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Abstract 

This research presents a novel artificial intelligence-based strategy for alleviating 

impulsive noise within active noise control (ANC) systems. The approach 

integrates adaptive thresholding and soft thresholding methodologies with 

Median Absolute Deviation (MAD) analysis. Initially, an adaptive threshold 

𝑇(𝑛) is defined using user-specified parameters 𝛼 and 𝛽. This dynamic threshold 

effectively distinguishes impulsive noise from the primary signal by assessing 

the signal's amplitude against 𝑇(𝑛). Signals that exceed 𝑇(𝑛)are identified as 

noise and subsequently diminished. The reference signal 𝐷(𝑛) plays a pivotal 

role in accurately detecting signal components, ensuring efficient noise 

suppression. The filter coefficients are progressively updated through an 

optimization process driven by the error signal 𝑒(𝑛). Furthermore, the study 

introduces an innovative adaptive soft thresholding technique utilizing MAD. In 

this phase, the error signal is determined by the difference between the desired 

signal and the system's output. The threshold parameter is set as a multiple of 

𝑀𝐴𝐷(𝑛), and the denoised signal is achieved by applying the sign function to 

the error signal, thereby maximizing noise reduction. 

Keywords: Active noise control (ANC), Convergence analysis, Filtered-x least 

mean square (FxLMS), Impulsive noise, Residual error, Stability. 
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1.  Introduction 

ANC has emerged as a pivotal technology in mitigating unwanted sound across 

various applications, ranging from consumer electronics to automotive and 

aerospace industries. Unlike passive noise control methods, which rely on physical 

barriers to block sound, ANC actively counteracts unwanted noise by generating 

sound waves that are phase-inverted relative to the ambient noise, thereby 

achieving noise cancellation through destructive interference [1].  

The evolution of ANC systems has been significantly influenced by the 

development of sophisticated algorithms designed to enhance their efficacy and 

adaptability in diverse noise environments. Traditional algorithms, such as the 

Filtered-X Least Mean Squares (FxLMS), have laid the foundational framework 

for ANC implementation [2].  

However, these conventional approaches often face challenges in handling 

impulsive noise, which is characterized by sudden, high-amplitude sound bursts that 

can disrupt the stability and performance of ANC systems [3, 4]. Recent advancements 

have focused on refining these algorithms to better manage impulsive noise.  

For instance, Chen et al. [3] provided a comprehensive review of ANC 

technologies tailored for α-stable distribution impulsive noise, highlighting the 

necessity for robust methods capable of discerning and attenuating such irregular 

noise patterns. Similarly, Gu et al. [4] introduced an enhanced normalized step-size 

algorithm incorporating adjustable nonlinear transformation functions, thereby 

improving the system's responsiveness to impulsive disturbances. 

The application of ANC in specialized environments, such as aerospace, 

underscores its versatility and critical importance. Chang et al. [1] demonstrated 

the implementation of a multi-functional ANC system integrated into the headrest 

of airplane seats, showcasing significant reductions in cabin noise and enhancing 

passenger comfort. This integration exemplifies the practical deployment of ANC 

technologies in complex acoustic settings, where maintaining signal integrity 

amidst varying noise levels is paramount.  

Moreover, studies have explored the integration of alternative statistical 

measures to bolster ANC performance against impulsive noise. Yu et al. [5] 

proposed a convex combination-based ANC system specifically targeting impulse 

noise control, while Meng and Chen [6] developed a modified adaptive weight-

constrained FxLMS algorithm to optimize feedforward ANC systems. These 

innovations reflect a broader trend towards customizing ANC algorithms to address 

specific noise characteristics and application requirements. 

The automotive sector has also benefited from these technological strides. Wu 

and Yu [7] investigated active noise reduction within automobile engine 

compartments using adaptive LMS algorithms, achieving notable decreases in 

engine noise. Concurrently, Song and Zhao [8] advanced the FxLMS framework 

by introducing the Filtered-X Generalized Mixed Norm (FXGMN) algorithm, 

which offers enhanced flexibility and performance in active noise control scenarios. 

Beyond algorithmic improvements, the incorporation of advanced filtering 

techniques has played a crucial role in enhancing ANC systems' robustness. Cui et 

al. [9] leveraged Kalman filtering-based gradient estimation algorithms to manage 

moving average noises, thereby refining the predictive capabilities of ANC 
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systems. Additionally, He et al. [10] introduced a nonlinear ANC algorithm tailored 

for impulsive noise, further expanding the applicability of ANC technologies in 

environments plagued by irregular noise patterns.  

Frequency-domain approaches have also gained traction, as evidenced by Yang 

et al. [11], who reviewed various frequency-domain filtered-X LMS algorithms, 

providing new insights and directions for future research. These approaches offer 

computational efficiencies and adaptability that are well-suited for real-time ANC 

applications. Despite these advancements, challenges persist in optimizing ANC 

systems for impulsive noise environments.  

Akhtar and Mitsuhashi [2] emphasized the need for improved performance 

metrics within FxLMS algorithms to better address impulsive disturbances. Lan et 

al. [12] responded by introducing a weight-constrained FxLMS algorithm, 

enhancing the system's ability to maintain stability and performance under 

fluctuating noise conditions. 

Furthering this discourse, Lee et al. [13] reviewed the application of ANC 

technologies on windows, identifying key challenges and limitations that inform 

ongoing research efforts. Pawelczyk et al. [14] extended the FxLMS algorithm 

through logarithmic transformations, offering fewer complex solutions for 

impulsive noise control. Shao et al. [15] and Sun et al. [16] contributed additional 

nonlinear transformation algorithms, reinforcing the trend towards tailored ANC 

solutions for specific noise types.  

The integration of threshold-based robust adaptive algorithms, as explored by 

Sun et al. [17], and nonlinear feedback mechanisms, as investigated by Behera et 

al. [18], further illustrate the multifaceted approaches being employed to enhance 

ANC systems' resilience against impulsive noise. Xiong et al. [19] introduced 

robust normalized least mean absolute third algorithms, while Xiao et al. [20] 

presented efficient filtered-X affine projection sign algorithms, both of which 

contribute to the growing repertoire of ANC methodologies.  

Li and Yu [21], Zhou et al. [22], and Mirza et al. [23] have collectively advanced 

the field by exploring active noise cancellation algorithms specifically designed for 

impulsive noise, leveraging convex combinations, symmetric α-stable 

distributions, and less complex solutions to optimize ANC performance across 

varied acoustic environments. 

In summary, the landscape of ANC has undergone significant transformation 

through continuous algorithmic innovations and specialized applications aimed at 

combating impulsive noise. Building upon these foundational studies, the present 

research seeks to further enhance ANC systems' effectiveness and adaptability, 

contributing to quieter, more comfortable environments in both consumer and 

industrial domains. 

2.  Filtered-X Least Mean Squares (FxLMS) Algorithm 

The Filtered-X Least Mean Squares (FxLMS) algorithm is fundamental to ANC 

systems, serving as a key mechanism for effective noise suppression. This 

algorithm is based on adaptive filtering techniques, wherein the system 

dynamically adjusts its parameters to reduce the mean squared error between the 

intended output-the noise-free signal-and the actual output produced. As depicted 
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in Fig. 1, the FxLMS algorithm synthesizes a sound wave that is out of phase with 

the incoming noise. This anti-phase wave interacts destructively with the unwanted 

noise, leading to a marked decrease in the overall sound level experienced by the 

listener. The following steps outline the FxLMS algorithm: 

• Step:1 Initialization: Start with initial weights w(0)  set to zero or small 

random values. 

• Step:2 Signal Filtering: 𝑦̂(𝑛) = 𝑤𝑇(𝑛)𝑥(𝑛)                                                 

where: x(n) is reference noise signal at the input, w(𝑛) are coefficients of the 

adaptive filter, updated iteratively, and 𝑦̂(𝑛) is the output of the adaptive filter 

• Step:3 Error Calculation: e(𝑛) = d(𝑛) − 𝑦̂(n) , where d(𝑛)  is the desired 

signal 

• Step:4 Weight Update: ∆𝑤(𝑛) = −𝜇𝑒(𝑛)𝑥(𝑛), where μ is the step size of the 

algorithm 

• Step:5 Filtered Input: 𝑦̂(𝑛) = 𝑤𝑇(𝑛) 𝑓 (𝑥(𝑛)) , where f(. )  represents the 

secondary path filter. 

• Step:6 Final Weight Update: w(𝑛 + 1) = w(𝑛) − μ𝑒(𝑛)𝑥̂(n), where 𝑥̃(n) is 

the filtered reference signal that represents the system's secondary path effect. 

 

Fig. 1. Block diagram of FxLMS algorithm. 

Impulsive noise 

Impulsive noise is frequently modelled using the symmetric 𝛼 -stable ( 𝑆𝛼𝑆 ) 

distribution, represented as 𝑓(𝑥)This adaptable statistical framework effectively 

captures the essence of non-Gaussian noise, encompassing impulsive noise 

scenarios. The characteristic function of the 𝑆𝛼 distribution, illustrated in Eq. (1), 

plays a crucial role in elucidating the distinctive attributes of impulsive noise. By 

investigating into the 𝑆𝛼𝑆  distribution and its related mathematical constructs, 

researchers strive to achieve a thorough comprehension of impulsive noise, paving 

the way for the development of more robust control mechanisms. 

𝜙(𝑡) = 𝑒−𝛾|𝑡|𝛼
                                                                               (1) 

The symmetric 𝛼-stable (𝑆𝛼𝑆) serves as a highly adaptable mathematical model 

capable of describing a wide array of phenomena, each exhibiting different degrees 

of tail heaviness. A pivotal parameter within this distribution is 𝛼 , which varies 

between 0 and 2. This shape parameter profoundly affects the distribution's 
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properties. As 𝛼 approaches zero, the 𝑆𝛼𝑆  distribution becomes increasingly 

representative of impulsive noise, which is characterized by abrupt, high-intensity 

spikes and extreme values. This alignment between decreasing 𝛼 values and the 

nature of impulsive noise underscores the distribution's suitability for modeling such 

noise types. On the other hand, when 𝛼 = 2, the 𝑆𝛼𝑆 distribution converges to the 

well-known Gaussian distribution, recognized for its symmetric, bell-shaped curve. 

Probability density functions (PDFs) for various 𝛼 values as shown in Fig. 2. 

 

Fig. 2. Probability density functions (PDFs) for various 𝜶 values. 

3.  Proposed Methods 

• Dynamic thresholding: Develop an AI-based technique to dynamically adjust 

the threshold for distinguishing between signal and impulsive noise. 

• Median Absolute Deviation (MAD) filtering: Implement an AI-powered 

method using MAD to enhance noise reduction performance. 

3.1. Method 1: AI-based adaptive soft thresholding FxLMS algorithm 

In this AI-powered approach, the threshold parameter T(n) serves as a crucial 

discriminator between signal and noise. T(n) is determined by multiplying the 

standard deviation of the signal, σ(n), by a scaling factor α and then adding a bias 

term β. This threshold acts as a boundary, separating impulsive noise from the 

signal. By adjusting α and β, as shown in Eq. (2), we can customize the threshold 

to suit specific noise characteristics. 

𝑇(𝑛) = 𝛼 . 𝜎(𝑛) + 𝛽                                                                                   (2) 

Where, 𝑇(𝑛) is the dynamic threshold at time index n, 𝛼 is the scaling factor that 

adjusts the sensitivity of the threshold, 𝛽 is the bias term that shifts the threshold 

value to accommodate specific noise, environments, and 𝜎(𝑛)  represents the 

standard deviation of the signal at time n, calculated as, 

σ(n) = √
1

N
∑(x(n + k) − μ(n))

2
𝑁

k=1

 

Here, x(k)is the signal sample at time k , μ is the mean of the signal, and N is the 

number of samples considered. 
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The denoised signal, 𝑥𝑑𝑒𝑛𝑜𝑖𝑠𝑒𝑑(𝑛) , is designed to preserve essential signal 

features while eliminating noise. To achieve this, the signal's absolute value, |x(n)|, 

is compared to a threshold, T(n). If |x(n)| is less than or equal to T(n), the denoised 

signal retains the original value. However, if |x(n)| exceeds T(n), the denoised 

signal is set to zero. This process effectively removes impulsive noise from the 

signal, as illustrated in Eq. (3). 

𝑥𝑑𝑒𝑛𝑜𝑖𝑠𝑒𝑑(𝑛) = {
  𝑥(𝑛)          𝑖𝑓 |𝑥(𝑛)| ≤ 𝑇(𝑛)

   0                 𝑖𝑓|𝑥(𝑛)| > 𝑇(𝑛)
                                                       (3) 

The decision function, D(n), acts as a thresholding mechanism, separating 

signal components from noise. If the magnitude of the input signal, |x(n)|, is below 

or equal to the threshold, T(n), then D(n) is set to 1, signifying the presence of a 

signal. Conversely, if |x(n)| exceeds T(n), D(n) is set to 0, indicating the absence of 

a signal. This decision-making process is formally expressed in Eq. (4). 

𝐷(𝑛) = {
 1 𝑖𝑓 |𝑥(𝑛)| ≤ 𝑇(𝑛)
0 𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

                                                                                      (4) 

The function D(n) is used to dynamically adjust the signal's characteristics based 

on the presence or absence of signal components. The error signal, e(n), plays a vital 

role in the adaptation process, ensuring that impulsive noise is effectively suppressed 

while preserving the integrity of the desired signal, as illustrated in Eq. (5). 

𝑒(𝑛) = 𝑥(𝑛) − 𝐷(𝑛). 𝑒(𝑛). 𝑥(𝑛)                                                                                 (5) 

The proposed method updates its weights according to the equation presented 

in Eq. (6). 

𝑊(𝑛 + 1) = 𝑊(𝑛) + 𝜇 𝐷(𝑛) 𝑒(𝑛) 𝑥(𝑛)                                                                     (6) 

The proposed AI-based Adaptive Soft Thresholding FxLMS algorithm 

demonstrates its effectiveness in reducing impulsive noise within active noise 

control systems.  

Convergence Analysis of Method 1 

Defining Mean Squared Weight Error (MSWE) Update: 

𝑀𝑆𝑊𝐸(𝑛) = 𝐸 [|𝑊̂(𝑛)|
2

]                                                                                                 (7) 

Expanding the MSWE update for standard FxLMS algorithm: 

𝑀𝑆𝑊𝐸(𝑛 + 1) = 𝐸 [|𝑊̂(𝑛 + 1)|
2

] = 𝐸 [|𝑊̂(𝑛)|
2

] − 2𝜇𝐸[𝑊̂(𝑛)𝑇𝑥(𝑛)𝑒(𝑛)] +

                                   𝜇2𝐸[𝑒2(𝑛)𝑥(𝑛)𝑥𝑇(𝑛)]                                                                   (8) 

Let assume that: 

• 𝐸[𝑊̂(𝑛)𝑇𝑥(𝑛)𝑒(𝑛)] = 0 , due to zero mean and independence. 

• 𝐸[𝑒2(𝑛)𝑥(𝑛)𝑥𝑇(𝑛)] = 𝜎𝑒
2𝑅 , where  𝜎𝑒

2 = 𝐸[𝑒2(𝑛)]   and 

•  𝑅 = 𝐸[𝑥(𝑛)𝑥𝑇(𝑛)] is the input autocorrelation matrix. 

Thus, 

𝑀𝑆𝑊𝐸(𝑛 + 1) = 𝑀𝑆𝑊𝐸(𝑛) + 𝜇2𝜎𝑒
2𝑅                                                         (9) 

To derive the convergence rate, assuming geometric decay in MSWE, 
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𝑀𝑆𝑊𝐸(𝑛) = 𝜌𝑛𝑀𝑆𝑊𝐸(0)                                                                              (11) 

Substituting into the MSWE update Eq. (11) 

𝜌. 𝑀𝑆𝑊𝐸(𝑛) = 𝑀𝑆𝑊𝐸(𝑛) + 𝜇2𝜎𝑒
2𝑅 

Rearranging:𝜌 = 1 − 𝜇. 𝜆𝑚𝑖𝑛(𝑅)                                                                                        (12) 

where 𝜆𝑚𝑖𝑛(𝑅) is the Smallest eigenvalue of 𝑅. 

For steady-state conditions, the MSWE should stabilize, then 𝜇2𝜎𝑒
2𝑅 = 0, by 

ensuring 𝜇 must be sufficiently small. 

The introduction of 𝐷(𝑛) effectively gates the adaptation process: 

• When 𝐷(𝑛) = 1: The algorithm behaves similarly to the standard FxLMS, 

updating weights based on the current error and input. 

• When 𝐷(𝑛) = 0: No weight update occurs, effectively pausing adaptation 

during impulsive noise events. 

By gating updates during impulsive noise, the algorithm reduces the risk of 

overreacting to noise, which can stabilize convergence. Also, the adaptive nature 

allows the algorithm to adjust the influence of each update, potentially improving the 

mean convergence rate by avoiding large erroneous updates during noise events. The 

expected value of 𝐷(𝑛) depends on the threshold 𝑇(𝑛)and the statistical properties 

of 𝑥(𝑛). Assuming 𝐷(𝑛) is a Bernoulli random variable with probability 𝑃(𝐷(𝑛) =
1) = 𝑃(|𝑥(𝑛)| ≤ 𝑇(𝑛)) = 𝑝, the average effective step size becomes: 

𝜇𝑎𝑣𝑔 = 𝜇. 𝑃(𝐷(𝑛) = 1) = 𝜇. 𝑝                                                                        (13) 

Now MSWE update for method 1 

𝑀𝑆𝑊𝐸(𝑛 + 1) = 𝜌1 . 𝑀𝑆𝑊𝐸(𝑛)                                                                     (14) 

where 𝜌1  is the convergence rate for Method 1. From Eq. (12), 

𝜌1 ≈ 1 − 𝜇. 𝑝. 𝜆𝑚𝑖𝑛(𝑅)                                                                                    (15) 

To ensure stability, the average step size must satisfy: 

0 < 𝜇. 𝑝 <
2

𝜆𝑚𝑎𝑥(𝑅)
                                                                                          (16) 

Simplifying: 

𝜇 <
2

𝑝.𝜆𝑚𝑎𝑥(𝑅)
                                                                                                 (17) 

Where 𝜆𝑚𝑎𝑥(𝑅) is the largest eigenvalue of 𝑅. 

Given that, 𝑃(𝐷(𝑛) = 1), the effective step size 𝜇𝑎𝑣𝑔 is reduced, allowing for 

larger nominal step sizes 𝜇 while maintaining stability. Therefore, by selectively 

updating weights, Method 1 can achieve a faster mean convergence rate in 

environments with frequent impulsive noise, as it avoids detrimental updates that 

could slow down convergence or cause divergence. 

3.2. Method 2: FxLMS algorithm based on AI absolute deviation (MAD) 

The AI-based Median Absolute Deviation (MAD) mechanism employs MAD to 

estimate errors and uses a soft thresholding technique to adaptively manage these 
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errors. MAD is determined as the median of the absolute values of the error signal 

e(n) within a window of size N, offering a reliable estimate of the error. This 

innovative method enhances the performance of the FxLMS algorithm by 

incorporating a deviation mechanism that uses MAD for error estimation, coupled 

with a soft thresholding approach to dynamically control the error. The calculation 

of MAD, which is based on the median of the absolute values of e(n) in a window 

of size N, ensures a robust error estimate as outlined in Eq. (18). 

𝑀𝐴𝐷(𝑛) = 𝑚𝑒𝑑𝑖𝑎𝑛(|𝑒(𝑛 − 𝑁), 𝑒(𝑛 − 𝑁 + 1), … . . , 𝑒(𝑛)|                               (18) 

The adaptive threshold T(n) is determined based on the MAD and scaling 

parameter 𝑘 . It plays a crucial role in distinguishing impulsive noise from the 

desired signal given by Eq. (19). 

𝑇(𝑛) = 𝑘. 𝑀𝐴𝐷(𝑛)                                                                                             (19) 

The adaptive soft thresholding technique, represented as 𝑒𝑠𝑜𝑓𝑡(𝑛), is applied to 

the error signal e(n). It softens the impact of impulsive noise by comparing the 

absolute error magnitude with the threshold T(n) and setting the error to zero if it 

falls below the threshold given by Eq.(20). 

𝑒𝑠𝑜𝑓𝑡(𝑛) = 𝑠𝑖𝑔𝑛((𝑒𝑛)). max (|𝑒(𝑛)| − 𝑇(𝑛), 0)                                       (20) 

The weight updating equation for the proposed method based on FxLMS 

algorithm is given by Eq. (21). 

𝑊(𝑛 + 1) = 𝑊(𝑛) + 𝜇 𝑒𝑠𝑜𝑓𝑡(𝑛) 𝑥(𝑛)                                                      (21) 

This AI-based approach offers a promising method for effectively reducing 

impulsive noise in active noise control systems, enhancing their performance in 

various applications. 

Convergence analysis of method 2 

The soft thresholding operation attenuates the error signal, especially during 

impulsive noise events, by reducing its magnitude based on the dynamically set 

threshold 𝑇(𝑛). 

• When |𝑒(𝑛)| > 𝑇(𝑛): The error signal is reduced but retains its sign, allowing 

for partial updates to the weights. 

• When |𝑒(𝑛)| ≤ 𝑇(𝑛): The error signal is nullified, preventing weight updates 

that could be influenced by noise. 

By attenuating the influence of impulsive errors, Method 2 reduces the variance 

in weight updates, potentially enhancing the mean convergence rate. The use of 

𝑀𝐴𝐷 ensures that the threshold 𝑇(𝑛) adapts to the current error signal distribution, 

maintaining robustness across varying noise conditions. The effective step size in 

Method 2 is influenced by 𝑒𝑠𝑜𝑓𝑡(𝑛): 

𝜇𝑒𝑓𝑓 = 𝜇. 𝑒𝑠𝑜𝑓𝑡(𝑛)                                                                                     (22) 

Assuming an attenuation factor 𝑐 = 𝐸 [
𝑒2

𝑠𝑜𝑓𝑡(𝑛)

𝑒2(𝑛)
], the average effective step size is: 

𝜇𝑎𝑣𝑔 = 𝜇. 𝑐                                                                                                   (23) 
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Given the soft thresholding operation, the expected value of 𝑒𝑠𝑜𝑓𝑡(𝑛)) is: 

𝐸[𝑒𝑠𝑜𝑓𝑡(𝑛)] = 𝐸[𝑠𝑖𝑔𝑛(𝑒(𝑛)). 𝑚𝑎𝑥(|𝑒(𝑛)|) − 𝑘. 𝑀𝐴𝐷(𝑛), 0]                    (24) 

As 𝑒(𝑛) follows a symmetric distribution around zero, the above expectation 

simplifies to focusing on the mean squared error (MSE) minimization while 

reducing the influence of large errors. Now MSWE update for method 2 is  

𝑀𝑆𝑊𝐸(𝑛 + 1) = 𝜌2 . 𝑀𝑆𝑊𝐸(𝑛)                                                                  (25) 

Here 𝜌1  is the convergence rate for Method 2. From Eq. (12), 

𝜌2 ≈ 1 − 𝜇. 𝑐. 𝜆𝑚𝑖𝑛(𝑅)                                                                                   (26) 

To ensure stability, the average step size must satisfy: 

𝜇 <
2

𝑐.  𝜆𝑚𝑎𝑥(𝑅)
                                                                                                 (27) 

Given that 𝑒𝑠𝑜𝑓𝑡(𝑛) is generally smaller than 𝑒(𝑛), the effective step size is 

reduced, enhancing stability. By soft thresholding the error signal, Method 2 

effectively dampens the influence of impulsive noise, allowing the algorithm to 

maintain a consistent adaptation rate without being derailed by sporadic large 

errors. This leads to a more stable and potentially faster convergence in 

environments with significant impulsive noise. 

4.  Results and Discussion 

Iterative analysis: To evaluate the effectiveness and convergence rates of the 

proposed methods, assume the following conditions with the following parameters: 

• Filter Configuration: Filter Length 𝐿 = 1, Optimal Weight 𝑊∗ = 1 and, Initial 

Filter Weight 𝑊(0) = 0. 

• Signal Characteristics: 𝑥(𝑛) =  1 , 𝑑(𝑛) = 𝑊∗. 𝑥(𝑛), 𝑅 = 𝐸[𝑥(𝑛)2] 

• Algorithm Parameters for Method 1: 𝜇 = 0.01 and 𝑝 = 𝑃(𝐷(𝑛) = 1) = 0.8. 

• Algorithm Parameters for Method 2: 𝜇 = 0.01, 𝑘 = 4 and 𝑀𝐴𝐷(𝑛) = 0.1 

4.1. Method 1: AI-based adaptive soft thresholding FxLMS algorithm 

Based on above assumption, theoretical convergence rate of the method 1 is 

calculated as, 𝜌1 ≈ 1 − 𝜇. 𝑝. 𝜆𝑚𝑖𝑛(𝑅) = 1 − 0.01 × 0.8 × 1 = 0.984 . The 

convergence rate 𝜌1 = 0.984 implies that the error signal 𝑒(𝑛) reduces by a factor 

of 𝜌1 in each iteration, given as 𝑒(𝑛 + 1) = 𝜌1 × 𝑒(𝑛) = 0.984 × 𝑒(𝑛) . This 

means that each iteration reduces the error by 1.6% (since 1-0.984 = 1.6%).  

Table 1 showcases the Adaptive Soft Thresholding FxLMS algorithm's 

capability to iteratively adjust filter weights, steadily reducing the error signal over 

time. The consistent reduction in error and the corresponding increase in filter 

weight 𝑊(𝑛)  towards the optimal value 𝑊∗ = 1  confirm the algorithm's 

effectiveness in impulsive noise reduction within ANC systems. The following 

table illustrates the filter weight updates and error signals, over 100 iterations. 

Initial iterations (n=0 to n=4): 

• At each iteration, the filter weight 𝑊(𝑛) increases by ∆𝑊(𝑛) times. 
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• The error 𝑒(𝑛)decreases as 𝑊(𝑛) approaches the desired value 𝑊∗ = 1. Each 

increment reduces the error proportionally to the current error, facilitating 

exponential convergence. 

• The filter weight increases smoothly towards 𝑊∗, with the error diminishing 

by approximately 1% each iteration in these early steps. 

Mid-Range Iterations (n = 10 to n = 50): 

• The weight 𝑊(𝑛)  continues to increase steadily, with each increment 

becoming smaller as 𝑊(𝑛)gets closer to 1. 

• The error 𝑒(𝑛) decreases by approximately 1% iteration, consistent with the 

theoretical convergence rate 𝜌1 = 0.984. 

Final Iterations (n = 80 to n = 100): 

• The filter weight 𝑊(𝑛) is nearing the optimal value 𝑊∗ = 1, with the error 

𝑒(𝑛) reducing to below 0.2. 

• As 𝑊(𝑛)  increases, the increment ∆𝑊(𝑛)  becomes progressively smaller, 

ensuring that the filter does not overshoot the desired value. 

• By iteration 100, 𝑊(𝑛) has stabilized around 0.8024, with minimal changes in 

subsequent iterations, indicating that the filter is converging towards 𝑊∗ = 1. 

Table 1. Filter weights updated iteratively using Method 1. 

Iterations 

(n) 
𝑾(𝒏) 

𝒆(𝒏)
= 𝟏 − 𝑾(𝒏) 

𝑫(𝒏) 

∆𝑾(𝒏)
= 𝝁. 𝑫(𝒏). 
𝒆(𝒏). 𝒙(𝒏) 

𝑾(𝒏 + 𝟏) 

0 0.000 1.000 1 0.010 0.010 

1 0.010 0.990 1 0.0099 0.0199 

2 0.0199 0.9801 1 0.009801 0.029701 

3 0.029701 0.970299 1 0.00970299 0.03940399 

4 0.03940399 0.96059601 1 0.00960596 0.04900995 

... ... ... ... ... ... 

10 0.08910655 0.91089345 1 0.00910893 0.09821549 

... ... ... ... ... ... 

50 0.46416240 0.53583760 1 0.00535838 0.46952078 

... ... ... ... ... ... 

80 0.74635125 0.25364875 1 0.00253649 0.74888774 

... ... ... ... ... ... 

90 0.79842423 0.20157577 1 0.00201576 0.80044000 

... ... ... ... ... ... 

100 0.8004400 0.1995600 1 0.00199560 0.80243560 

4.2. Method 2: FxLMS algorithm based on AI absolute deviation 

(MAD) 

Table 2 showcases the FxLMS Algorithm Based on AI Absolute Deviation capability 

to iteratively adjust filter weights, steadily reducing the error signal over time.  

Initial Iterations (n = 0 to n = 4):  

• In the initial iterations, the error 𝑒(𝑛) is significantly higher than the threshold 

𝑇(𝑛) = 0.4, resulting 𝑒𝑠𝑜𝑓𝑡(𝑛) > 0, and the filter weights are actively updated 

to reduce the error. 
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• Each iteration reduces the error by approximately 0.60 to 0.50 units, as the 

𝑊(𝑛)  approaches the desired value 𝑊∗ = 1 .The algorithm begins its 

convergence by making substantial adjustments to the filter weights, rapidly 

decreasing the error signal 𝑒(𝑛). 

Mid-Range Iterations (n = 10 to n = 50): 

• As the filter weight 𝑊(𝑛)  increases, the error 𝑒(𝑛)decreases but remains 

above the threshold 𝑇(𝑛) = 0.4 , ensuring that 𝑒𝑠𝑜𝑓𝑡(𝑛) > 0. Thus, weight 

updates continue, though with diminishing increments. 

• The error reduction per iteration becomes smaller (∆𝑊(𝑛)decreases), leading 

to a gradual approach towards the desired filter weight 𝑊∗ = 1. 

• The threshold 𝑇(𝑛) ensures that only significant errors contribute to weight 

updates, preventing minor fluctuations from causing unnecessary adjustments. 

Table 2. Filter weights updated iteratively using Method 2. 

Iterations  

(n) 
𝑾(𝒏) 

𝒆(𝒏) 

= 

(𝟏
− 𝑾(𝒏)) 

𝑻(𝒏) 

𝒆𝒔𝒐𝒇𝒕(𝒏) = 

𝒔𝒊𝒈𝒏((𝒆𝒏)). 

𝐦𝐚𝐱 (|𝒆(𝒏)|
− 𝑻(𝒏), 𝟎) 

∆𝑾(𝒏)  =  
𝝁. 𝒆𝒔𝒐𝒇𝒕(𝒏). 

 𝒙(𝒏) 

𝑾(𝒏
+ 𝟏) 

0 0.000 1.000 0.4 0.600 0.006 0.006 

1 0.006 0.994 0.4  0.594 0.00594 0.01194 

2 0.01194 0.98806 0.4 0.58806 0.0058806 0.017820 

3 0.0178206 0.982179 0.4 0.5821794 0.0058217 0.023642 

4 0.0236424 0.976357 0.4 0.5763576 0.0057635 0.029405 

... ... ... ... ... ... ... 

10 0.0891065 0.910893 0.4 0.5108934 0.0051089 0.094215 

... ... ... ... ... ... ... 

20 0.1810319 0.818968 0.4 0.4189680 0.0041896 0.185221 

... ... ... ... ... ... ... 

30 0.2715014 0.728498 0.4 0.3284985 0.0032849 0.274786 

... ... ... ... ... ... ... 

40 0.3632373 0.636762 0.4 0.2367626 0.0023676 0.365605 

... ... ... ... ... ... ... 

50 0.4641624 0.535837 0.4 0.1358376 0.0013583 0.465520 

... ... ... ... ... ... ... 

80 0.7463512 0.253648 0.4 0.000 0.000 0.746351 

... ... ... ... ... ... ... 

90 0.7984242 0.201575 0.4  0.000 0.000 0.798424 

... ... ... ... ... ... ... 

100 0.8004400 0.199560 0.4 0.000 0.000 0.800440 

Final Iterations (n = 80 to n = 100): 

• At iterations 𝑛 = 80 and beyond, the error 𝑒(𝑛) drops below the threshold 

𝑇(𝑛) = 0.4 . Consequently, 𝑒𝑠𝑜𝑓𝑡(𝑛) = 0, leading to ∆𝑊(𝑛) = 0. 

• With ∆𝑊(𝑛) = 0, the filter weight 𝑊(𝑛) remains constant, indicating that the 

algorithm has effectively converged. The filter no longer updates its weights 

as the error is within acceptable bounds defined by the MAD-based threshold. 

• The filter weight stabilizes around𝑊(𝑛) = 0.8004, demonstrating that the 

algorithm has reached a steady state where further significant error reductions 

are not necessary. 
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Based on above assumption, theoretical convergence rate of the method 2is 

calculated as, 𝜌2 ≈ 1 − 𝜇. 𝑐. 𝜆𝑚𝑖𝑛(𝑅) = 1 − 0.01 × 0.8 × 1 = 0.984 . Like 

Method 1, this implies a 1.6% reduction in error per iteration, adhering to the 

theoretical prediction. 

4.3. Computer Simulations 

Figure 3 depicts the Signal-to-Noise Ratio (SNR) improvement achieved by two 

distinct methods (Method 1 and Method 2) over a sequence of iterations.  

• α = 1.2: Method 1 consistently outperforms Method 2, suggesting it may be 

more effective in suppressing impulsive noise under these conditions.  

• α = 1.6: Both methods show comparable performance after an initial period 

where Method 1 has a slight advantage.  

• α = 1.8: Method 2 demonstrates superior performance, indicating its potential 

suitability for handling impulsive noise characteristics associated with this 

value of α. 

 

Fig. 3. Signal-to-Noise Ratio (SNR) Characteristics. 

Figure 4. shows the convergence behaviour of Method 1 and Method 2 for 

suppressing impulsive noise. The performance of each method was evaluated 

across three different scenarios, characterized by varying values of the parameter α 

(1.2, 1.6, and 1.8). The convergence of filter weights was monitored over a 

sequence of iterations. 

• Method 1: Demonstrated rapid and smooth filter weight convergence for α = 

1.2, suggesting its potential effectiveness in scenarios with rapidly changing 

impulsive noise characteristics. For α = 1.6, Method 1 exhibited fast initial 
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convergence but stabilized at a different level compared to Method 2. At α = 

1.8, Method 1 showed slower convergence and stabilized at a higher value.  

• Method 2: Exhibited more gradual and oscillatory convergence for α = 1.2 and 

1.6. However, at α = 1.8, Method 2 demonstrated faster convergence and 

stabilized at a lower value compared to Method 1. 

 

Fig. 4. Filter weights convergence characteristics. 

4.4. Summary of comparative findings 

Convergence Speed and Stability: Both methods exhibit similar theoretical 

convergence rates ( 𝜌 ≈ 0.984 ), ensuring efficient error reduction. Method 1 

steadily approaches the optimal filter weight (𝑊∗ = 1), achieving minimal steady-

state error. Method 2 rapidly converges initially and then stabilizes, preventing 

overshooting and maintaining stability. 

Noise Suppression Effectiveness: Method 1 excels in both heavily (α=1.2) and 

moderate (α=1.6) impulsive noise conditions, providing robust suppression without 

the risk of overfitting. Method 2 is highly effective in environments with low 

impulsive noise (α=1.8), fully converging to suppress noise. 

Parameter Tuning and Flexibility: Method 1 requires careful tuning of step size 

probability to balance convergence speed and stability. Method 2 offers flexibility through 

the scaling parameter, allowing dynamic adjustment based on noise characteristics. 

5.  Conclusions 

This paper analysis thoroughly compared Method 1: Adaptive Soft Thresholding 

FxLMS and Method 2: MAD-Based Soft Thresholding FxLMS within ANC 
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systems under varying noise impulsiveness characterized by different tail indices 

(𝛼). Method 1 consistently demonstrated robust convergence towards the optimal 

filter weight, effectively minimizing residual errors and significantly enhancing the 

Signal-to-Noise Ratio (SNR), especially in environments with heavy-tailed noise. 

In contrast, Method 2 excelled in providing stable performance by selectively 

attenuating substantial error signals through MAD-based soft thresholding, 

resulting in rapid initial convergence and maintaining steady filter weights around 

a sub-optimal value. While Method 1 is ideal for applications demanding 

comprehensive noise suppression and complete convergence, Method 2 offers 

enhanced resilience and stability in dynamic and variable noise environments. 

Ultimately, the choice between these methods pivots on the specific requirements 

of the ANC application, with Method 1 being preferable for scenarios prioritizing 

maximal noise reduction and Method 2 suited for settings where stability and 

robustness against noise fluctuations are paramount. 
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