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Abstract 

In this paper, we present a technique for the effective fabrication of reduced 

graphene oxide with nanostructured zirconia (rGO/ZrO2) composites using a 

hydrothermal method. The objective this work was to provide simpler and efficient 

method for the synthesis of rGO/ZrO2 which highly required for industrial 

applications. Powder X-ray diffraction (XRD), Fourier-transform infrared 

spectroscopy (FTIR), scanning electron microscopy (SEM), and UV-visible 

spectroscopy was used to characterize the obtained nano-hybrid structure materials. 

These techniques confirmed the presence of rGO and the uniform distribution of 

zirconia nanoparticles on graphene oxide sheets during synthesis. This has created 

new opportunities and prospects for the use of this simple and low-cost technique 

in the development of zirconia/graphene nanocomposite powders. 
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1.  Introduction 

Development of zirconia (ZrO2) and zirconia-based ceramics have received 

significant attentions as a potential material for various structural applications. The 

physicochemical characteristics of the zirconia related with the thermal stability, 

corrosion resistance and zero toxicity are the most acceptable considerations for 

future applied fields. Furthermore, many modifications were attempted for 

improving the performances [1-4].  

The formation of composite with some other solid supports were reported, and 

from various possible materials, the combination of zirconia with graphene and its 

derived materials were reported to give significant improvements. The enhanced 

performances related with mechanical, tribological, electrical, and thermal 

properties was successfully obtained, and therefore, the graphene-reinforced 

composites are got many attentions. In more technical studies, the various graphene 

synthesis techniques and processing methods including the ceramic/graphene 

composition, sintering methods and sintering variables were optimized [5-8].  

The exploration on a homogeneous distributed graphene in the composite with 

an optimum sintering is an interesting attention. Moreover, several methods for 

preparing nanocrystalline zirconia-based nanocomposites have been proposed, 

including the sol/gel method [9], the vapor phase method [10], pyrolysis [11], spray 

pyrolysis [12], hydrolysis [13], and microwave plasma [14].  

Some drawbacks of those methods are related with a high production costs and 

poisonous constituents and by-products, causing the difficulties to scaling up. 

Therefore, hydrothermal methods are mentioned as having great potential for 

producing effectively isolated nanoparticles with a narrower size distribution [15]. 

Hence, the primary goal of this work is to (a) develop a simple and easy method 

for synthesizing ZrO2/rGO nanocomposites, (b) examine their morphological and 

chemical structures using powder X-ray diffraction (XRD), Fourier transform 

infrared (FTIR), scanning electron microscopy (SEM), and Energy Dispersive X-

Ray Analysis (EDAX) techniques, and (c) optical properties. 

2. Materials and Method 

2.1. Materials 

Chemicals utilized in this research consist of GO, ZrOCl2·8H2O, N2H4·H2O, 

purchased from Merck (Germany). All chemicals are in analytical grade.  

2.2. Preparation of ZrO2/rGO nanocomposite 

The hydrothermal process was adapted for the synthesis of reduced graphene oxide-

nano zirconia (ZrO2/rGO) composites. The GO suspension served as the rGO 

precursor, N2H4·H2O served as the reducing agent, and as ZrO2 precursor, 

ZrOCl2·8H2O was used, respectively. Previously, the mixture of 20 mL of 0.01 M 

ZrOCl2 solution and 40 mL of colloidal suspension of GO was prepared, followed 

by sonication for 30 min. Into the mixture, 1 mL of hydrazine hydrate was then 

added and poured into a 200 mL stainless steel Teflon-lined autoclave. The 

autoclave was kept at 180 °C for 18 h before was cooled at room temperature. The 

obtained black products were centrifuged and repeatedly washed with ultrapure 

water before being freeze-dried for 12 h. 
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Figure 1 describes the schematic representation of the synthesis method. 

 

Fig. 1. Synthesis of ZrO2/rGO nanocomposite. 

2.3. Characterization of material 

The characterization was conducted on Shimadzu X6000 X-ray diffraction (XRD), 

Perkin-Elmer Fourier transform infrared (FTIR), and scanning electron microscopy-

Energy Dispersive X-Ray Analysis (EDAX) of Phenom-X. A Ni-filtered-Kα  

(λ = 1.5406 A°) was utilized as radiation source in XRD analysis, meanwhile  FTIR 

analysis for was carried out over the spectral range of 400-4000 cm-1. 

3. Results and Discussion 

The XRD patterns of the prepared rGO/ZrO2 nanocomposite are shown in Fig. 2. 

The reflection at about 25o represents a major (002) peak of rGO pattern, which 

corresponding to an ordered crystalline structure as the result of GO sheets 

reduction[16]. The crystal structure of ZrO2 nanoparticles is tetragonal and 

monoclinic but the former has the dominant position of relative intensity and 

quantity. The rGO/ZrO2 nanocomposite exhibits tetragonal peaks of rGO (002) and 

ZrO2, indicating the presence of ZrO2 nanoparticles over the rGO nanosheets.  

 
Fig. 2. XRD pattern of rGO/ZrO2 nanocomposite. 
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Figure 3 depicts the use of an FTIR technique to determine the presence of 

functional groups in rGO/ZrO2 nanocomposite. Some characteristic bands are the 

identification for the composite formation. The presence of C=O functional group 

was located at 1725 cm−1 which specifically related with stretching frequency, and 

it was shifted to 1745 cm-1 in the ZrO2/rGO nanocomposite as the interaction of 

C=O group and Zr causing the increasing vibration energy [17]. The hydroxyl 

functional groups are identified the vibrational spectra at 1465 and 1390 cm-1, 

which are assigned to the formation of either a monodentate or bidentate complex 

coming from the interaction of Zr (IV) and the oxygen-containing groups of GO 

[18-21]. The vibrational bands at 1684 and 472 cm−1 can be assigned to the C=C 

stretching mode and Zr-O vibration, respectively [22].  

Furthermore, there is additional evidence to support the findings after the 

various characterization techniques - the SEM images in Figs. 4(a)-(c) show the 

rGO sheets and ZrO2 nanoparticles. The ZrO2/rGO SEM image revealed a 

homogeneous distribution of ZrO2 nanoparticles that are dispersed onto a flat rGO 

sheets.  In addition, elemental analysis based on the EDX spectrum (Figs. 4 (d)-(h)) 

depicts the presence of Zr, C and O in nanocomposite suggested that ZrO2 

nanoparticles were bonding on the graphene oxide surface.  

 
Fig. 3. FTIR spectrum  of rGO/ZrO2 nanocomposite. 

 
Fig. 4. (a-c) SEM images and  (d-h) EDX spectrum  of rGO/ZrO2 nanocomposite. 
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Figure 5 depicts the UV-visible absorption spectrum of an rGO/ZrO2 

nanocomposite. The peak at 232 nm is attributed to the aromatic carbon-carbon (C-

C) bonds π to π* (π →π*) transition. A broad peak centred at 232 nm was observed 

in the rGO/ZrO2 nanocomposite. As a result of the hydrothermal and chemical 

reduction processes, the conjugation network of the rGO/ZrO2 nanocomposite has 

been partially restored. 

 
Fig. 5. UV absorption spectrum of rGO/ZrO2 nanocomposite. 

The present study used a low-cost and simple hydrothermal synthesis technique 

for the fabrication of ZrO2/rGO nanocomposites. XRD, FTIR, SEM, and UV 

measurements were used to characterize the as-prepared nanocomposite. During 

the hydrothermal reaction, zirconia nanoparticles were successfully bonded into the 

reduced graphene oxide sheets, according to all characterizations. The SEM also 

clearly demonstrated the uniform distribution of ZrO2 nanoparticles that completely 

covered the graphene oxide sheets. 

4. Conclusions  

The present study used a low-cost and simple hydrothermal synthesis technique for 

the fabrication of ZrO2/rGO nanocomposites. XRD, FTIR, SEM, and UV 

measurements were used to characterize the as-prepared nanocomposite. During 

the hydrothermal reaction, zirconia nanoparticles were successfully bonded into the 

reduced graphene oxide sheets, according to all characterizations. The SEM also 

clearly demonstrated the uniform distribution of ZrO2 nanoparticles that completely 

covered the graphene oxide sheets. 

Nomenclatures 
 

Co Initial concentration 

DE Degradation efficiency 

D Crystallite size 

K Diffraction factor 
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R2 Determination coefficient 
 

Greek Symbols 

 wavelength 

q Diffraction angle  
 

Abbreviations 

FTIR Fourier-Transform Infra-Red 

JCPDS Joint Committee of Pure Diffraction Spectra 

SEM-EDX Scanning Electron Microscope-Energy Dispersive x-ray Spectroscopy  

UV Ultraviolet 

XRD x-ray diffraction 
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