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Abstract

This research presents a novel artificial intelligence-based strategy for alleviating
impulsive noise within active noise control (ANC) systems. The approach
integrates adaptive thresholding and soft thresholding methodologies with
Median Absolute Deviation (MAD) analysis. Initially, an adaptive threshold
T(n) is defined using user-specified parameters a and . This dynamic threshold
effectively distinguishes impulsive noise from the primary signal by assessing
the signal's amplitude against T(n). Signals that exceed T(n)are identified as
noise and subsequently diminished. The reference signal D(n) plays a pivotal
role in accurately detecting signal components, ensuring efficient noise
suppression. The filter coefficients are progressively updated through an
optimization process driven by the error signal e(n). Furthermore, the study
introduces an innovative adaptive soft thresholding technique utilizing MAD. In
this phase, the error signal is determined by the difference between the desired
signal and the system's output. The threshold parameter is set as a multiple of
MAD (n), and the denoised signal is achieved by applying the sign function to
the error signal, thereby maximizing noise reduction.

Keywords: Active noise control (ANC), Convergence analysis, Filtered-x least
mean square (FXLMS), Impulsive noise, Residual error, Stability.
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1. Introduction

ANC has emerged as a pivotal technology in mitigating unwanted sound across
various applications, ranging from consumer electronics to automotive and
aerospace industries. Unlike passive noise control methods, which rely on physical
barriers to block sound, ANC actively counteracts unwanted noise by generating
sound waves that are phase-inverted relative to the ambient noise, thereby
achieving noise cancellation through destructive interference [1].

The evolution of ANC systems has been significantly influenced by the
development of sophisticated algorithms designed to enhance their efficacy and
adaptability in diverse noise environments. Traditional algorithms, such as the
Filtered-X Least Mean Squares (FXLMS), have laid the foundational framework
for ANC implementation [2].

However, these conventional approaches often face challenges in handling
impulsive noise, which is characterized by sudden, high-amplitude sound bursts that
can disrupt the stability and performance of ANC systems [3, 4]. Recent advancements
have focused on refining these algorithms to better manage impulsive noise.

For instance, Chen et al. [3] provided a comprehensive review of ANC
technologies tailored for a-stable distribution impulsive noise, highlighting the
necessity for robust methods capable of discerning and attenuating such irregular
noise patterns. Similarly, Gu et al. [4] introduced an enhanced normalized step-size
algorithm incorporating adjustable nonlinear transformation functions, thereby
improving the system's responsiveness to impulsive disturbances.

The application of ANC in specialized environments, such as aerospace,
underscores its versatility and critical importance. Chang et al. [1] demonstrated
the implementation of a multi-functional ANC system integrated into the headrest
of airplane seats, showcasing significant reductions in cabin noise and enhancing
passenger comfort. This integration exemplifies the practical deployment of ANC
technologies in complex acoustic settings, where maintaining signal integrity
amidst varying noise levels is paramount.

Moreover, studies have explored the integration of alternative statistical
measures to bolster ANC performance against impulsive noise. Yu et al. [5]
proposed a convex combination-based ANC system specifically targeting impulse
noise control, while Meng and Chen [6] developed a modified adaptive weight-
constrained FXLMS algorithm to optimize feedforward ANC systems. These
innovations reflect a broader trend towards customizing ANC algorithms to address
specific noise characteristics and application requirements.

The automotive sector has also benefited from these technological strides. Wu
and Yu [7] investigated active noise reduction within automobile engine
compartments using adaptive LMS algorithms, achieving notable decreases in
engine noise. Concurrently, Song and Zhao [8] advanced the FXLMS framework
by introducing the Filtered-X Generalized Mixed Norm (FXGMN) algorithm,
which offers enhanced flexibility and performance in active noise control scenarios.

Beyond algorithmic improvements, the incorporation of advanced filtering
techniques has played a crucial role in enhancing ANC systems' robustness. Cui et
al. [9] leveraged Kalman filtering-based gradient estimation algorithms to manage
moving average noises, thereby refining the predictive capabilities of ANC
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systems. Additionally, He et al. [10] introduced a nonlinear ANC algorithm tailored
for impulsive noise, further expanding the applicability of ANC technologies in
environments plagued by irregular noise patterns.

Frequency-domain approaches have also gained traction, as evidenced by Yang
et al. [11], who reviewed various frequency-domain filtered-X LMS algorithms,
providing new insights and directions for future research. These approaches offer
computational efficiencies and adaptability that are well-suited for real-time ANC
applications. Despite these advancements, challenges persist in optimizing ANC
systems for impulsive noise environments.

Akhtar and Mitsuhashi [2] emphasized the need for improved performance
metrics within FXLMS algorithms to better address impulsive disturbances. Lan et
al. [12] responded by introducing a weight-constrained FXLMS algorithm,
enhancing the system's ability to maintain stability and performance under
fluctuating noise conditions.

Furthering this discourse, Lee et al. [13] reviewed the application of ANC
technologies on windows, identifying key challenges and limitations that inform
ongoing research efforts. Pawelczyk et al. [14] extended the FXLMS algorithm
through logarithmic transformations, offering fewer complex solutions for
impulsive noise control. Shao et al. [15] and Sun et al. [16] contributed additional
nonlinear transformation algorithms, reinforcing the trend towards tailored ANC
solutions for specific noise types.

The integration of threshold-based robust adaptive algorithms, as explored by
Sun et al. [17], and nonlinear feedback mechanisms, as investigated by Behera et
al. [18], further illustrate the multifaceted approaches being employed to enhance
ANC systems' resilience against impulsive noise. Xiong et al. [19] introduced
robust normalized least mean absolute third algorithms, while Xiao et al. [20]
presented efficient filtered-X affine projection sign algorithms, both of which
contribute to the growing repertoire of ANC methodologies.

Liand Yu [21], Zhou et al. [22], and Mirza et al. [23] have collectively advanced
the field by exploring active noise cancellation algorithms specifically designed for
impulsive noise, leveraging convex combinations, symmetric a-Stable
distributions, and less complex solutions to optimize ANC performance across
varied acoustic environments.

In summary, the landscape of ANC has undergone significant transformation
through continuous algorithmic innovations and specialized applications aimed at
combating impulsive noise. Building upon these foundational studies, the present
research seeks to further enhance ANC systems' effectiveness and adaptability,
contributing to quieter, more comfortable environments in both consumer and
industrial domains.

2. Filtered-X Least Mean Squares (FXLMS) Algorithm

The Filtered-X Least Mean Squares (FXLMS) algorithm is fundamental to ANC
systems, serving as a key mechanism for effective noise suppression. This
algorithm is based on adaptive filtering techniques, wherein the system
dynamically adjusts its parameters to reduce the mean squared error between the
intended output-the noise-free signal-and the actual output produced. As depicted
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in Fig. 1, the FXLMS algorithm synthesizes a sound wave that is out of phase with
the incoming noise. This anti-phase wave interacts destructively with the unwanted
noise, leading to a marked decrease in the overall sound level experienced by the
listener. The following steps outline the FXLMS algorithm:

e Step:1 Initialization: Start with initial weights w(0) set to zero or small
random values.
e Step:2 Signal Filtering: $(n) = wT (n)x(n)

where: x(n) is reference noise signal at the input, w(n) are coefficients of the
adaptive filter, updated iteratively, and $(n) is the output of the adaptive filter

e Step:3 Error Calculation: e(n) = d(n) — y(n), where d(n) is the desired
signal

e Step:4 Weight Update: Aw(n) = —ue(n)x(n), where u is the step size of the
algorithm

e Step:5 Filtered Input: $(n) = w” (n) f (x(n)), where f(.) represents the
secondary path filter.

e Step:6 Final Weight Update: w(n + 1) = w(n) — pe(n)x(n), where ¥(n) is
the filtered reference signal that represents the system's secondary path effect.

Reference Noise
Microphone

i 1 din)
S::'::e rj P(z) Error Microphone

() G I (]
) <P
— Cancellation
Loudspeaker

Fig. 1. Block diagram of FXLMS algorithm.

Impulsive noise

Impulsive noise is frequently modelled using the symmetric a -stable (SaS)
distribution, represented as f(x)This adaptable statistical framework effectively
captures the essence of non-Gaussian noise, encompassing impulsive noise
scenarios. The characteristic function of the Sa distribution, illustrated in Eq. (1),
plays a crucial role in elucidating the distinctive attributes of impulsive noise. By
investigating into the SasS distribution and its related mathematical constructs,
researchers strive to achieve a thorough comprehension of impulsive noise, paving
the way for the development of more robust control mechanisms.

p(t) = e7I" (1)

The symmetric a-stable (SaS) serves as a highly adaptable mathematical model
capable of describing a wide array of phenomena, each exhibiting different degrees
of tail heaviness. A pivotal parameter within this distribution is a, which varies
between O and 2. This shape parameter profoundly affects the distribution's
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properties. As a approaches zero, the SaS distribution becomes increasingly
representative of impulsive noise, which is characterized by abrupt, high-intensity
spikes and extreme values. This alignment between decreasing avalues and the
nature of impulsive noise underscores the distribution's suitability for modeling such
noise types. On the other hand, when @ = 2, the SaS distribution converges to the
well-known Gaussian distribution, recognized for its symmetric, bell-shaped curve.
Probability density functions (PDFs) for various a values as shown in Fig. 2.

0.7 T T T
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02 | | — =05 3
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Fig. 2. Probability density functions (PDFs) for various a values.

3. Proposed Methods

¢ Dynamic thresholding: Develop an Al-based technique to dynamically adjust
the threshold for distinguishing between signal and impulsive noise.

e Median Absolute Deviation (MAD) filtering: Implement an Al-powered
method using MAD to enhance noise reduction performance.

3.1. Method 1: Al-based adaptive soft thresholding FXLMS algorithm

In this Al-powered approach, the threshold parameter T(n) serves as a crucial
discriminator between signal and noise. T(n) is determined by multiplying the
standard deviation of the signal, o(n), by a scaling factor a and then adding a bias
term f. This threshold acts as a boundary, separating impulsive noise from the
signal. By adjusting o and 3, as shown in Eqg. (2), we can customize the threshold
to suit specific noise characteristics.

T(n) =a.oc(n)+p 2)
Where, T(n) is the dynamic threshold at time index n, « is the scaling factor that
adjusts the sensitivity of the threshold, f is the bias term that shifts the threshold
value to accommodate specific noise, environments, and o(n) represents the
standard deviation of the signal at time n, calculated as,

N
1
o(n) = NZ(x(n +k)— u(n))2
k=1

Here, x(k)is the signal sample at time k, p is the mean of the signal, and N is the
number of samples considered.
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The denoised signal, Xgenoiseq (1), is designed to preserve essential signal
features while eliminating noise. To achieve this, the signal's absolute value, |x(n)|,
is compared to a threshold, T(n). If [x(n)| is less than or equal to T(n), the denoised
signal retains the original value. However, if |x(n)| exceeds T(n), the denoised
signal is set to zero. This process effectively removes impulsive noise from the
signal, as illustrated in Eq. (3).

_{x(m) if Ix(m)| < T(n)
xdenoised(n) - { 0 lflx(n)l > T(TL) (3)

The decision function, D(n), acts as a thresholding mechanism, separating
signal components from noise. If the magnitude of the input signal, [x(n)|, is below
or equal to the threshold, T(n), then D(n) is set to 1, signifying the presence of a
signal. Conversely, if [x(n)| exceeds T(n), D(n) is set to O, indicating the absence of
a signal. This decision-making process is formally expressed in Eq. (4).

D(n) = { 1 if lx(n)| £ T() @)

0 Otherwise

The function D(n) is used to dynamically adjust the signal's characteristics based
on the presence or absence of signal components. The error signal, e(n), plays a vital
role in the adaptation process, ensuring that impulsive noise is effectively suppressed
while preserving the integrity of the desired signal, as illustrated in Eq. (5).

e(n) = x(n) — D(n).e(n).x(n) 5)

The proposed method updates its weights according to the equation presented
in Eq. (6).

Wn+1)=Wmn)+uDn)e(n) x(n) (6)
The proposed Al-based Adaptive Soft Thresholding FxLMS algorithm

demonstrates its effectiveness in reducing impulsive noise within active noise

control systems.

Convergence Analysis of Method 1

Defining Mean Squared Weight Error (MSWE) Update:
MSWE(n) = E [|I7I7(n)|2] 7)
Expanding the MSWE update for standard FXLMS algorithm:
MSWE(m+1) = E [|[W(n+ D|’| = E [[W 0[] - 2uE[W ()" x(me ()] +
©2E[e2(m)x(n)x" (n)] (8)

Let assume that:

o E[Wm)Tx(n)e(n)] =0, due to zero mean and independence.

o E[e?(n)x(n)x"(n)] = 62R , Where o2 = E[e?(n)] and

e R = E[x(n)x"(n)] is the input autocorrelation matrix.
Thus,

MSWE (n+ 1) = MSWE(n) + u?c2R ©)

To derive the convergence rate, assuming geometric decay in MSWE,
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MSWE(n) = p"MSWE(0) (1D
Substituting into the MSWE update Eq. (11)
p. MSWE(n) = MSWE(n) + u?cZR
Rearranging:p = 1 — p. 4,0 (R) (12)
where 4,,,;, (R) is the Smallest eigenvalue of R.

For steady-state conditions, the MSWE should stabilize, then u?62R = 0, by
ensuring p must be sufficiently small.

The introduction of D(n) effectively gates the adaptation process:

e When D(n) = 1: The algorithm behaves similarly to the standard FXLMS,
updating weights based on the current error and input.

e When D(n) = 0: No weight update occurs, effectively pausing adaptation
during impulsive noise events.

By gating updates during impulsive noise, the algorithm reduces the risk of
overreacting to noise, which can stabilize convergence. Also, the adaptive nature
allows the algorithm to adjust the influence of each update, potentially improving the
mean convergence rate by avoiding large erroneous updates during noise events. The
expected value of D(n) depends on the threshold T'(n)and the statistical properties
of x(n). Assuming D (n) is a Bernoulli random variable with probability P(D(n) =
1) = P(|x(n)| < T(n)) = p, the average effective step size becomes:

Havg = W.P(D(n) =1) = p.p (13)
Now MSWE update for method 1
MSWE(n+1) = p; .MSWE(n) (14)

where p; is the convergence rate for Method 1. From Eq. (12),

p1=1—=pup lnin(R) (15)
To ensure stability, the average step size must satisfy:

0<up<i % (16)
Simplifying:

2
kS o rma® a7

Where A, (R) is the largest eigenvalue of R.

Given that, P(D(n) = 1), the effective step size ug,, is reduced, allowing for
larger nominal step sizes u while maintaining stability. Therefore, by selectively
updating weights, Method 1 can achieve a faster mean convergence rate in
environments with frequent impulsive noise, as it avoids detrimental updates that
could slow down convergence or cause divergence.

3.2. Method 2: FXLMS algorithm based on Al absolute deviation (MAD)

The Al-based Median Absolute Deviation (MAD) mechanism employs MAD to
estimate errors and uses a soft thresholding technique to adaptively manage these
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errors. MAD is determined as the median of the absolute values of the error signal
e(n) within a window of size N, offering a reliable estimate of the error. This
innovative method enhances the performance of the FxLMS algorithm by
incorporating a deviation mechanism that uses MAD for error estimation, coupled
with a soft thresholding approach to dynamically control the error. The calculation
of MAD, which is based on the median of the absolute values of e(n) in a window
of size N, ensures a robust error estimate as outlined in Eq. (18).

MAD(n) = median(le(n — N),e(n — N + 1), .....,e(n)| (18)

The adaptive threshold T(n) is determined based on the MAD and scaling
parameter k. It plays a crucial role in distinguishing impulsive noise from the
desired signal given by Eq. (19).

T(n) = k. MAD(n) (19)

The adaptive soft thresholding technique, represented as e, ¢ (n), is applied to
the error signal e(n). It softens the impact of impulsive noise by comparing the
absolute error magnitude with the threshold T(n) and setting the error to zero if it
falls below the threshold given by Eq.(20).

esore(n) = sign((en)).max (le(n)| = T(n),0) (20)

The weight updating equation for the proposed method based on FXLMS
algorithm is given by Eq. (21).

Wn+1) = W) + pegp(n) x(n) (21)

This Al-based approach offers a promising method for effectively reducing
impulsive noise in active noise control systems, enhancing their performance in
various applications.

Convergence analysis of method 2

The soft thresholding operation attenuates the error signal, especially during
impulsive noise events, by reducing its magnitude based on the dynamically set
threshold T'(n).

e When |e(n)| > T(n): The error signal is reduced but retains its sign, allowing
for partial updates to the weights.

e When |e(n)| < T(n): The error signal is nullified, preventing weight updates
that could be influenced by noise.

By attenuating the influence of impulsive errors, Method 2 reduces the variance
in weight updates, potentially enhancing the mean convergence rate. The use of
MAD ensures that the threshold T'(n) adapts to the current error signal distribution,
maintaining robustness across varying noise conditions. The effective step size in
Method 2 is influenced by e, ¢ (1):

:ueff = HU. esoft(n) (22)

ezsoft(n)
e2(n)

Assuming an attenuation factor ¢ = E [ ] the average effective step size is:

Havg = K. C (23)
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Given the soft thresholding operation, the expected value of ey, ¢ (n)) is:
E[esore(n)] = E[sign(e(n)). max(le(n)|) — k. MAD(n), 0] (24)

As e(n) follows a symmetric distribution around zero, the above expectation
simplifies to focusing on the mean squared error (MSE) minimization while
reducing the influence of large errors. Now MSWE update for method 2 is

MSWE(n + 1) = p, . MSWE (n) (25)
Here p, is the convergence rate for Method 2. From Eq. (12),
p2 = 1 —p.c.Amin(R) (26)

To ensure stability, the average step size must satisfy:

2
¢. Amax(R)

u< (27)

Given that e, (n) is generally smaller than e(n), the effective step size is
reduced, enhancing stability. By soft thresholding the error signal, Method 2
effectively dampens the influence of impulsive noise, allowing the algorithm to
maintain a consistent adaptation rate without being derailed by sporadic large
errors. This leads to a more stable and potentially faster convergence in
environments with significant impulsive noise.

4, Results and Discussion

Iterative analysis: To evaluate the effectiveness and convergence rates of the
proposed methods, assume the following conditions with the following parameters:

o Filter Configuration: Filter Length L = 1, Optimal Weight W* = 1 and, Initial
Filter Weight W (0) = 0.

e Signal Characteristics: x(n) = 1,d(n) = W*.x(n), R = E[x(n)?]

¢ Algorithm Parameters for Method 1: u = 0.01 andp = P(D(n) = 1) = 0.8.

e Algorithm Parameters for Method 2: u = 0.01, k = 4 and MAD(n) = 0.1

4.1. Method 1: Al-based adaptive soft thresholding FXLMS algorithm

Based on above assumption, theoretical convergence rate of the method 1 is
calculated as, p; =1 —pp.Apin(R) =1—-0.01%x08x1=0984 . The
convergence rate p; = 0.984 implies that the error signal e(n) reduces by a factor
of p, in each iteration, given as e(n + 1) = p; X e(n) = 0.984 x e(n). This
means that each iteration reduces the error by 1.6% (since 1-0.984 = 1.6%).

Table 1 showcases the Adaptive Soft Thresholding FXLMS algorithm's
capability to iteratively adjust filter weights, steadily reducing the error signal over
time. The consistent reduction in error and the corresponding increase in filter
weight W(n) towards the optimal value W* =1 confirm the algorithm's
effectiveness in impulsive noise reduction within ANC systems. The following
table illustrates the filter weight updates and error signals, over 100 iterations.

Initial iterations (n=0 to n=4):
e At each iteration, the filter weight W (n) increases by AW (n) times.
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e The error e(n)decreases as W (n) approaches the desired value W* = 1. Each
increment reduces the error proportionally to the current error, facilitating
exponential convergence.

e The filter weight increases smoothly towards W*, with the error diminishing
by approximately 1% each iteration in these early steps.

Mid-Range Iterations (n = 10 to n = 50):
e The weight W(n) continues to increase steadily, with each increment
becoming smaller as W (n)gets closer to 1.

e The error e(n) decreases by approximately 1% iteration, consistent with the
theoretical convergence rate p; = 0.984.

Final Iterations (n = 80 to n = 100):

o The filter weight W (n) is nearing the optimal value W* = 1, with the error
e(n) reducing to below 0.2.

e As W (n) increases, the increment AW (n) becomes progressively smaller,
ensuring that the filter does not overshoot the desired value.

¢ By iteration 100, W (n) has stabilized around 0.8024, with minimal changes in
subsequent iterations, indicating that the filter is converging towards W* = 1.

Table 1. Filter weights updated iteratively using Method 1.

Iterations e(n) AW (n)

) W (n) —1-wm) D(n) = u.D(n). Wn+1)
e(n).x(n)

0 0.000 1,000 1 0.010 0.010

1 0.010 0.990 1 0.0099 0.0199

2 0.0199 0.9801 1 0.009801 0.029701

3 0020701  0.970299 1 0.00970299 0.03940399

4 0.03940399  0.96059601 1 0.00960596 0.04900995

10 0.08910655  0.91089345 1 0.00910893 0.09821549

50 0.46416240 053583760 1 0.00535838 0.46952078

80 0.74635125  0.25364875 1 0.00253649 0.74888774

90 0.79842423 020157577 1 000201576 0.80044000

100 0.8004400  0.1995600 1 0.00199560 0.80243560

4.2.Method 2: FXLMS algorithm based on Al absolute deviation
(MAD)

Table 2 showcases the FXLMS Algorithm Based on Al Absolute Deviation capability
to iteratively adjust filter weights, steadily reducing the error signal over time.

Initial Iterations (n =0 to n = 4):

¢ In the initial iterations, the error e(n) is significantly higher than the threshold
T(n) = 0.4, resulting e, ¢ (n) > 0, and the filter weights are actively updated
to reduce the error.

Journal of Engineering Science and Technology Special Issue 4/2025



182 V. Saravanan and N. Santhiyakumari

e Each iteration reduces the error by approximately 0.60 to 0.50 units, as the
W(n) approaches the desired value W* =1 .The algorithm begins its
convergence by making substantial adjustments to the filter weights, rapidly
decreasing the error signal e(n).

Mid-Range Iterations (n = 10 to n = 50):

o As the filter weight W (n) increases, the error e(n)decreases but remains
above the threshold T(n) = 0.4, ensuring that eg,s(n) > 0. Thus, weight
updates continue, though with diminishing increments.

e The error reduction per iteration becomes smaller (AW (n)decreases), leading
to a gradual approach towards the desired filter weight W* = 1.

e The threshold T'(n) ensures that only significant errors contribute to weight
updates, preventing minor fluctuations from causing unnecessary adjustments.

Table 2. Filter weights updated iteratively using Method 2.

e(n) esope(M) = AW(n) =

Iterations = sign((en)). L Wmn
w T .e n).

() ) a ™ max (le(m)| '; (ns;f‘( LY

- W(n)) —T(n),0)
0 0.000 1,000 04 0600 0.006 0.006
1 0.006 0.994 04 059 000504 001194
2 001194 098806 04  0.58806 0.0058806  0.017820
3 0.0178206 0982179 04 05821794 00058217  0.023642
4 0.0236424 0976357 04 05763576  0.0057635  0.029405
10 0.0891065 0910893 04 05108934  0.0051089  0.094215
20 01810319 0.818968 04 04189680  0.0041896  0.185221
30 02715014 0728498 04 03284985  0.0032849 0274786
40 0.3632373 0.636762 04 02367626  0.0023676  0.365605
50 04641624 0535837 04 01358376  0.0013583  0.465520
80 0.7463512 0253648 04  0.000 0.000 0.746351
90 0.7984242 0201575 04  0.000 0.000 0.798424
100 0.8004400 0.199560 0.4  0.000 0.000 0.800440

Final Iterations (n = 80 to n = 100):

e At iterations n = 80 and beyond, the error e(n) drops below the threshold
T(n) = 0.4 . Consequently, eg,r.(n) = 0, leading to AW (n) = 0.

e With AW (n) = 0, the filter weight W (n) remains constant, indicating that the
algorithm has effectively converged. The filter no longer updates its weights
as the error is within acceptable bounds defined by the MAD-based threshold.

e The filter weight stabilizes aroundW (n) = 0.8004, demonstrating that the
algorithm has reached a steady state where further significant error reductions
are not necessary.

Journal of Engineering Science and Technology Special Issue 4/2025



Artificial Intelligence Based New Approaches for Impulsive Noise . . . . 183

Based on above assumption, theoretical convergence rate of the method 2is
calculated as, p, =1 —p.c.pin(R) =1—-0.01x08x1=0984 . Like
Method 1, this implies a 1.6% reduction in error per iteration, adhering to the
theoretical prediction.

4.3. Computer Simulations

Figure 3 depicts the Signal-to-Noise Ratio (SNR) improvement achieved by two
distinct methods (Method 1 and Method 2) over a sequence of iterations.

e o = 1.2: Method 1 consistently outperforms Method 2, suggesting it may be
more effective in suppressing impulsive noise under these conditions.

e o = 1.6: Both methods show comparable performance after an initial period
where Method 1 has a slight advantage.

e o = 1.8: Method 2 demonstrates superior performance, indicating its potential
suitability for handling impulsive noise characteristics associated with this

value of a.
o = 1.2: SNR Improvement
20 : : ; : T T T T :
. : : : Method 1 E
g 1 T TR (|| e cto0 2 H— T
% H H H , ' | ' ' H
5 0 -
A0 I I I | ] 1 ] | I
0 10 20 30 40 50 60 70 80 90 100
Iterations (n)
o = 1.6: SNR Improvement
2 T T T ! ! ! ! ! !
& 10|k-eme-- O O T S Method 1 i
= H Method 2
i i '
5 0 :
10 i I I i i i i i I
10 20 30 40 50 60 70 80 90 100
lterations (n)
o = 1.8: SNR Improvement
5 T : : T T T T T T
o 0
g : : : ' : ' ; ' '
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0 10 20 30 40 50 60 70 80 90 100

lterations (n)

Fig. 3. Signal-to-Noise Ratio (SNR) Characteristics.

Figure 4. shows the convergence behaviour of Method 1 and Method 2 for
suppressing impulsive noise. The performance of each method was evaluated
across three different scenarios, characterized by varying values of the parameter o
(1.2, 1.6, and 1.8). The convergence of filter weights was monitored over a
sequence of iterations.

e Method 1: Demonstrated rapid and smooth filter weight convergence for o =
1.2, suggesting its potential effectiveness in scenarios with rapidly changing
impulsive noise characteristics. For a = 1.6, Method 1 exhibited fast initial
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convergence but stabilized at a different level compared to Method 2. At o =
1.8, Method 1 showed slower convergence and stabilized at a higher value.

Method 2: Exhibited more gradual and oscillatory convergence for a = 1.2 and
1.6. However, at a = 1.8, Method 2 demonstrated faster convergence and
stabilized at a lower value compared to Method 1.

o = 1.2: Filter Weights Convergence
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Fig. 4. Filter weights convergence characteristics.

4.4. Summary of comparative findings

Convergence Speed and Stability: Both methods exhibit similar theoretical
convergence rates (p = 0.984), ensuring efficient error reduction. Method 1
steadily approaches the optimal filter weight (W™ = 1), achieving minimal steady-
state error. Method 2 rapidly converges initially and then stabilizes, preventing
overshooting and maintaining stability.

Noise Suppression Effectiveness: Method 1 excels in both heavily (0=1.2) and
moderate (0=1.6) impulsive noise conditions, providing robust suppression without
the risk of overfitting. Method 2 is highly effective in environments with low
impulsive noise (0=1.8), fully converging to suppress noise.

Parameter Tuning and Flexibility: Method 1 requires careful tuning of step size
probability to balance convergence speed and stability. Method 2 offers flexibility through
the scaling parameter, allowing dynamic adjustment based on noise characteristics.

5. Conclusions

This paper analysis thoroughly compared Method 1: Adaptive Soft Thresholding
FXLMS and Method 2: MAD-Based Soft Thresholding FXLMS within ANC
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systems under varying noise impulsiveness characterized by different tail indices
(a). Method 1 consistently demonstrated robust convergence towards the optimal
filter weight, effectively minimizing residual errors and significantly enhancing the
Signal-to-Noise Ratio (SNR), especially in environments with heavy-tailed noise.
In contrast, Method 2 excelled in providing stable performance by selectively
attenuating substantial error signals through MAD-based soft thresholding,
resulting in rapid initial convergence and maintaining steady filter weights around
a sub-optimal value. While Method 1 is ideal for applications demanding
comprehensive noise suppression and complete convergence, Method 2 offers
enhanced resilience and stability in dynamic and variable noise environments.
Ultimately, the choice between these methods pivots on the specific requirements
of the ANC application, with Method 1 being preferable for scenarios prioritizing
maximal noise reduction and Method 2 suited for settings where stability and
robustness against noise fluctuations are paramount.
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