuracy test for maze images. The system 

consists of a mode to solve the maze by using maze images as the maze information 

input. The test setup is by preparing the maze images and inserting the maze images 

into the system for the algorithms to solve the maze. For the testing, 15 different 

maze images have been prepared, as shown in Fig. 15. The 15 maze images consist 

of layer maze up to three layers maze. The system will test each maze image for 

1000 times. 

The main objective of having this test is to discover the performance of the 

quantum algorithms in solving the maze by inputting maze images. At the same 

time, the quantum algorithms will be compared and competed with their classical 

version of the same approach to show the potential of the quantum algorithms. 

From Fig. 16 and Table 18, it can be observed that the improved quantum algorithm 

has the highest accuracy of 91.48%. The improved quantum algorithm is 3% higher 

accuracy than the improved classical algorithm. On the other side, the quantum 
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algorithm is 6% higher than the classical algorithm. Thus, it can be concluded that 

both quantum algorithms have better accuracy than their classical opponents with 

the same approach. 

 

Fig. 15. Maze images for testing. 

 

Fig. 16. Average shortest path accuracy for the algorithms. 

Table 18. Testing results for 15 maze images for the algorithms. 

Maze 

Average Shortest Path Accuracy Percentage (%) 

Classical Quantum 
Improved 

Classical 

Improved 

Quantum 

Maze 1 100 100 100 100 

Maze 2 100 100 100 100 

Maze 3 100 100 100 100 

Maze 4 100 100 100 100 

Maze 5 100 100 100 100 

Maze 6 85.71 92.74 85.71 93.1 

Maze 7 33.33 51.23 33.33 50.77 

Maze 8 0 48.11 100 100 

Maze 9 100 100 100 100 

Maze 10 100 100 100 100 

Maze 11 85.71 78.6 85.71 85.71 

Maze 12 71.43 71.43 85.71 85.71 

Maze 13 85.71 85.71 85.71 92.86 

Maze 14 85.71 85.71 85.71 85.71 

Maze15 42.86 70.86 71.43 78.39 

Average 79.3639 85.6259 88.88762 91.48362 
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4.6.4. Shortest path accuracy test for random maze image  

The third test will be the shortest path accuracy test for random path length distance. 

This test will investigate the effect of the path length values difference between the 

layer to the shortest path accuracy for the quantum algorithms. The problem 

statement is “Will the accuracy varies when the difference in the path length values 

in the layer changes?”. Figure 17 visualises the path length differences. The formula 

and an example of calculating the path length difference are listed in Eq. (6) below.  

Path Length Difference in Each Layer =
∑ Nummax−NumN

N
0

N−1
 × 100%                (6) 

Based on Fig. 18, it can conclude that the path length difference is directly 

proportional to the shortest path accuracy percentage. When the differences in path 

length values inside each layer increase, the shortest path accuracy percentage 

increases. This statement can be proved by checking with the gradient of the linear 

trendline equations. For both Quantum Algorithm and Improved Quantum 

Algorithm, the gradient of the lines is positive. A positive gradient can be used to 

prove that the shortest path accuracy percentage is increasing. After knowing that a 

higher path length difference can produce a higher accuracy, the next step is to 

determine what random range will output the highest path length value difference in 

the layer. Theoretically, if the path length's random number range is larger, the path 

length difference will be larger. The following steps will be identifying whether the 

theoretical statement is correct or not. Five cases of random path length range as 

shown in Table 19 had been applied for the testing. For example, Case 1 has a path 

length range of 1 to 10. Thus, when the random path length generates and assigned 

into the layers, the path length value inside that layer will only be in the range of 1 to 

10, such as [1, 6, 8, 3]. 

To test for the effect of path length difference, 35000 sets of data have been 

randomly generated using the random key in mode of number generator function in 

the system. The system has calculated the 35000 sets of data by the Quantum 

Algorithm and Improved Quantum Algorithm. The shortest path accuracy percentage 

of each data by both quantum algorithms has been recorded and plotted in the graph. 

Then, two linear trendlines of the two quantum algorithms as shown in Table 20 were 

calculated and displayed to summarise the 35000 sets of plotted data. 

 

Fig. 17. Example of path length differences. 
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Fig. 18. Graph of accuracy 

 percentage versus layer’s path length differences. 

Table 19. Random path length range for each case. 

 Random Path Length Range (Normalised Unit) 

Case 1 1 to 10 

Case 2 1 to 100 

Case 3 1 to 1000 

Case 4 1 to 10000 

Case 5 1 to 100000 

Table 20. Linear trendline equation for shortest path accuracy. 

Algorithm 
Linear Trendline 

Equation 
Gradient 

Quantum 

𝑦
= 8 × 10−5 𝑥
+ 76.294 

+ 

Improved Quantum 

𝑦
= 8 × 10−5 𝑥
+ 81.187 

+ 

For the testing, 1000 sets of data have been generated for each case in each 

number of layers.  So, the next step of the testing is to get the average path length 

difference values inside the number of layers maze. A three layers maze will have 

three layers inside leads to having three path length difference values. In this case, 

the average path length difference will be the average from the three path length 

difference values. The formula for calculating the average path length difference 

values is listed in Eq. (7). 

Average path length difference values =  
∑ Path length difference values 

Number of Layers
            (7) 

     

     

     

      

                  

 
  
 
  
  
  
  
  
 
  
  
   
 

                              

                                    
                             

                

                         



Maze Navigation by Quantum Robot: Development of Quantum . . . . 97 

 
 
Journal of Engineering Science and Technology                Special Issue 6/2022 

 

Table 21 shows the average path layer difference in each layer produced by the 

five different cases. Then, the values for each number of layer maze are plotted into 

histogram as shown in Fig. 19. 

From Fig. 20, the average path layer difference increases from Case 1 to Case 5 for 

all the multiple layers maze. Therefore, it can be concluded that when the path layer 

difference in each layer increases, the shortest path accuracy percentage increases. 

Similarly, if the path length values in the same layer are close, the shortest path accuracy 

percentage for the quantum algorithms will drop. To prove the statement above, linear 

trendlines of the lines have been recorded as shown in Table 22. 

From Fig. 21, all linear trendlines are observed to be increasing when the random 

range increases. At the same time, the gradient is positive for all linear trendlines. It 

means that the average path length differences are increasing. In conclusion, when 

the path length difference in each layer is large for both quantum algorithms, the 

algorithms have a higher chance of outputting a higher shortest path accuracy. Most 

importantly, the characteristic of the quantum algorithms has been learnt in this test. 

Table 21. Average path layer difference produced by different cases. 

Number 

of 

Layers 

Average Layer’s Path Layer Difference (%) 

Case 1 (1-

10) 

Case 2 (1-

100) 

Case 3 (1-

1000) 

Case 4 (1-

10000) 

Case 5 (1-

100000) 

1 158.166 347.794 508.992 585.72 976.133 

2 177.63 360.886 545.838 740.348 1041.784 

3 184.77 413.472 658.488 746.714 1333.449 

4 139.052 305.6 466.518 605.904 1150.473 

5 113.931 358.586 399.273 420.634 628.711 

6 96.886 204.657 331.238 501.545 610.545 

7 82.57 176.809 254.648 332.282 478.147 

 

Fig. 19. Average path length differences for different multiple layers maze. 



98       Y. C. Lee et al. 

 
 
Journal of Engineering Science and Technology                Special Issue 6/2022 

 

 

Fig. 20. Graph of path length  

differences for different multiple layers maze. 

 

Fig. 21. Trendline graph of path length  

differences for different multiple layers maze. 

Table 22. Linear trendline equation for different multiple layers maze. 

Number of Layers Linear Trendline Equation Gradient 

1 𝑦 =  187.39 𝑥 −  46.797 + 

2 𝑦 =  210.78 𝑥 −  59.034 + 

3 𝑦 =  263.06 𝑥 −  121.8 + 

4 𝑦 =  232.31 𝑥 −  163.43 + 

5 𝑦 =  109.16 𝑥 +  56.744 + 

6 𝑦 =  132.42 𝑥 −  48.287 + 

7 𝑦 =  94.663 𝑥 −  19.097 + 
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4.6.5. Testing of accuracy effect from different quantum shots 

values 

The fourth test is the shortest path accuracy test from different quantum shot values. 

The term "quantum shot" is used for the execution of the quantum circuit. The two 

quantum algorithms have been tested for shortest path accuracy by varying the 

quantum shot values.  It can be imagined as the number of times running the 

quantum circuit built from the quantum gates. There were 13 different test numbers 

of quantum shots for the fourth test, which started from 10 to 10000. The setup of 

the testing is by generating the maze information using the Random Key in Mode. 

Then, the system will solve the maze by using the two quantum algorithms. Each 

quantum algorithm will run 13 times by varying the quantum shots value for each 

time. Thus, there will be a total of 26 times algorithm running for one set of maze 

information. The generated maze information will start from one layer maze to 

seven layers maze. Each layer maze will be generated 100 sets of maze data 10 

times. Thus, it will contribute to 1000 sets of maze data per multiple layers maze. 

In the end, it will contribute to a total of 7000 sets of maze data for seven types of 

multiple layers maze, and the analysis will be based on the 7000 sets of data. Tables 

23 and 24 list out the testing results. 

Figure 22 was plotted by using the average shortest path accuracy testing results. 

From Fig. 22, it can be observed that the accuracy percentage is increasing. However, 

the increment is getting smaller and eventually stabilise around a certain percentage. 

For example, the Quantum Algorithm stabilised at around 77%, while the Improved 

Quantum Algorithm stabilised at around 82%. Fidelity (%) is defined as the closeness 

of the value to the highest value. In this case, the fidelity percentage has been 

calculated to determine which quantum shot value will reach the saturation point. The 

saturation point will be the point when the increment is less or insignificant and the 

point that starts to close to the highest accuracy value. The difference in fidelity value 

has been calculated to assist in finding the saturation point. If the difference in fidelity 

is less than 0.5%, the state will be concluded as the saturation state. 

Fidelity (%) =
Highest Accuracy−Self Accuracy

Highest Accuracy
× 100%                                           (8) 

Fidelity Difference (%) = 100 − Fidelity (%) × 100%                                   (9) 

Table 23. Results of 13 quantum shot values for quantum algorithm. 

Random Shots 
Quantum 

1-L 2-L 3-L 4-L 5-L 6-L 7-L Average 

10 80.2 72.77 66.34 61.33 60.76 58.16 56.84 65.2 

40 87.5 77.17 71.21 67.46 65.46 62.07 60.04 70.13 

70 90.6 78.17 73.37 69.45 65.98 64.82 60.58 71.85 

100 92.4 79.37 73.79 70.39 68.49 65.51 61.71 73.09 

400 95 80.07 75.83 72.15 70.85 67.97 64.51 75.2 

700 95.6 80.73 76.57 71.51 71.35 68.45 67.1 75.9 

1000 95.5 80.47 77.14 71.86 71.76 68.97 66.63 76.05 

4000 95 80.63 77.17 72.31 73 69.86 67.39 76.48 

7000 94.5 81.67 76.16 73.01 72.03 69.56 68.33 76.47 

10000 94.9 81.07 76.77 72.78 71.94 69.9 66.92 76.33 

40000 95.3 81 77.13 72.76 71.32 70.43 67.27 76.46 

70000 94.4 80.47 76.46 72.51 72.65 70.03 67.53 76.29 

100000 95.6 80.87 77.11 73.41 71.77 69.59 67.75 76.59 
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Table 24. Results of 13 quantum shot values for improved quantum. 

Random 

Shots 

Quantum 

1-L 2-L 3-L 4-L 5-L 6-L 7-L Average 

10 83.4 75.77 72.47 69.47 67.37 64.44 60.42 70.48 

40 88.7 81.7 78.3 73.59 70.47 69.17 67.6 75.65 

70 89.2 81.77 78.57 75.99 72.83 70.58 67.79 76.68 

100 93.9 83.47 80.06 76.29 73.99 68.83 69.65 78.03 

400 95.3 84.8 81.26 79.57 75.68 74.5 72.61 80.53 

700 94.4 84.87 81.51 78.89 76.51 73.75 74.02 80.56 

1000 95.2 84.73 81.89 78.49 76.15 74.45 73.3 80.6 

4000 95.7 84.43 82.44 79.92 77.51 75.47 74.61 81.44 

7000 95.4 84.9 81.76 79.56 77.65 75.57 75.15 81.43 

10000 95.4 84.5 81.46 79.25 77.7 76.09 75.21 81.37 

40000 94 84.13 81.5 80.03 77.26 74.46 74.27 80.81 

70000 94.7 84.3 81.57 79.64 76.85 75.78 74.84 81.1 

100000 95.9 84.47 82.3 79.49 77.64 75.25 74.45 81.36 

From Figs. 23 and 24, the fidelity difference for both algorithms is less than 

0.5% starts from the quantum shot value of 4000. The closeness of the value from 

the quantum shots value of 4000 onwards is more than 99.5%, as shown in Tables 

25 and 26. Therefore, it can be concluded that the accuracy will be saturated after 

4000 quantum shots. 

By knowing the saturation point, it will benefit in saving time. For example, 

4000 quantum shots and 100000 quantum shots can output a similar accuracy by 

requiring less execution time. 

 

Fig. 22. Average shortest path accuracy from different quantum shot values. 
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Fig. 23. Fidelity graph of shortest path accuracy. 
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Fig. 24. Fidelity differences of shortest path accuracy. 

As a result of Table 27, by using the quantum shots value of 4000 instead of 

quantum shots value of 100000, the system can maintain a similar accuracy of less 

than 0.5% in difference, while the time taken can be significantly saved by around 

59%. Based on the fourth test, another characteristic of quantum algorithms has 

been learnt. 
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Table 25. Fidelity of shortest path accuracy. 

Quantum Shots 
Fidelity (%) 

Quantum Improved Quantum 

10 85.13 86.54 

40 91.57 92.89 

70 93.81 94.16 
100 95.43 95.81 

400 98.19 98.88 

700 99.1 98.92 
1000 99.29 98.97 

4000 99.86 100 

7000 99.84 99.99 
10000 99.66 99.91 

40000 99.83 99.51 

70000 99.61 99.58 
100000 100 86.54 

Table 26. Fidelity difference of shortest path accuracy. 

Quantum Shots 
Fidelity Difference (%) 

Quantum Improved Quantum Below 0.5%? 

10 14.87 13.46 NO 
40 8.43 7.11 NO 

70 6.19 5.84 NO 

100 4.57 4.19 NO 
400 1.81 1.12 NO 

700 0.9 1.08 NO 

1000 0.71 1.03 NO 
4000 0.14 0 YES 

7000 0.16 0.01 YES 

10000 0.34 0.09 YES 
40000 0.17 0.49 YES 

70000 0.39 0.42 YES 

100000 0 0.1 YES 

Table 27. Quantum shots time comparison of 4000 and 100000. 

Quantum Shots Average Time Time saving 

4000 0.388 
0.945 − 0.388

0.945
 × 100% ≈ 59% 

100000 0.945 - 

4.6.6. Testing of computation time 

The fifth test is the testing of the computation time of the two quantum algorithms. 

In this test, the quantum algorithms will be compared with the traditional basic 

method of finding the shortest path. The traditional basic uses the method of adding 

the path values in each layer simultaneously. The testing setup is by recording the 

computation time for multiple layers maze up to seven layers maze. The maze 

information will be the same when recording the computation time for the 

algorithms. For the testing, 1000 sets of maze samples have been generated for each 

layer maze. Therefore, a total of 7000 sets of maze samples have been used to 

investigate the computation time. 

Based on Tables 28 and 29 above, it can be observed that the traditional basic 

method has a lesser computation time compared to the quantum algorithms. 

However, the computation time for the basic method increases more exponentially 

after adding more layers. On the other hand, the increment of the quantum algorithms 
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is comparatively lesser. Eventually, the traditional basic method will catch up with 

the quantum algorithms method and requires comparable more computation time 

after that. Assume that the computation time growth is exponentially for all the 

methods; the exponential equation for both methods can be obtained using the graph 

trendline function from Microsoft Excel. The exponential equations are listed in 

Table 30 and plotted in Fig. 25. 

The trendline equations as recorded in Table 30 can be used to calculate the 

intersection point between the equations. The intersection point will be the point that 

the methods have the same computation time. The calculation will be done in two 

sections: ‘Basic vs Quantum’ and ‘Basic vs Improved Quantum’. 

Table 31 shows the number of layers for the basic classical method to catch up 

with the quantum algorithms. Therefore, when the number of layers maze reaches 

23 layers, the computation time for the basic method will catch up with the two 

quantum algorithms. For the layers maze after 23 layers, the computation time for 

the basic method will require more than the quantum algorithms. Thus, it can also 

be concluded that the quantum algorithms can be faster and win over the current 

traditional basic method after reaching certain layers maze. 

Table 28. Computation time for different algorithms. 

Number of 

Layers 

Computation Time (s) 

Quantum 
Improved 

Quantum 
Traditional Basic 

1-L 0.0168 0.0169 5.0 x 10-6 

2-L 0.0248 0.0251 8.506 x 10-6 

3-L 0.0327 0.0332 1.503 x 10-5 

4-L 0.0627 0.0643 4.318 x 10-5 

5-L 0.1039 0.1079 9.593 x 10-5 

6-L 0.1497 0.1586 3.456 x 10-4 

7-L 0.3607 0.3883 1.065 x 10-3 

Table 29. Increment of computation time for different algorithms. 

Number of 

Layers 

Computation Time (s) 

Quantum 
Improved 

Quantum 
Traditional Basic 

1-L - - - 

2-L 147 149 170 

3-L 132 132 177 

4-L 192 194 287 

5-L 166 168 222 

6-L 144 147 361 

7-L 241 245 308 

Average 170.33 172.5 254.17 

Table 30. Trendline equation for different algorithms. 

Algorithm Trendline Equation 

Basic 𝑦 = 1 × 10−6 𝑒0.9053𝑥 

Quantum 𝑦 = 0.0088 𝑒0.4983𝑥 

Improved Quantum 𝑦 = 0.0087 𝑒0.5097𝑥 
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Fig. 25. Computation time for different  

algorithms with exponential trendline equation. 

Table 31. Intersection points result from calculations. 

Algorithm Number of Layers to Overcome 

Basic & Quantum 23 

Basic & Improved Quantum 23 

4.6.7. Testing of compatibility with prototype for quantum algorithms 

The sixth test is the compatibility test with the prototype. The microprocessor of 

the prototype will run the two quantum algorithms. This test is set to check whether 

the quantum algorithms can control the prototype to move in the calculated shortest 

path route. 

For the testing, two actual mazes, as shown in Fig. 26, have been prepared. Each 

maze will be run 50 times by the ‘Quantum Algorithm’ prototype and 50 times by 

the ‘Improved Quantum Algorithm’ prototype. Therefore, it will contribute to 100 

testing samples for both quantum algorithms. The main task is to compare the 

calculated path by the algorithm to the final path by the prototype. If the calculated 

path and the final path are the same, the algorithms are proven to be compatible and 

usable for the prototype. For Maze 1, 50 times of ‘Quantum Algorithm’ calculated 

path are ‘10’. Fortunately, the prototype was also moved to the ‘10’ path 50 times. 

The same result has occurred for the ‘Improved Quantum Algorithm’.  

The ‘Improved Quantum Algorithm’ has calculated ‘10’ for 50 times, and the 

prototype has also moved to the ‘10’ path for the 50 times. For Maze 2, ‘, 50 times of 

Quantum Algorithm’ calculated path are varied from ‘001’, ‘011’, ‘101’ and ‘111’. 

Fortunately, the final path from the prototype was also moved to the same path 50 

times. For example, when the calculated path was ‘001’, the prototype was also 

moved to the ‘001’. On the other hand, the ‘Improved Quantum Algorithm’ has 

calculated a constant of ‘111’ for 50 times, and the prototype has also moved to the 

‘111’ path for the 50 times. Therefore, 100 samples for ‘Quantum Algorithm’ and 

100 samples for ‘Improved Quantum Algorithm’ has proven that the quantum 

algorithms can perfectly control the prototype. The prototype can understand the 

instruction from the quantum algorithms and move to the desired path in the actual 

maze. It has provided proof to show that quantum algorithms are capable of 

controlling the robots, similar to what the classical algorithms can do. 
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Fig. 26. Actual maze of maze 1 and maze 2 for testing. 

4.6.8. Summary 

In summary, six tests have been applied to quantum algorithms. The first outcome from 

the test is that the quantum algorithms have a higher shortest path accuracy than their 

classical version of the same approach for all kinds of inputs. Compared between the 

two quantum algorithms, the improved version wins over its original version at around 

10%. The second outcome from the test is that the path length differences in the layer 

will affect the shortest path accuracy. If the path length differences are higher, the 

quantum algorithms can produce a higher shortest path accuracy. The third outcome 

from the test is that the quantum shot value for the quantum algorithms can be set as 

4000. The Quantum shot value of 4000 is tested to be the starting point of the saturation 

point of the highest accuracy while requiring a lesser computation time comparing to 

the other values in saturation state. The fourth outcome from the test is that the quantum 

algorithms can win over the traditional basic classical way of solving the maze after 23 

layers. The fifth outcome from the test is that the quantum algorithm results are 

compatible with the robot. Besides the testing, other information such as time 

management and costing has also been discussed. 

5. Conclusion and Recommendation 

In conclusion, two quantum algorithms have been successfully developed in 

solving the shortest path of the maze. The algorithms were designed using the ratio-

based approach. Both algorithms can solve the maze and output the shortest path 

result. A system was additionally made to execute the algorithms smoothly. The 

robot was built by using the Raspberry Pi as the microprocessor. The quantum robot 

has been constructed by implementing or programming the quantum algorithms 

into the robot. The quantum algorithms were compatible with the robot as the robot 

can use the output result from the algorithms to move and solve the maze. Lastly, 

six tests had been performed on the system, including the navigation accuracy test 

and computation time test. The testing results were evaluated and analysed well. 

The navigation accuracy for the quantum algorithms was proven to outperform 

their classical version opponent. The navigation accuracy range for both quantum 

algorithms is falling on around 78% to 84%. On the other hand, the computation 
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time has been recorded. Both algorithms will outperform the traditional basic maze 

solving method after reaching a certain number of layers. 
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