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Abstract

In this paper, we present a technique for the effective fabrication of reduced
graphene oxide with nanostructured zirconia (rGO/ZrOz) composites using a
hydrothermal method. The objective this work was to provide simpler and efficient
method for the synthesis of rGO/ZrO, which highly required for industrial
applications. Powder X-ray diffraction (XRD), Fourier-transform infrared
spectroscopy (FTIR), scanning electron microscopy (SEM), and UV-visible
spectroscopy was used to characterize the obtained nano-hybrid structure materials.
These techniques confirmed the presence of rGO and the uniform distribution of
zirconia nanoparticles on graphene oxide sheets during synthesis. This has created
new opportunities and prospects for the use of this simple and low-cost technique
in the development of zirconia/graphene nanocomposite powders.
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1. Introduction

Development of zirconia (ZrOz) and zirconia-based ceramics have received
significant attentions as a potential material for various structural applications. The
physicochemical characteristics of the zirconia related with the thermal stability,
corrosion resistance and zero toxicity are the most acceptable considerations for
future applied fields. Furthermore, many modifications were attempted for
improving the performances [1-4].

The formation of composite with some other solid supports were reported, and
from various possible materials, the combination of zirconia with graphene and its
derived materials were reported to give significant improvements. The enhanced
performances related with mechanical, tribological, electrical, and thermal
properties was successfully obtained, and therefore, the graphene-reinforced
composites are got many attentions. In more technical studies, the various graphene
synthesis techniques and processing methods including the ceramic/graphene
composition, sintering methods and sintering variables were optimized [5-8].

The exploration on a homogeneous distributed graphene in the composite with
an optimum sintering is an interesting attention. Moreover, several methods for
preparing nanocrystalline zirconia-based nanocomposites have been proposed,
including the sol/gel method [9], the vapor phase method [10], pyrolysis [11], spray
pyrolysis [12], hydrolysis [13], and microwave plasma [14].

Some drawbacks of those methods are related with a high production costs and
poisonous constituents and by-products, causing the difficulties to scaling up.
Therefore, hydrothermal methods are mentioned as having great potential for
producing effectively isolated nanoparticles with a narrower size distribution [15].

Hence, the primary goal of this work is to (a) develop a simple and easy method
for synthesizing ZrO,/rGO nanocomposites, (b) examine their morphological and
chemical structures using powder X-ray diffraction (XRD), Fourier transform
infrared (FTIR), scanning electron microscopy (SEM), and Energy Dispersive X-
Ray Analysis (EDAX) techniques, and (c) optical properties.

2. Materials and Method
2.1. Materials

Chemicals utilized in this research consist of GO, ZrOCl;-8H,0, NzH4-H.0,
purchased from Merck (Germany). All chemicals are in analytical grade.

2.2.Preparation of ZrO,/rGO nanocomposite

The hydrothermal process was adapted for the synthesis of reduced graphene oxide-
nano zirconia (ZrO./rGO) composites. The GO suspension served as the rGO
precursor, N2Hs-H,O served as the reducing agent, and as ZrO, precursor,
ZrOCl3-8H,0 was used, respectively. Previously, the mixture of 20 mL of 0.01 M
ZrOCl; solution and 40 mL of colloidal suspension of GO was prepared, followed
by sonication for 30 min. Into the mixture, 1 mL of hydrazine hydrate was then
added and poured into a 200 mL stainless steel Teflon-lined autoclave. The
autoclave was kept at 180 °C for 18 h before was cooled at room temperature. The
obtained black products were centrifuged and repeatedly washed with ultrapure
water before being freeze-dried for 12 h.
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Figure 1 describes the schematic representation of the synthesis method.
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Fig. 1. Synthesis of ZrO./rGO nanocomposite.

2.3.Characterization of material

The characterization was conducted on Shimadzu X6000 X-ray diffraction (XRD),
Perkin-Elmer Fourier transform infrared (FTIR), and scanning electron microscopy-
Energy Dispersive X-Ray Analysis (EDAX) of Phenom-X. A Ni-filtered-Ka
(A=1.5406 A°) was utilized as radiation source in XRD analysis, meanwhile FTIR
analysis for was carried out over the spectral range of 400-4000 cm™.

3.Results and Discussion

The XRD patterns of the prepared rGO/ZrO; nanocomposite are shown in Fig. 2.
The reflection at about 25° represents a major (002) peak of rGO pattern, which
corresponding to an ordered crystalline structure as the result of GO sheets
reduction[16]. The crystal structure of ZrO. nanoparticles is tetragonal and
monoclinic but the former has the dominant position of relative intensity and
quantity. The rGO/ZrO, nanocomposite exhibits tetragonal peaks of rGO (002) and
ZrQy, indicating the presence of ZrO; nanoparticles over the rGO nanosheets.
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Fig. 2. XRD pattern of rGO/ZrO2 nanocomposite.
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Figure 3 depicts the use of an FTIR technique to determine the presence of
functional groups in rGO/ZrO, nanocomposite. Some characteristic bands are the
identification for the composite formation. The presence of C=0 functional group
was located at 1725 cm™! which specifically related with stretching frequency, and
it was shifted to 1745 cm™ in the ZrO,/rGO nanocomposite as the interaction of
C=0 group and Zr causing the increasing vibration energy [17]. The hydroxyl
functional groups are identified the vibrational spectra at 1465 and 1390 cm™,
which are assigned to the formation of either a monodentate or bidentate complex
coming from the interaction of Zr (IV) and the oxygen-containing groups of GO
[18-21]. The vibrational bands at 1684 and 472 cm™! can be assigned to the C=C
stretching mode and Zr-O vibration, respectively [22].

Furthermore, there is additional evidence to support the findings after the
various characterization techniques - the SEM images in Figs. 4(a)-(c) show the
rGO sheets and ZrO; nanoparticles. The ZrO,/fGO SEM image revealed a
homogeneous distribution of ZrO, nanoparticles that are dispersed onto a flat rGO
sheets. In addition, elemental analysis based on the EDX spectrum (Figs. 4 (d)-(h))
depicts the presence of Zr, C and O in nanocomposite suggested that ZrO,
nanoparticles were bonding on the graphene oxide surface.
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Fig. 3. FTIR spectrum of rGO/ZrO2 nanocomposite.
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Fig. 4. (a-c) SEM images and (d-h) EDX spectrum of rGO/ZrOz nanocomposite.
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Figure 5 depicts the UV-visible absorption spectrum of an rGO/ZrO;
nanocomposite. The peak at 232 nm is attributed to the aromatic carbon-carbon (C-
C) bonds = to n* (= —=*) transition. A broad peak centred at 232 nm was observed
in the rGO/ZrO, nanocomposite. As a result of the hydrothermal and chemical
reduction processes, the conjugation network of the rGO/ZrO, nanocomposite has
been partially restored.
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Fig. 5. UV absorption spectrum of rGO/ZrO2 nanocomposite.

The present study used a low-cost and simple hydrothermal synthesis technique
for the fabrication of ZrO,/rGO nanocomposites. XRD, FTIR, SEM, and UV
measurements were used to characterize the as-prepared nanocomposite. During
the hydrothermal reaction, zirconia nanoparticles were successfully bonded into the
reduced graphene oxide sheets, according to all characterizations. The SEM also
clearly demonstrated the uniform distribution of ZrO, nanoparticles that completely
covered the graphene oxide sheets.

4.Conclusions

The present study used a low-cost and simple hydrothermal synthesis technique for
the fabrication of ZrO,/rGO nanocomposites. XRD, FTIR, SEM, and UV
measurements were used to characterize the as-prepared nanocomposite. During
the hydrothermal reaction, zirconia nanoparticles were successfully bonded into the
reduced graphene oxide sheets, according to all characterizations. The SEM also
clearly demonstrated the uniform distribution of ZrO, nanoparticles that completely
covered the graphene oxide sheets.

Nomenclatures

Co Initial concentration
DE Degradation efficiency
D Crystallite size

K Diffraction factor

k Kinetics constant
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R? Determination coefficient
Greek Symbols

A wavelength

2] Diffraction angle

Abbreviations

FTIR Fourier-Transform Infra-Red

JCPDS Joint Committee of Pure Diffraction Spectra

SEM-EDX  Scanning Electron Microscope-Energy Dispersive x-ray Spectroscopy
uv Ultraviolet

XRD x-ray diffraction
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