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Abstract 

Conventional turbines encounter limitations for low-speed flows. To overcome 
these challenges, have proposed employing the Flow-Induced Vibration (FIV) to 
induce oscillations in a cylinder exposed to fluid flow. This research aims to 
numerically examine the impact of Reynolds number (Re), reduced velocity, and 
damping ratio on the behaviour of a system that uses vibration energy harvesting 
(VEH) to capture low-speed flow kinetic energy. The research focuses on 
Reynolds number values ranging from 100 to 500, the reduced velocity (𝑈𝑈𝑅𝑅) 
ranging from 1.0 to 15.0, and three distinct damping ratios (𝜁𝜁) at 0.05, 0.1, and 
0.5. The simulation was performed utilising in-house numerical code based on 
the finite volume method, while the structural dynamics were solved using the 
Dormand-Prince method. The Direct Forcing Immersed Boundary method was 
employed to handle the no-slip boundary condition and calculate the force 
exerted on the cylinder. The research shows that when the Reynolds number 
increases, the cylinder's non-dimensional displacement increases, indicating a 
more intense fluid flow. As Reynolds number increases, so do the cylinder 
motion's fundamental frequencies. The analysis suggests that cylinder 
displacement rises with increasing Reynolds numbers, except at 400. Higher 
Reynolds numbers amplify displacement and advance the cylinder's fundamental 
frequency of motion. The displacement's root mean square grows with reduced 
velocity until it peaks. The peak is influenced by the damping ratio. At a damping 
ratio of 0.1, the peak yielding the highest peak value. The average potential 
generated power increases with the reduced velocity but varies, particularly at a 
damping ratio of 0.5. 

Keywords:  Direct forcing immersed boundary, Flow-induced vibration, Low-
speed flow, Potential generated power, Vibration energy harvesting.  
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1.  Introduction 
The energy that exists in the environment and nature is not fully transformed into 
usable energy. One example is the underutilised potential of kinetic energy in motor 
vehicles. The prospect of transforming this kinetic energy into usable energy 
sources has been discovered in research by Pan et al. [1]. The vibration energy 
produced by the dynamics of automobiles can potentially be harvested and used as 
a source of energy. Research by An-Nizhami et al. [2] explores the use of this 
vibration energy and its significance in producing electricity to increase the 
efficiency of electric cars.  

Another overlooked energy source is the energy contained in ocean waves. 
Helpful information on harnessing ocean wave energy for power production can be 
found in the studies by An-Nizhami and Riadini [3] and Lin and Zhang [4]. Solar 
energy is another potential energy source. According to research by Sardini and 
Serpelloni [5], there are several ways to gather solar energy and transform it into a 
source of usable energy to meet everyday demands.  

Wasted thermal energy presents another option for energy harvesting. 
According to a study by Sebald et al. [6], many techniques can be utilised to capture 
and utilise wasted thermal energy, including energy regeneration systems and 
thermal energy collector technologies. Investigating these potentials and 
developing efficient strategies for converting these energies into usable and 
sustainable sources would require more research and development. This enable the 
use of already available energy sources to be maximised. 

Water and wind turbines are currently the most widely employed technology in 
sustainable energy production. These turbines have a speed range of 1.5 to 5 m/s. 
However, most river and wind flows occur at velocities between 0.3 and 1.0 m/s. 
This presents a significant challenge to extracting kinetic energy from low-speed 
flows using conventional turbines.  

In order to solve this issue, researchers have proposed a method that uses the 
Flow-Induced Vibration (FIV) phenomenon. When a cross-flow passes a cylinder, 
an "FIV" vibration phenomenon occurs. Throughout the process, the surface of the 
cylinder experiences alternating stresses from the fluid flow, which causes the solid 
structure to oscillate. 

Vibration energy harvesting (VEH) technologies can close the gap in generating 
low-speed flow kinetic energy by employing the FIV. The VEH converter can 
effectively capture the energy coming from low-speed water flows, which was 
previously challenging to harness. VEH devices are capable of converting various 
vibration sources into electricity using a variety of different mechanisms.  

With the help of an electromagnetic interaction between the magnetic field and 
the induction coil, mechanical energy from vibrations may be converted into 
electricity using the method known as the electromagnetic mechanism [7-9]. 
Vibration energy harvesting has also made great use of the piezoelectric 
mechanism. This mechanism uses piezoelectric materials' capability to produce 
electricity when subjected to mechanical stress [10-12]. 

A parametric analysis of energy extraction from Vortex-Induced Vibration 
(VIV) phenomena was conducted by Barrero-Gil et al. [13]. The primary purpose 
was to examine how tuning factors affected the effectiveness of energy extraction 
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using VIV. Mass ratio, mechanical damping coefficient, and Reynolds number 
were among the variables studied. The maximum efficiency for given mass ratios 
and specific flow velocity ranges were significant findings. The investigation 
showed that the mass-damping parameter had an impact on efficiency, with higher 
Reynolds numbers generally resulting in better efficiency. 

Wang et al. [14] studied energy harvesting that requires the application of 
synchronisation in VIV phenomena. The relationship between voltage output and 
vibration amplitude was described using theoretical models and numerical 
simulations. Under synchronisation, the findings revealed large amplitudes and 
voltages, with a maximum voltage of 8.42 Volts at a reduced velocity, 𝑈𝑈𝑅𝑅, of 5.6.  

Zhang et al. [15] investigated FIV numerically using two square-shaped cylinders 
that were interconnected in a straight line. The findings revealed that mild lock-in 
occurrences occurred in every instance. At 𝐿𝐿/𝐷𝐷 = 2.0 , all flow configurations 
displayed a "2S" or two single vortex modes, and the dynamic response was less than 
that of a stationary cylinder. The oscillation amplitude increased significantly at 
𝐿𝐿/𝐷𝐷 =  6.0 due to the interaction between the flow and the cylinders. 

Several studies have investigated the FIV implementation for energy 
harvesting. However, the study of the effect of the combination of Reynolds 
number and damping ratio for harnessing the energy of circular cylinders is largely 
unaddressed. In this study, we aim to investigate the effects of Reynolds number 
(𝑅𝑅𝑅𝑅 = 𝜌𝜌𝑈𝑈∞𝐷𝐷/𝜇𝜇), reduced velocity (𝑈𝑈𝑅𝑅 = 𝑈𝑈∞/𝑓𝑓𝑛𝑛𝐷𝐷), and damping ratio (𝜁𝜁) on the 
behaviour of a specific system. This study focused on a wide range of Reynolds 
numbers, spanning from 100 to 500. Additionally, we varied the reduced velocity 
within the range of 1.0 to 15.0.  

Finally, three different damping ratios, namely 0.05, 0.1, and 0.5, were utilised 
in our investigations. By conducting numerical investigations and analysing the 
resulting data, we aim to gain a comprehensive understanding of how these 
parameters interact and influence the system's dynamics. The outcomes of this 
research would contribute to the existing body of knowledge in the field and 
potentially lead to practical applications of VEH.  

2. Methods  

2.1.  Numerical method 
The approach detailed in this section was executed through the utilisation of a 
numerical code built on the Fortran programming language. This code was 
specifically built to solve both fluid flow and structural dynamic motion. The code 
is composed of three essential components: pre-processing, solver, and post-
processing. These components were compiled into a single program capable of 
generating a mesh during the pre-processing stage, solving fluid and structural 
dynamic problems during the solver phase, and ultimately saving the obtained 
results into files during the post-processing phase.  

A fundamental equation that is utilised to guarantee that mass is conserved is 
the continuity equation. In a two-dimensional domain, the continuity equation for 
incompressible fluids is mathematically represented as Eq. (1). 

𝛻𝛻 ∙ 𝑢𝑢 = 0                                                                                                                               (1) 
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The momentum equation is a fundamental equation that is used to ensure that 
the momentum of a fluid is conserved. In the context of Eulerian grid-based 
computations, where incompressibility is assumed, the momentum equation is 
written as Eq. (2). 
𝜕𝜕𝑢𝑢
𝜕𝜕𝜕𝜕

+ (𝑢𝑢 ∙ 𝛻𝛻)𝑢𝑢 = −𝛻𝛻𝛻𝛻
𝜌𝜌

+ 1
𝑅𝑅𝑅𝑅
𝛻𝛻2𝑢𝑢 + 𝑓𝑓                                                                               (2) 

In order to obtain the initial acceleration for the first intermediate velocity, it is 
necessary to combine the convective and diffusive terms in the momentum equation. 
This can be done by making a summation of the terms according to Eq. (3). 
𝜕𝜕𝑢𝑢∗

𝜕𝜕𝜕𝜕
= −(𝑢𝑢 ∙ 𝛻𝛻)𝑢𝑢 + 1

𝑅𝑅𝑅𝑅
𝛻𝛻2𝑢𝑢                                                                                                (3) 

In order to obtain the first intermediate velocity, a temporal integration is 
implemented in Eq. (3), explicitly employing the third-order Adams-Bashforth 
scheme as specified in Eq. (4). 

𝑢𝑢∗ = 𝑢𝑢𝑛𝑛 + ∆𝑡𝑡 �23
12

 𝑎𝑎𝑛𝑛 − 16
12
𝑎𝑎𝑛𝑛−1 + 5

12
𝑎𝑎𝑛𝑛−2�                                                                 (4) 

In the context provided, the temporal increment, Δt, is employed in the calculation 
of the first intermediate velocity (𝑢𝑢∗ ). This calculation encompasses the rate of 
change of 𝑢𝑢∗ at the current time step (𝑎𝑎𝑛𝑛), the previous time step (𝑎𝑎𝑛𝑛−1), and the time 
step before that (𝑎𝑎𝑛𝑛−2). However, the first intermediate velocity does not yet fulfil 
the condition of being divergence-free. Therefore, to obtain the second intermediate 
velocity, the Poisson equation denoted in Eq. (5) is used to obtain the pressure. 
𝛻𝛻∙𝑢𝑢∗

∆𝑡𝑡
= 𝛻𝛻2𝑝𝑝𝑡𝑡+1

𝜌𝜌
                                                                                                                         (5) 

The determination of the second intermediate velocity, 𝑢𝑢∗∗ , is achieved by 
utilising Eq. (6). 

𝑢𝑢∗∗ = 𝑢𝑢∗ − ∆𝑡𝑡
𝜌𝜌
𝛻𝛻𝛻𝛻                                                                                                                 (6) 

After solving Eq. (6), with the use of the Direct Forcing Immersed Boundary 
(DFIB) method the subsequent velocity at the next time step, 𝑢𝑢𝑡𝑡+1, can be obtained 
by incorporating a virtual force term, as depicted in Fig. 1. This is accomplished by 
employing Eq. (7) in the momentum equation. 

𝑓𝑓𝑡𝑡+1 = 𝜂𝜂 𝑢𝑢𝑠𝑠−𝑢𝑢
∗∗

∆𝑡𝑡
                                                                                                                  (7) 

 
Fig. 1. Discrete cell of the DFIB method on a cartesian mesh. 
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In the context of the DFIB method, the quantity 𝑓𝑓𝑡𝑡+1  represents the virtual 
force, which is added to the momentum equation to account for the effects of the 
numerical forcing term. The solid-body velocity vector, 𝑢𝑢𝑠𝑠, denotes the velocity of 
the solid boundary within the fluid domain, and the solid-body function, η, indicates 
whether a given point is in a solid or a fluid region. The velocity 𝑢𝑢∗∗ is updated to 
𝑢𝑢𝑡𝑡+1 by employing Eq. (8), which describes the incorporation of the virtual force 
into the momentum equation. 

𝑢𝑢𝑡𝑡+1 = 𝑢𝑢∗∗ + ∆𝑡𝑡𝑓𝑓𝑡𝑡+1                                                                                                        (8) 

The transverse motion of the cylinders is governed by a distinct differential 
equation. This equation is given in Eq. (9) [16], which captures the dynamic 
behaviour of the cylinders. The equation is implemented after the fluid 
simulation is finished. 

𝑦̈𝑦 +
4𝜋𝜋𝜋𝜋
𝑈𝑈𝑅𝑅

𝑦̇𝑦 +
4𝜋𝜋2

(𝑈𝑈𝑅𝑅)2 𝑦𝑦 =
2𝐶𝐶𝐿𝐿
𝜋𝜋 𝑚𝑚∗                                                                                         (9) 

The lift force coefficient, 𝐶𝐶𝐿𝐿, represents the non-dimensional lift force which is 
described as Eqs. (10) and (11). 

𝐹𝐹𝑦𝑦 = ∭𝑓𝑓𝑦𝑦𝑑𝑑𝑑𝑑                                                                                                                    (10) 

𝐶𝐶𝐿𝐿 = 2𝐹𝐹𝑦𝑦
𝜌𝜌𝑈𝑈∞2 𝐷𝐷

                                                                                                                          (11) 

The temporal integration to obtain velocity and displacement of the cylinder, 
the Dormand-Prince method [17] is implemented. By employing the Dormand-
Prince method, the function evaluation of each stage is calculated based on 
formulae represented by a group of equations in Eq. (12). 

𝑘𝑘1 = ∆𝑡𝑡 𝑓𝑓(𝑡𝑡, 𝑦̇𝑦) 

𝑘𝑘2 = ∆𝑡𝑡 𝑓𝑓 �𝑡𝑡 +
1
5∆𝑡𝑡, 𝑦̇𝑦 +

1
5 𝑘𝑘1� 

𝑘𝑘3 = ∆𝑡𝑡 𝑓𝑓 �𝑡𝑡 +
3

10∆𝑡𝑡, 𝑦̇𝑦 +
3

40 𝑘𝑘1 +
9

40 𝑘𝑘2� 

𝑘𝑘4 = ∆𝑡𝑡 𝑓𝑓 �𝑡𝑡 + 4
5
∆𝑡𝑡, 𝑦̇𝑦 + 44

45
𝑘𝑘1 −

56
15
𝑘𝑘2 + 32

9
𝑘𝑘3�                                                        (12) 

𝑘𝑘5 = ∆𝑡𝑡 𝑓𝑓 �𝑡𝑡 +
8
9∆𝑡𝑡, 𝑦̇𝑦 +

19372
6561 𝑘𝑘1 −

25360
2187 𝑘𝑘2 +

64448
6561 𝑘𝑘3 −

212
729𝑘𝑘4� 

𝑘𝑘6 = ∆𝑡𝑡 𝑓𝑓 �𝑡𝑡 + ∆𝑡𝑡, 𝑦̇𝑦 +
9017
3168𝑘𝑘1 −

355
33 𝑘𝑘2 +

46732
5247 𝑘𝑘3 +

49
176𝑘𝑘4 −

5103
18656𝑘𝑘5� 

𝑘𝑘7 = ∆𝑡𝑡 𝑓𝑓 �𝑡𝑡 + ∆𝑡𝑡, 𝑦̇𝑦 +
35

384𝑘𝑘1 +
500

1113𝑘𝑘3 +
125
192𝑘𝑘4 −

2187
6784𝑘𝑘5 +

11
84 𝑘𝑘6� 

𝑦𝑦𝑛𝑛+1 = 𝑦𝑦𝑛𝑛 +
35

384𝑘𝑘1 +
500

1113𝑘𝑘3 +
125
192𝑘𝑘4 −

2187
6784𝑘𝑘5 +

11
84𝑘𝑘6 

The potential of extracted power is equivalent to the rate change of dissipated 
energy on the Power Take Off (PTO) system. The non-dimensional extracted 
power is given by Eq. (13) according to Soti et al. [16]. 

𝑃𝑃 = 2𝜋𝜋2𝑚𝑚∗𝜁𝜁
𝑈𝑈𝑅𝑅

𝑦̇𝑦2                                                                                                                   (13) 
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2.2. Computational domain 
Figure 2 shows the size of the computational domain used in the simulation of the 
flow around a circular cylinder. The domain is rectangular, with dimensions of 40 
D × 20 D, where D is the diameter of the cylinder. The cylinder is located at 15 D 
from the left boundary of the domain, and the flow is simulated in two dimensions. 
The figure represents the location of the computational domain. The domain is 
located in a region where the flow is relatively uniform. 

 
Fig. 2. Computational domain of the numerical study. 

An axisymmetric boundary condition was applied to both the upper and lower sides 
of the computational domain. To ensure a robust representation of the flow dynamics, 
we employed the Dirichlet-velocity boundary condition along the left side of the 
domain, designated as the inlet boundary, complete with predetermined values tailored 
to the specific requirements of our simulation. On the right side of the domain, we 
established an open boundary condition, designating it as the outlet boundary. 

The computational domain transformed into a non-uniform Cartesian staggered 
mesh. The Direct Forcing Immersed Boundary (DFIB) method was adeptly 
incorporated into the governing equation to ensure that the fluid adheres to the no-
slip boundary condition, facilitating an accurate representation of the physical 
system's behaviour. This meshing strategy is illustrated in Fig. 3, showcasing the 
generated mesh that forms the foundation of our computational analysis. 

 
Fig. 3. Non-uniform cartesian mesh with DFIB implementation. 
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3. Results and Discussions 

3.1. Mesh independence and validation of the numerical scheme 
The parameter that reflects the computational domain resolution is the ratio of the 
cylinder diameter to the spacing between mesh nodes, denoted as 𝐷𝐷/𝑑𝑑𝑑𝑑 . To 
determine the most suitable parameter that balances computational efficiency and 
accuracy, we conducted an independence study. Four different mesh resolutions 
were examined at 𝐷𝐷/𝑑𝑑𝑑𝑑 equal to 20, 25, 40, and 50. The results are presented in 
Table 1. The independence study reveals that the difference in results between 
𝐷𝐷/𝑑𝑑𝑑𝑑 = 40 and 𝐷𝐷/𝑑𝑑𝑑𝑑 = 50 is minimal, at 0.22%. Consequently, we selected a 
mesh resolution of 𝐷𝐷/𝑑𝑑𝑑𝑑 = 40. 

Table 1. Mesh independence. 
𝑫𝑫/𝒅𝒅𝒅𝒅 20 25 40 50 
𝑪𝑪𝑳𝑳 0.6965 0.70475 0.686 0.6845 

Figure 4 shows the time history of the lift force coefficient ( 𝐶𝐶𝐿𝐿 ) and 
corresponding frequency response at 𝑅𝑅𝑅𝑅 = 100 and 𝑅𝑅𝑅𝑅 = 200. Tables 2 and 3 
show the validation data obtained from Fig. 4. The tables compare these results 
with findings from other studies. The validation data, which represents the force 
coefficient of the flow to the cylinder, were measured by the drag (𝐶𝐶𝐷𝐷 ), lift 
coefficients (𝐶𝐶𝐿𝐿 ) and Strouhal number (St = 𝑓𝑓𝑓𝑓/𝑈𝑈∞ ), where 𝑓𝑓  represents the 
vortex shedding frequency and 𝑈𝑈∞ represents free stream fluid velocity.  

By accurately capturing the drag and lift coefficients, the method 
demonstrates its ability to effectively model and analyse the intricate interactions 
in such fluid flow scenarios. As a result, this study is able to confidently rely on 
this numerical method as a tool to study and comprehend flow phenomena 
involving circular cylinders. 

Table 2. Flow past a circular cylinder in uniform flow data comparison of 
𝑪𝑪𝑫𝑫, 𝑪𝑪𝑳𝑳 and Strouhal Number (𝐒𝐒𝐒𝐒) at 𝑹𝑹𝑹𝑹 = 𝟏𝟏𝟏𝟏𝟏𝟏 with the benchmark data. 

Data (𝑹𝑹𝑹𝑹 = 𝟏𝟏𝟏𝟏𝟏𝟏) 𝑪𝑪𝑫𝑫 (average) 𝑪𝑪𝑳𝑳 (RMS) 𝑪𝑪𝑳𝑳 (peak) 𝑺𝑺𝑺𝑺 

Present study 1.3550 0.2215 0.3330 0.1697 
Noor et al. [18] 1.4000   0.1670 
Su et al. [19] 1.4000  0.3400 0.1680 
Rajani et al. [20] 1.3353 0.1802  0.1569 
Qu et al. [21] 1.3170 0.2224  0.1649 
Kadapa et al. [22]   0.3380 0.1690 

Table 3. Flow past a circular cylinder in uniform flow data comparison of 
𝑪𝑪𝑫𝑫, 𝑪𝑪𝑳𝑳 and Strouhal Number (𝐒𝐒𝐒𝐒) at 𝑹𝑹𝑹𝑹 = 𝟐𝟐𝟐𝟐𝟐𝟐 with the benchmark data. 

Data (𝑹𝑹𝑹𝑹 = 𝟐𝟐𝟐𝟐𝟐𝟐) 𝑪𝑪𝑫𝑫 (average) 𝑪𝑪𝑳𝑳 (RMS) 𝑪𝑪𝑳𝑳 (peak) 𝑺𝑺𝑺𝑺 
Present study 1.348 0.471 0.686 0.2002 
Rajani et al. [20] 1.3365 0.4276  0.1957 
Qu et al. [21] 1.316 0.4678  0.1958 
Kadapa et al. [22]   0.689 0.202 
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Fig. 4. Time history of lift force coefficient (𝑪𝑪𝑳𝑳)  

and corresponding frequency response. 

3.2. Parameters study 

3.2.1. The effects of parameters on cylinder displacement 
Figure 5 displays the time series of the cylinder's non-dimensional displacement 
under certain parameters, namely 𝑈𝑈𝑅𝑅 = 6.0 and 0.5. The colours of the lines in the 
illustration correspond to different Reynolds numbers ranging from 100 to 500. 
Analysing the dynamic response of the cylinder, as shown in Fig. 5, reveals that the 
magnitude of the non-dimensional displacement grows progressively with 
increasing Reynolds numbers except for Re = 400 where it decreases. Examining 
the patterns in Fig. 5, we can see that as the Reynolds number increases, there is a 
distinct amplification in the magnitude of the displacement. 

 
Fig. 5. Time history of non-dimensional displacement at 𝑼𝑼𝑹𝑹 = 𝟔𝟔.𝟎𝟎 and 𝜻𝜻 = 𝟎𝟎.𝟓𝟓.  

Figure 6 provides comprehensive insights into the behaviour of the cylinder 
motion in the frequency domain by illustrating the magnitude of amplitude at 
different frequencies. Upon a thorough analysis of Fig. 6, a clear and consistent 
pattern emerges where an increase in the Reynolds number corresponds to a 
discernible increase in the fundamental frequency of the cylinder motion. The 
fundamental frequency, which represents the primary and dominant oscillation 
frequency of the cylinder, plays a pivotal role in characterising the dynamic 
behaviour of the system.  
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Upon careful examination of Fig. 6, a clear and a trend emerges, revealing that 
with increasing Reynolds numbers, there is a discernible escalation in the 
fundamental frequency, thereby indicating a notable shift towards higher 
oscillation rates characterised by faster rate change of displacement. 

 
Fig. 6. Frequency response of displacement amplitude at UR = 6.0 and 𝜻𝜻 = 𝟎𝟎.𝟓𝟓. 

Figure 7 provides detailed insights into the influence of 𝑈𝑈𝑅𝑅 (reduced velocity) 
and ζ (damping ratio) on the root mean square (RMS) of the non-dimensional 
displacement of the cylinder (𝑦𝑦𝑅𝑅𝑅𝑅𝑅𝑅) under various Reynolds numbers (𝑅𝑅𝑅𝑅). This 
figure allows for a comprehensive analysis of the relationship between these 
parameters and the magnitude of 𝑦𝑦𝑅𝑅𝑅𝑅𝑅𝑅.  

Upon analysing Fig. 7, it becomes evident that, regardless of the specific 
combination of 𝑈𝑈𝑅𝑅 and 𝜁𝜁, the 𝑦𝑦𝑅𝑅𝑅𝑅𝑅𝑅  consistently increases with the increase in 𝑈𝑈𝑅𝑅 
until it reaches a peak magnitude. This peak indicates the optimal relation between 
parameters, resulting in the maximum displacement of the cylinder. Beyond this 
peak, further increases in 𝑈𝑈𝑅𝑅 may lead to the reduction of 𝑦𝑦𝑅𝑅𝑅𝑅𝑅𝑅 magnitude. This 
behaviour is consistent with the finding of Leontini et al. [23] and Soti et al. [16]. 

At a Re = 100, 𝑦𝑦𝑅𝑅𝑅𝑅𝑅𝑅  exhibits interesting trends for different values of the 
damping coefficient ζ. Specifically, when ζ = 0.1, the 𝑦𝑦𝑅𝑅𝑅𝑅𝑅𝑅  reaches its highest peak 
value, surpassing the values observed for other damping coefficients. Following 
this, for ζ = 0.5, the 𝑦𝑦𝑅𝑅𝑅𝑅𝑅𝑅 has a comparatively lowest peak value.  

Examining the 𝑦𝑦𝑅𝑅𝑅𝑅𝑅𝑅 behavior for ζ = 0.05 and 0.1 in two distinct 𝑈𝑈𝑅𝑅 ranges, 
namely 1.0<𝑈𝑈𝑅𝑅<3.0 and 12.0<𝑈𝑈𝑅𝑅<15.0, reveals an intriguing observation. The 
corresponding 𝑦𝑦𝑅𝑅𝑅𝑅𝑅𝑅  lines for these two damping coefficients nearly coincide 
within these 𝑈𝑈𝑅𝑅 intervals, implying a similarity in their magnitudes. This suggests 
that, under these specific conditions, the effect of the damping coefficient on the 
𝑦𝑦𝑅𝑅𝑅𝑅𝑅𝑅 is relatively insignificant.  

However, an interesting phenomenon occurs in the range of 4.0<𝑈𝑈𝑅𝑅<5.0, where 
a sudden and significant increase in the 𝑦𝑦𝑅𝑅𝑅𝑅𝑅𝑅  magnitude is observed. This abrupt 
change in 𝑦𝑦𝑅𝑅𝑅𝑅𝑅𝑅 is noticeable for both ζ = 0.5 and ζ = 0.1. Conversely, a sudden 
decrease in 𝑦𝑦𝑅𝑅𝑅𝑅𝑅𝑅 occurs within the range of 7.0<𝑈𝑈𝑅𝑅<8.0, again observed for both ζ 
= 0.5 and ζ = 0.1. 

Notably, the absence of such sudden increases or decreases in 𝑦𝑦𝑅𝑅𝑅𝑅𝑅𝑅  for ζ = 0.5 
indicates that it possesses a more substantial damping force in comparison to the 
aforementioned damping coefficients. This suggests that the damping 
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characteristics associated with ζ = 0.5 play a significant role in stabilising the 
system and reducing the occurrence of large fluctuations in 𝑦𝑦𝑅𝑅𝑅𝑅𝑅𝑅.In the reduced 
velocity range spanning from 8.0 <𝑈𝑈𝑅𝑅  <15.0, a noteworthy observation emerges 
regarding the 𝑦𝑦𝑅𝑅𝑅𝑅𝑅𝑅  magnitude when subjected to a damping ratio of ζ = 0.5. 
Specifically, it becomes evident that the 𝑦𝑦𝑅𝑅𝑅𝑅𝑅𝑅  assumes a substantially larger 
amplitude in comparison to the alternative damping ratios under consideration. 

When examining the behaviour of 𝑦𝑦𝑅𝑅𝑅𝑅𝑅𝑅 at Re = 200 and 500, a remarkable 
similarity in the trends governing the magnitude of this variable becomes 
apparent. Both Re values exhibit comparable patterns, suggesting a consistent 
dynamic behaviour of 𝑦𝑦𝑅𝑅𝑅𝑅𝑅𝑅  across different Reynolds numbers. However, a 
slight discrepancy arises when considering the peak values of 𝑦𝑦𝑅𝑅𝑅𝑅𝑅𝑅 for the two 
Reynolds numbers.  

At Re = 500, the peak value of 𝑦𝑦𝑅𝑅𝑅𝑅𝑅𝑅 surpasses that observed at Re = 200, 
indicating a higher amplitude of 𝑦𝑦 in the former case. This difference suggests 
that at higher Reynolds numbers, the fluctuations in the variable 𝑦𝑦 become 
more pronounced, leading to an increase in the peak value of 𝑦𝑦𝑅𝑅𝑅𝑅𝑅𝑅. Moreover, 
the occurrence of these peak values also diverges in terms of the corresponding 
𝑈𝑈𝑅𝑅 ranges.  

At Re = 200, the peak values of 𝑦𝑦𝑅𝑅𝑅𝑅𝑅𝑅 manifest at a velocity range of 𝑈𝑈𝑅𝑅 = 6.0, 
indicating a critical point where the amplitude of y reaches its maximum. On the 
other hand, at Re = 500, these peak values occur at a slightly lower 𝑈𝑈𝑅𝑅 range, 
specifically at 𝑈𝑈𝑅𝑅 = 5.0. This suggests that the dynamics of 𝑦𝑦, as captured by 𝑦𝑦𝑅𝑅𝑅𝑅𝑅𝑅, 
exhibit variations to the Reynolds number, leading to discrepancies in the 
magnitudes and occurrence of peak values. 

Interestingly at Re = 300 and 400 the peak values of 𝑦𝑦𝑅𝑅𝑅𝑅𝑅𝑅 have similar patterns. 
The highest peak value happened at the lowest damping ratio ζ = 0.05 and the 
lowest peak value happened at the highest damping ratio ζ = 0.5. They also happen 
at the same reduced velocity at 𝑈𝑈𝑅𝑅 = 4.0 with the exception of ζ = 0.5 with Re = 
300, it happens at 𝑈𝑈𝑅𝑅 = 7.0. 

It is appealing that, at Re = 300 and 400, a distinct and notable similarity 
emerges in the pattern exhibited by the peak values of 𝑦𝑦𝑅𝑅𝑅𝑅𝑅𝑅. Strikingly, regardless 
of the specific Re considered, the highest peak value of 𝑦𝑦𝑅𝑅𝑅𝑅𝑅𝑅 consistently occurs 
when the damping ratio assumes its lowest value at ζ = 0.05, while the lowest peak 
value is consistently observed when ζ reaches its highest value of 0.5. This 
intriguing relationship between the damping ratio and the magnitude of 𝑦𝑦𝑅𝑅𝑅𝑅𝑅𝑅  
suggests that the degree of damping has a profound influence on the oscillatory 
behavior and energy dissipation within the system. 

Furthermore, the peak values of 𝑦𝑦𝑅𝑅𝑅𝑅𝑅𝑅  at Re = 300 and 400 are found to occur at 
the same reduced velocity, namely 𝑈𝑈𝑅𝑅 = 4.0, except for the case where ζ = 0.5 and 
Re = 300, where the peak value is instead observed at 𝑈𝑈𝑅𝑅 = 7.0. This discrepancy 
highlights the subtle relation between the damping ratio, Reynolds number, and the 
reduced velocity range at which the system exhibits its maximum amplitude. 

Taken together, these findings from Fig. 7 provide insights into the intricate 
dynamics of the system under investigation, comprehensively explained the 
influence of damping, Reynolds number, and reduced velocity on the magnitude 
and occurrence of 𝑦𝑦𝑅𝑅𝑅𝑅𝑅𝑅 . 
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Fig. 7. Root mean square (RMS) of non-dimensional displacement of the 

cylinder with the variations of 𝑼𝑼𝑹𝑹, 𝜁𝜁, and Reynolds numbers. 

3.2.2. The effect of parameters on potential generated power 
Figure 8 presents a detailed view of the average potential generated power (𝑃𝑃𝐴𝐴𝐴𝐴𝐴𝐴) 
for 𝑈𝑈𝑅𝑅 , Re , and 𝜁𝜁 . The graph provides a comprehensive insight into the 
relationships between these variables and how they impact power generation. In 
general, we observe a discernible trend where 𝑃𝑃𝐴𝐴𝐴𝐴𝐴𝐴  tends to increase as 𝑈𝑈𝑅𝑅 
increases. This trend continues until it reaches a maximum value, after which 𝑃𝑃𝐴𝐴𝐴𝐴𝐴𝐴  
starts to decrease with further increases in 𝑈𝑈𝑅𝑅. This phenomenon was also observed 
in study by Wang et al. [24]. 

However, it is important to note that within a certain range of 𝑈𝑈𝑅𝑅, there are 
notable exceptions to this general trend. In this specific range, we observe a sharp 
decrease in 𝑃𝑃𝐴𝐴𝐴𝐴𝐴𝐴 , deviating from the overall increasing pattern. This unexpected 
decline in power generation within this particular 𝑈𝑈𝑅𝑅 range suggests the presence 
of influencing factors that counteract the anticipated increase. Furthermore, it is 
noteworthy that after this range of sharp decrease, there is a subsequent increase in 
𝑃𝑃𝐴𝐴𝐴𝐴𝐴𝐴 . This observed increase occurs at specific 𝑈𝑈𝑅𝑅 values, particularly at 𝜁𝜁 = 0.5.  

These fluctuations of 𝑃𝑃𝐴𝐴𝐴𝐴𝐴𝐴 , occurring within the specified 𝑈𝑈𝑅𝑅  range, exhibit 
interesting patterns across various corresponding Re values. Notably, when 𝜁𝜁 is set 
to 0.5, these fluctuations are observed across the entire range of 𝑅𝑅𝑅𝑅  values. 
Additionally, when 𝜁𝜁  is set to 0.1 and 𝑅𝑅𝑅𝑅  are fixed at 200 and 400, similar 
fluctuations also manifest. Moreover, the degree of fluctuation varies among 
different Re values, with the most significant fluctuation occurring at Re = 200. 
This observation suggests that Re = 200 represents a particularly critical point 
where 𝑃𝑃𝐴𝐴𝐴𝐴𝐴𝐴  experiences the largest magnitude of variations. 

The peak value of 𝑃𝑃𝐴𝐴𝐴𝐴𝐴𝐴 exhibits variations based on Re and 𝜁𝜁  at all 
corresponding UR. When analysing the data, it becomes evident that the highest 
peak value of 𝑃𝑃𝐴𝐴𝐴𝐴𝐴𝐴  occurs at Re  = 400. This indicates that the system achieves the 
maximum power generation capacity at this specific 𝑅𝑅𝑅𝑅. Following 𝑅𝑅𝑅𝑅 = 400, the 
next highest peak value is observed at 𝑅𝑅𝑅𝑅 = 300, suggesting a slightly lower but 
still significant power generation capability. Subsequently, 𝑅𝑅𝑅𝑅 = 500 exhibits a 
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peak value lower than Re = 300 but higher than Re = 200 and Re = 100, which 
demonstrates a decreasing trend in power generation as Re decreases. 

Finally, Re = 200  and Re = 100  represent the lowest peak values of 𝑃𝑃𝐴𝐴𝐴𝐴𝐴𝐴  
among the tested Reynolds numbers, indicating relatively lower power generation 
efficiency in those cases. These findings emphasise the critical influence of 𝑅𝑅𝑅𝑅 on, 
with 𝑅𝑅𝑅𝑅 = 400 showcasing the highest 𝑃𝑃𝐴𝐴𝐴𝐴𝐴𝐴  and subsequent reductions in peak 
values as 𝑅𝑅𝑅𝑅 decreases. Figure 8 also shows that the peak 𝑃𝑃𝐴𝐴𝐴𝐴𝐴𝐴  at each Re happened 
at 𝜁𝜁 = 0.5. It occurs due to the largest dissipated energy by the VEH at the highest 
damping ratio 𝜁𝜁 = 0.5. 

 
Fig. 8. Average value of non-dimensional potential power  
harvested by the cylinder with the variations of reduced  

velocity (𝑼𝑼𝑹𝑹), damping ratio (𝜁𝜁), and Reynolds number (𝐑𝐑𝐑𝐑). 

4. Conclusions 
In conclusion, the analysis of the numerical data reveals insights into the 
behaviour of the system under investigation. The dynamic response of the 
cylinder shows that the non-dimensional displacement increases with increasing 
Reynolds numbers, except for 𝑅𝑅𝑅𝑅 = 400  where it decreases. The patterns 
indicate that as the Reynolds number increases, there is a distinct amplification 
in the magnitude of the displacement. The behavior of the cylinder motion in the 
frequency domain indicates that an increase in the Reynolds number corresponds 
to a discernible increase in the fundamental frequency of the cylinder motion. 
This trend signifies a notable shift towards higher oscillation rates characterised 
by faster rate changes of displacement.  

The root mean square (RMS) of the non-dimensional displacement of the 
cylinder (𝑦𝑦𝑅𝑅𝑅𝑅𝑅𝑅) consistently increases with increasing reduced velocity (𝑈𝑈𝑅𝑅) until 
it reaches a peak magnitude. Beyond this peak, further increases in 𝑈𝑈𝑅𝑅 may lead to 
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a reduction in the 𝑦𝑦𝑅𝑅𝑅𝑅𝑅𝑅  magnitude. Additionally, the damping ratio (𝜁𝜁) influences 
the 𝑦𝑦𝑅𝑅𝑅𝑅𝑅𝑅  magnitude, with 𝜁𝜁 = 0.1 resulting in the highest peak value and 𝜁𝜁 = 0.5 
yielding the lowest peak value. Notably, sudden increases and decreases in 𝑦𝑦𝑅𝑅𝑅𝑅𝑅𝑅 
are observed within specific 𝑈𝑈𝑅𝑅 ranges and the absence of such fluctuations for 𝜁𝜁 =
0.5 indicates its stronger damping characteristics. 

The average potential generated power (𝑃𝑃𝐴𝐴𝐴𝐴𝐴𝐴) for variation of 𝑈𝑈𝑅𝑅, 𝑅𝑅𝑅𝑅, and ζ 
have already been analysed. Generally, 𝑃𝑃𝐴𝐴𝐴𝐴𝐴𝐴  increases with 𝑈𝑈𝑅𝑅 until it reaches a 
maximum value, after which it decreases with further increases in 𝑈𝑈𝑅𝑅. However, 
there are exceptions within a specific 𝑈𝑈𝑅𝑅 range, where a sharp decrease in 𝑃𝑃𝐴𝐴𝐴𝐴𝐴𝐴  is 
observed. This decline is followed by a subsequent increase in 𝑃𝑃𝐴𝐴𝐴𝐴𝐴𝐴  at specific 𝑈𝑈𝑅𝑅 
values, particularly at 𝜁𝜁 = 0.5 . The fluctuations in 𝑃𝑃𝐴𝐴𝐴𝐴𝐴𝐴  are observed across 
various 𝑅𝑅𝑅𝑅  values, with the most significant variation occurring at Re = 200 . 
Furthermore, the peak value of 𝑃𝑃𝐴𝐴𝐴𝐴𝐴𝐴 , exhibit variations based on 𝑅𝑅𝑅𝑅 and 𝜁𝜁, with 
Re = 400 yielding the highest peak value. 

Nomenclatures 
 
𝑎𝑎 Intermediate velocity rate of change 
𝐶𝐶𝐷𝐷 Drag coefficient 
𝐶𝐶𝐿𝐿 Lift coefficient 
D Diameter of the cylinder 
𝑑𝑑𝑑𝑑 Distance between mesh node 
𝐹𝐹𝑦𝑦 Transverse force 
𝑓𝑓 Virtual force 
𝑓𝑓𝑛𝑛 Structure natural frequency 
𝑓𝑓𝑆𝑆 Structure frequency 
𝑓𝑓𝑦𝑦 Virtual force in transverse direction 
𝑚𝑚∗ The mass ratio of solid to the displaced fluid 
𝑛𝑛 Time step level 
𝑃𝑃 Power generated 
𝑝𝑝 Fluid pressure 
𝑃𝑃𝑎𝑎𝑎𝑎𝑎𝑎  The average of power generated 
Re Reynolds number 
St Strouhal number 
𝑡𝑡 Time 
𝑢𝑢 Velocity vector 
𝑢𝑢∗ First intermediate velocity vector 
𝑢𝑢∗∗ Second intermediate velocity vector 
𝑢𝑢𝑠𝑠 Solid/ structure velocity vector 
𝑉𝑉 Volume of solid 
𝑈𝑈𝑅𝑅  Reduced velocity 
𝑈𝑈∞ Free stream velocity 
𝑦𝑦 Cylinder displacement 
𝑦𝑦𝑚𝑚𝑚𝑚𝑚𝑚  Amplitude of cylinder displacement 
𝑦𝑦𝑅𝑅𝑅𝑅𝑅𝑅  Root mean square of cylinder displacement 
𝑦̇𝑦 Cylinder velocity 
𝑦̈𝑦 Cylinder acceleration 
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Greek Symbols 
𝜌𝜌 The density of the fluid 
𝜂𝜂 The volume of solid function 
𝜁𝜁 The damping ratio 
 
Abbreviations 

DFIB Direct forcing immersed boundary. 
FIV Flow-induced vibration 
VEH Vibration energy harvesting 
VIV Vortex-induced vibration 
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