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Abstract 

This article explains how the magnetometer sensor determines the velocity 

and acceleration of objects moving in a straight line. Data retrieval using 

experimental devices consisting of tracks, magnetic stones, DC motors, 

smartphones, Phyphox software, trolleys, and rulers. The magnetometer 

sensor measures the magnetic field strength at every point the object passes. 

Measurements were repeated five times to obtain more accurate data. Data 

analysis was performed using Microsoft Office Excel. The results indicated 

the magnetometer sensor with Phyphox software could accurately measure the 

magnetic field along the track, enabling the results to be used as a reference 

for determining the exact position and time.  
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1. Introduction 

Practicum-based learning is required to provide opportunities for students to find 

and apply concepts by observation [1]. Practicum prepares students to face real-

world conditions in the industrial world [2-5], especially in the current Industrial 

Revolution 4.0 [6, 7]. Thus, it is necessary to create a curriculum for practicums 

that aligns with the student’s needs [8-11]. Many reports have been on using 

technology in practicums [12-18].  

In straight motion practicum, several difficulties generally arise, such as 

measuring the position of objects with high accuracy, measuring the time 

accurately, or objects used to move at always changing and difficult to control. 

Thus, calculating the average velocity or acceleration will be more complicated. 

One alternative that can help overcome this problem is to use technology [19], such 

as the virtual laboratory [20]. Many papers regarding this matter have been reported 

[21-28]. Although a virtual laboratory can present more accurate measurement 

results and help students understand physics concepts, this virtual laboratory still 

has limitations, especially in supporting the development of students’ physical 

skills [29, 30]. A practicum design is needed and can be practiced in real terms. 

Accurate measurement of position and time in straight motion practicum can be 

done using a sensor. This measurement is important and has been one of the 

important subjects [31-33]. One of the sensors is the magnetometer sensor 

contained in the smartphone. Every smartphone has been designed to run sensors 

in various experiments, especially physics experiments [34]. Smartphones are 

powerful gadgets offering many possibilities for school use [35], especially in 

physics teaching; they can be seen as a multiple measurement tool, disposable every 

time and everywhere [36, 37].  

One of the smartphone applications as a magnetometer sensor is Phyphox [38] 

which can accurately measure various physical parameters such as acceleration, 

angular acceleration, magnetic field, light intensity, sound, etc. It is also an 

effective tool for practical experiments to enhance students' interest [39]. This 

sensor can automatically set the time. The measurement results can be visualized 

in the form of curves, graphs, or tables. Therefore, it provides a solution to address 

accuracy issues in measuring time and position, especially in straight-line motion 

experiments. The concept of a magnetometer has been well-documented [40-42]. 

Subsequently, to address the issue of controlling the movement of difficult-to-

manage objects, a DC motor is employed. This DC motor is designed to produce a 

constant rotation to pull objects, enabling them to move at a constant velocity. Thus, 

it is necessary to test the use of the magnetometer sensor using the Phyphox 

application to measure the magnetic field through which objects pass. The magnetic 

field measurement results accurately determine objects’ position and time, 

confirming the velocity and acceleration of objects moving in a straight line. This 

study aims to determine the velocity of an object moving in a straight line and the 

acceleration of an object moving in a straight line changes regularly. 

2. Methods 

This physics experiment used tools and materials like tracks, rulers, smartphones, 

trolleys, DC motors, magnets, and Phyphox software as magnetometer sensors. The 

tools and materials are assembled (see Fig. 1). The experiment was carried out in 
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two activities: 1) object motion at a constant velocity and 2) object motion at a 

constant velocity. This experiment considered an object in a smartphone. 

 

Fig 1. Schematic of experimental tools. 

This smartphone functions as a magnetometer sensor. The magnetometer sensor 

uses Phyphox software. The smartphone is mounted on a trolley connected to a DC 

motor via a rope. DC motor regulates objects' velocity of motion (smartphones). 

When the trolley is moved, the object will pass through the track paired with a 

magnetic stone. The magnetic stone is installed at positions x1, x2, x3, x4, x5, x6, and 

x7 (see Fig. 1). The magnetometer sensor on the smartphone will enumerate the 

magnitude of the magnetic field at any time along the trajectory traversed. The 

distance between the magnetic stones is 15 cm. Data collection on each activity is 

carried out repeatedly five times. In measuring the motion of objects at a constant 

velocity, the DC motor is turned on to control. Thus, the object's velocity is 

constant. At the same time, measurements in the motion of objects with constant 

acceleration do not use DC motors. To move the trolley, the track is tilted 15 

degrees. The track length used is about 100 cm. The measurement data from the 

magnetometer sensor in text files was analysed using MS Office Excel. The results 

of the analysis are displayed in the form of tables, curves, or graphs. The results are 

used to interpret the motion of objects with constant velocity and objects with 

constant acceleration. 

3. Results and Discussion 

Experiments were conducted to determine the velocity of an object moving straight 

regularly and the acceleration of objects moving straight changes regularly using a 

magnetometer sensor with a Phyphox application. Compared to conventional 

methods, the sensor is more thorough in measuring time. The magnetometer sensor 

can record up to 50 data/s.  The results of measuring the strength of the magnetic 

field at any time in the motion of objects with a constant velocity are given in Fig. 

2. In contrast, the motion of objects with constant acceleration is given in Fig. 3. 

Figures 2 and 3 depict the relationship between the magnetic field (B) and time (t). 

At times t1, t2, t3, t4, t5, t6, and t7, the sensor counts the maximum value of the 

magnetic field. 

3.1. The motion of objects at a constant velocity 

The results of magnetic field measurements using the magnetometer sensor are then 

used to determine the position of x1, x2, x3, x4, x5, x6, x7, and time t1, t2, t3, t4, t5, t6, 

and t7. The tabulated results are given in Table 1. The relationship between position 

and time based on Table 1 is shown in Fig. 4. The relationship between position 

and time is directly proportional to the equation of Y = 17.62X - 168.73 with R2 = 

0.9997. Because the variable on the x-axis is time t, and the y-axis is position x, the 

line equation becomes x = 17.62t - 168.73, with x (cm) and t (seconds). The x = 

17.62t - 168.73 is identical to the x = x0 + vt equation. The equation x = x0 + vt is 
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an equation of motion with a constant velocity v.  The slope of the line of the linear 

equation on the position-to-time relationship is the velocity of a constant-valued 

body. Thus, based on the equation x = 17.62t - 168.73, the velocity v is 17.62 cm/s. 

This velocity v is constant, or the object moves at a constant velocity. Objects 

moving at a constant velocity are called regular straight-moving objects. 

 

Fig. 2. The magnetic field vs. time for an object moving at a constant velocity. 

 

Fig. 3. The magnetic field vs. time for an object at a constant acceleration. 

Table 1. Magnetic field, time, and position of objects at a constant velocity. 

No. Time (s) Magnetic field (µT) Position (cm) 

1 t1 = 9.62 175.24 x1 = 0 

2 t2 =10.41 202.56 x2 = 15 

3 t3 =11.23 226.34 x3 = 30 

4 t4 =12.15 327.82 x4 = 45 

5 t5 = 12.97 280.34 x5 = 60 

6 t6 = 13.82 276.21 x6 = 75 

7 t7 = 14.71 290.23 x7 = 90 

 

Fig. 4. Position vs. time when velocity is a constant. 
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Magnetic field strength measurements in this experiment were repeated five 

times to obtain more accurate data. The results of these measurements are then 

analysed, and each measurement’s velocity is obtained, as in Table 2. The object’s 

average velocity is |17.64 ± 0.04| cm/s with a relative uncertainty of 0.22%, 

indicating the accuracy of measuring the determination of the velocity of objects is 

very high. Thus, using magnetometer sensors with Phyphox software is feasible for 

straight-motion experiments with constant velocity. 

Table 2. The results of the velocity analysis on each measurement. 

Measurement  Velocity (cm/s) δ R2 

1 17.62 0.02 0.9997 

2 17.68 0.04 0.9754 

3 17.65 0.01 0.9991 

4 17.68 0.04 0.9834 

5 17.61 0.03 0.9732 

Average 17.64 - - 

3.2. The motion of objects with constant acceleration 

The results of magnetic field measurements using the magnetometer sensor are then 

used to determine the position of x1, x2, x3, x4, x5, x6, x7, and time t1, t2, t3, t4, t5, t6, 

and t7. The tabulated results are given in Table 3. The relationship between position 

and time based on Table 3 is given in Fig. 5.  

The relationship between position and time in a curve is in line with y = 

6.6296x2 - 196.15x + 1449.1 and R2 = 0.9988. Because the variable on the x-axis is 

time t, and the y-axis is position x, the line equation becomes x = 6.6296t2 - 196.15t 

+ 1449.1, x (cm) and t (seconds). The equation x = 6.6296t2 - 196.15t + 1449.1 is 

identical to the equation x = x0 + v0t + 1/2 at2.  

The equation x = x0 + v0t + 1/2 at2 is an equation of motion with a constant 

acceleration a. Figure 5 is a straight motion curve with a constant acceleration. 

Thus, according to equation x = 6.6296t2 - 196.15t + 1449.1, acceleration a is 13.26 

cm/s2. Because the acceleration of an object is constant, the velocity of the object 

changes regularly.  

The motion of an object in a straight line with constant acceleration is uniformly 

accelerated rectilinear motion. This method of analysis requires interpretive skills. 

The ability to interpret curves is an important skill in many fields, especially 

academia, business, science, and media [43].  

Curve interpretation involves understanding and conveying information 

presented in specific forms, such as bar, pie, and line charts [44]. Therefore, this 

ability needs to be trained in learning through practicum activities in the laboratory 

[45]. Magnetic field strength measurements in this experiment were repeated 5 

times to obtain more accurate data.  

The results of these measurements are then analysed, and each measurement's 

acceleration is obtained as in Table 4. The average acceleration of the object is 

|13.14 ± 0.17| cm/s2 with a relative uncertainty of 1.29%, indicating the accuracy 

of measurements using magnetometer sensors to determine the acceleration of 

objects is very high. Thus, a magnetometer sensor with Phyphox is suitable for 

straight-motion experiments. 
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Table 3. Magnetic field, time, and position  

of objects at a constant acceleration. 

No Time (s) Magnetic field (µT) Position (cm) 

1 t1 = 15.32 213.14 x1 = 0 

2 t2 = 16.41 152.63 x2 = 15 

3 t3 = 16.97 165.23 x3 = 30 

4 t4 = 17.48 176.32 x4 = 45 

5 t5 = 17.90 140.71 x5 = 60 

6 t6 = 18.23 181.04 x6 = 75 

7 t7 = 18.49 145.57 x7 = 90 

 

Fig. 5. Distance vs. time when acceleration is a constant. 

Table 4. The results of the acceleration analysis on each measurement. 

Measurement Acceleration (cm/s2) δ R2 

1 13.26 0.12 0.9988 

2 13.17 0.03 0.9956 

3 13.02 0.12 0.9921 

4 12.97 0.17 0.9827 

5 13.29 0.15 0.9936 

Average 13.14 - - 

4. Conclusion 

The results indicated the magnetometer sensor with Phyphox accurately measured 

the magnetic field along the track, enabling the results to be used to determine the 

exact position and time. The object moves straight at a constant velocity of |17.64 

± 0.04| cm/s and a constant acceleration of |13.14 ± 0.17| cm/s2. 
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