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Abstract 

The challenge of undetected corrosion in oil pipelines requires the development 

of a machine learning based solution to predict progression and optimize 

maintenance to prevent leaks and contamination. This project aims to determine 

the most effective machine learning algorithm among k-nearest Neighbours (k-

NN), Support Vector Machine (SVM) and Random Forest and implement it in a 

real-time pipeline model with an alarm system. The study uses an open-source 

dataset from GitHub, originally intended for regression analysis, and applies 

binarization of labels to classify corrosion defects as 'high' or 'low' The research 

highlights the importance of data quality, starting with data cleaning, to ensure 

reliable training data. The data is split in an 8:2 ratio, with 80% training and 20% 

testing. Metrics such as the F1score, ROC-AUC and confusion matrix are used 

to assess performance. The results show that the SVM model achieves the highest 

accuracy with 95.82%, while the k-NN model has the lowest accuracy with 

85.14%. However, as this dataset comes from an external source, the validity of 

the results still needs to be proven. The main goal remains to implement the 

model in a real-time system with an alert function to achieve individualised 

performance results. In summary, while the SVM model is effective in this 

analysis, its true validation will depend on its implementation in a real-time 

pipeline monitoring system. This step is crucial to ensure its practical 

applicability and reliability in operational environments. 

Keywords: K-nearest neighbour, Machine learning, Oil pipeline, Random forest, 

Real-Time, SVM. 
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1.  Introduction 

Oil pipelines are essential in the energy sector for the cost-effective transportation 

of oil and gas over long distances. They connect lines between producers, 

production suppliers, and end users. Corrosion is a common issue in the oil pipeline 

industry and is the primary cause of both internal and external leaks. Internal 

corrosion occurs due to chemical reactions between the pipeline material and 

transported fluids, which can include water, salts, acids, and bacteria.  

Excessive water content, especially fluids reaching up to 50%, significantly 

increases the likelihood of localized corrosion along the pipeline's bottom [1]. On 

the other hand, external corrosion, on the other hand, results from interactions 

between the pipeline and its surrounding soil and moisture in the environment, 

exacerbated by factors such as poor soil conditions, degradation of coatings, and 

inadequate cathodic protection [2]. 

Corrosion is critical to consider in efforts to mitigate leaks not only because it 

creates pits and holes in pipeline walls but also because as wall thickness decreases 

over time with more pits and holes, the risk of pipeline rupture and subsequent 

environmental damage, particularly to marine life, increases [3, 4].  

Therefore, maintaining the integrity of pipelines is critical, as a pipeline leak 

can have catastrophic economic and environmental consequences, such as damage 

to the marine ecology, high legal costs, and litigation. Traditional leak detection 

methods are often ineffective, especially for early detection, since they primarily 

depend on visual inspections due to human bias [5]. This can result in tiny leakage 

problems not being detected early, leading to significant losses. 

Machine learning models can be employed to detect early signs of corrosion by 

analysing sensor data such as pressure, flow rate, and acoustic signals throughout 

the pipeline. Machine learning is a rapidly expanding technology in various fields 

due to its ability to work without human intervention. Machine learning recognises 

patterns and makes predictions without extensive complex programming. 

Integrating sensor data and leakage detection results in oil pipeline management 

can significantly benefit from developing machine learning models [6].  

The Support vector machine (SVM) model begins by inputting the sensor data 

from the various sensors along the pipelines as points in a multidimensional space, 

with each dimension representing a specific feature extracted from the sensor 

readings. The algorithm seeks to identify an optimal hyperplane within this space 

that effectively distinguishes between the data points, allowing a comparison 

between normal operating conditions and the situations that indicate potential leaks.  

The effectiveness of SVM, in this instance, stems from its ability to optimise 

the margin between different types of data points. This margin is known as the 

support vector representing the distance from the hyperplane to the nearest data 

points in each class [7]. By maximising this margin, SVM enhances its ability to 

generalise and accurately classify new data points. During training, SVM learns 

from labelled historical data, including normal pipeline activities and confirmed 

leak based. This supervised learning method allows SVM to modify and construct 

the ideal hyperplane that best distinguishes between these two states using the 

extracted sensor characteristics [8].  
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Once trained, the SVM model can classify real-time sensor data streams, 

quickly detecting deviations from normal operation that may reveal pipeline leaks. 

The effectiveness of SVM in this context lies in its capacity to maximize the margin 

between different types of data points; this margin represents the distance from the 

hyperplane to the nearest data points in each class, known as support vectors. By 

maximizing this margin, SVM enhances its ability to generalize and accurately 

classify new data points. 

Another type of machine learning is the k-Nearest Neighbours (k-NN) 

algorithm uses supervised learning to classify pipeline conditions based on their 

proximity to historical data points. Each sensor data point is represented in a feature 

space, with dimensions corresponding to sensor readings or derived features such 

as mean or standard deviation.  

Then, k-NN identifies the k-nearest neighbour to a new data point using 

distance metrics like Euclidean distance, where k specifies the number of 

neighbours considered [9]. The Euclidian distance formula is as shown in Eq. (1). 

The algorithm then classifies the new data point by majority voting if a 

classification task is performed or averages if a regression task is performed based 

on its nearest neighbours [10]. The assumption made in this model is that nearby 

data points in the feature space belong to the same class meaning that the class or 

boundary is determined by the closeness of the data cluster [10].  

The efficacy of k-NN depends significantly on the choice of k whereby smaller k 

values create complex decision boundaries that may be sensitive to noise resulting in 

higher accuracy predictions while larger values smooth out boundaries but may 

overlook local patterns. The Euclidean distance formula is shown in Eq. (1). 

𝑑(𝑥, 𝑦) = √∑ (𝑥𝑖 − 𝑦𝑖)2𝑛

𝑖 =1
                                                                                                      (1) 

where 𝑥 and 𝑦 are data points, and 𝑛 is the number of features. 

There are also Random Forest that operates by constructing multiple decision 

trees during the training process. It generates the final output by taking the mode 

of the classes for classification tasks or the mean of the predictions for regression 

tasks from the individual trees. Each decision tree is created independently and 

trained on a randomly sampled subset of the training data, known as bootstrap 

samples, with replacement. Rather than using all features at each node, Random 

Forest selects a random subset of features to make splits, introducing diversity and 

randomness among the trees in the ensemble.  

A recursive binary splitting process develops each decision tree based on the 

chosen features. The splitting criteria differ between classification and regression 

tasks, where classification splits aim to maximize information gain, while 

regression splits focus on minimizing variance at each node. The majority vote 

(mode) of all the individual trees’ predictions determines the Random Forest’s final 

prediction in the classification tasks. In contrast, regression tasks are calculated as 

the average (mean) of the predictions from all the trees [11]. 

These models autonomously identify leakage patterns and predict potential 

leakage hot spots in the pipeline. Hence, this study aims to evaluate three machine 

learning models which are SVM, k-NN and Random Forest to evaluate the model 

with the highest accuracy in detecting leakage in oil pipelines. The motivation for this 
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study is to implement machine learning as part of the leakage detection system in 

pipelines that can learn patterns from the sensor data such as pressure sensor and flow 

rate sensor and make accurate predictions of identifying leakages and normal state. 

2.  Methods 

Figure 1 shows the flowchart of the methodology for developing a machine-

learning system for detecting oil pipeline leakages. The method used an external 

dataset with eight features from GitHub containing 10,293 data instances of leakage 

and normal states that will be used for model training and testing.  

The first part of creating the model is data preprocessing, which involves 

binarizing the target attribute and standardising the feature value by applying a 

polynomial transformation to allow the model to classify the instances based on the 

threshold value.  

The next step is creating the correlation matrix heatmap between the eight 

features in the dataset to determine the features with the highest correlation to the 

corrosion factor. Once the map is generated, the next part will split the data into 

80:20 for training and testing purposes. Three machine learning models, SVM, k-

NN, and Random Forest, were trained and evaluated using accuracy, precision, 

recall, specificity, F1-score, and ROC-AUC metrics. The results were analysed to 

identify the best-performing model.  

These findings will be compared with those from the pipeline model developed 

using pressure and flow sensors, which were also trained on the same three models, 

to confirm that the model excels in both scenarios. 

 

Fig. 1. Main flow chart of the methodology for developing  

a machine learning system for detecting oil pipeline leakage. 
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An open-source dataset on oil pipeline corrosion defects from GitHub was used, 

containing eight features and 10,293 instances, including attributes like 

temperature, wellhead pressure, gas flow, oil production, water production, CO2 

concentration, and gas gravity.  

The target attribute, "corrosion defect," was adapted from a regression to a 

classification problem by binarizing it: values ≤0.211 were labelled 'low' (no leaks), 

and values >0.211 were labelled 'high' (leaks present).  

Feature values were transformed into a NumPy array to establish the leakage 

threshold and standardized to achieve a mean of 0 and a standard deviation of 1, as 

illustrated in Fig. 2. This standardization guarantees that all features contribute 

equally to the model's predictions, thereby improving algorithm performance. A 

polynomial transformation was applied to capture non-linear relationships within 

the data. Finally, a pre-trained model was utilized to predict corrosion defects based 

on these processed features. 

 

Fig. 2. Derivation of corrosion defect value from the eight features. 

A correlation matrix heatmap was produced to display the correlation 

coefficients between the features in the dataset and comprehend the linear 

relationships between numerical variables. The correlation coefficients between all 

pairs of variables were determined using the Pearson correlation method, which 

quantifies the linear correlation between two continuous variables. Figure 3 shows 

the generation of the correlation matrix heatmap. 

 

Fig. 3. Generation of correlation matrix heatmap. 

The heatmap illustrates linear relationships between variables, demonstrating 

positive correlations (increases in tandem) and negative correlations (varies 

inversely). To improve the interpretability and performance of the model, features 

that are strongly correlated with the target variable and have minimal inter-

correlation among themselves are chosen. The dataset was then pre-processed by 

specifying features and binarizing the target variable based on a threshold of 0.211 
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(corresponding to 'high' for values above and 'low' for values at or below). The 

distribution of the target variable was visualized using a count plot, which was used 

to evaluate potential imbalances and class balance as shown in Fig. 4.  

 

Fig. 4. Features and target variable splitting. 

The dataset was partitioned into training and testing sets to facilitate the model's 

development and evaluation. As shown in Fig. 5, 80% of the data was designated 

for training, while the remaining 20% was designated for assessment. To guarantee 

reproducible results across multiple trials, a random state of 42 was established. 

Setting a random state ensures that the random processes involved in data splitting 

yield the same result each time the code is run.  

 

Fig. 5. Train and test data splitting. 

Next, feature scaling-a data preprocessing step-was applied to the training and 

validation sets to ensure that all features contributed equally to the model's 

performance. This was achieved using the StandardScaler function from sci-kit-

learn, which standardises the features by removing the mean and scaling them to 

unit variance. As a result, each feature is adjusted to have a mean of zero and a 

standard deviation of one. The code for the feature scaling step is shown in Fig. 6. 

 

Fig. 6. Feature scaling. 

The dataset was utilised to train three machine learning models-SVM, k-NN, and 

Random Forest-to detect anomalies in parameters such as temperature, pressure, and 
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flow rate, allowing the models to learn the underlying patterns and relationships. 

After completing the training phase, the models underwent testing to assess their 

performance using various metrics, including accuracy, precision, recall, specificity, 

F1-score, and ROC-AUC. These metrics were used to calculate the confusion matrix, 

which determines the number of true positives (TP), true negatives (TN), false 

positives (FP), and false negatives (FN), thus helping to evaluate the accuracy of the 

predictions. Additionally, a Receiver Operating Characteristic (ROC) Curve was 

produced to analyse the classification capabilities of the models by considering the 

Area Under the Curve (AUC) value. The AUC value reflects the classifier's 

effectiveness in distinguishing between the 'low' and 'high' classes, with a higher 

AUC indicating a greater accuracy in the model's predictions. 

3. Results and Discussion 

3.1. Correlation matrix heatmap  

Figure 7 shows the correlation matrix heatmap generated to study the relationships 

between the 8 key attributes used in the dataset which are Wellhead Temperature 

(°C), Wellhead Pressure (psi), Gas Flow Rate (MMCFD), Oil Production Rate 

(BOPD), Water Production Rate (BWPD), Basic Solid and Water Content (BSW, 

%), CO2 Mole Fraction (%) and Gas Gravity to the Corrosion Defect Rate (CR).  

The analysis of each attribute based on the matrix is as follows: 

1. Wellhead Temperature (°C): Weak correlations with all parameters where the 

highest value obtained is 0.02 with Gas Gravity indicating that it has minimal 

influence on the other factors. 

2. Wellhead Pressure (psi): Has a notable negative correlation with Corrosion 

Defect Rate with a value of -0.37, suggesting that when the pressure is higher, 

the rate of corrosion defects is lower. 

3. Gas Flow Rate (MMCFD): Moderate positive correlation with Corrosion 

Defect Rate with a value of 0.22 implying that the rate of corrosion defects is 

higher when the flow rate is higher. 

4. Oil Production Rate (BOPD): Negligible correlations with all parameters. 

5. Water Production Rate (BWPD): Weak correlations with all parameters where 

the highest value obtained is -0.12 with Corrosion Defect Rate indicating that 

it has minimal influence on the other factors. 

6. Basic Solid and Water Content (BSW, %): Weak correlations with all 

parameters where the highest value obtained is 0.12 with Corrosion Defect 

Rate indicating that it has slightly above average influence towards corrosion 

defect compared to the other attributes. 

7. CO2 Mole Fraction (%): Weak correlations with all parameters. 

8. Gas Gravity: Negligible correlations with all parameters. 

9. Corrosion Defect Rate (CR): Has significant negative correlations with 

Wellhead Pressure producing a value of -0.37 and positive correlations with 

the Gas Flow Rate producing a value of 0.22. 

Hence, despite many parameters showing weak interdependencies with each 

other, the highlight of this matrix is the notable correlations between wellhead 

pressure and gas flow rate to the corrosion defect rate, which underscores that the 
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pressure and flow rate parameters play a pivotal role in detecting the corrosion 

defect in an oil pipeline. Therefore, for the next phase of the project, which involves 

constructing the pipeline model, the pressure and flow sensors should be considered 

and prioritized since they have a strong correlation to the corrosion defects rate. 

 

Fig. 7. Correlation matrix heatmap of the features. 

3.2. Machine learning models  

Figure 8 illustrates the calculations used to derive evaluation metrics, including 

precision, recall, F1-score, support, accuracy, macro average, and weighted average 

for the Random Forest model. In contrast, Fig. 9(a) presents the confusion matrix 

for the same model. The ROC curve is a graphical representation of the model's 

performance, with the x-axis depicting the False Positive Rate (FPR) and the y-axis 

representing the True Positive Rate (TPR). 

The AUC value of 0.97, as shown in Fig. 9(b), indicates a high level of accuracy, 

suggesting that the Random Forest model effectively distinguishes between the two 

classes: leakage and no leakage. An AUC of 1.0 indicates a perfect model, while an 

AUC of 0.5 represents a model with no ability to discriminate between classes. The 

confusion matrix confirms the model's robust performance, showing a significant 

number of true positives (858) and true negatives (996). However, it also reveals 

some false positives (98) and false negatives (107), indicating areas where 

improvement is needed. The model's overall accuracy is 0.90, meaning it accurately 

predicted the class 90% of the time. These findings suggest that while the Random 
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Forest model performs well for this task, there is still potential for improvement, 

particularly in reducing false positives and false negatives. 

 

Fig. 8. The classification report for the Random Forest model includes precision, 

recall, F1-score, support, accuracy, macro average, and weighted average.  

 

Fig. 8. Confusion matrix of the Random Forest model  

(b) ROC curve of the Random Forest model. 

Figure 10 displays the calculations for the evaluation metrics, including 

precision, recall, F1-score, support, accuracy, macro average, and weighted average 

for the k-NN model. In contrast, Fig. 11(a) presents the confusion matrix associated 

with the k-NN model. The AUC value of 0.93 indicates a high level of accuracy, 

as shown in Fig. 11(b). The overall accuracy of the k-NN model is 0.85, indicating 

that it correctly predicts the class 85.13% of the time. The confusion matrix reveals 

a substantial number of true positives (804) and true negatives (949), reflecting 

strong performance. While these results demonstrate that the k-NN model is 

effective for this task, there is still potential for improvement, particularly in 

minimizing false positives (145) and false negatives (161). 
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Fig. 10. The classification report for the k-NN model encompasses precision, 

recall, f1-score, support, accuracy, macro average, and weighted average. 

 

Fig. 11. (a) Confusion matrix of the k-NN model, (b) ROC curve of the k-NN model. 

Figure 12 presents the calculations used to derive the evaluation metrics for the 

SVM model. Figure 13(a) showcases the confusion matrix for the SVM model, 

which achieves an impressive AUC value of 0.99, as shown in Fig. 13(b). This high 

AUC indicates the model's outstanding ability to distinguish between the two 

classes, confirming its effectiveness in identifying leakage versus no leakage 

conditions. The confusion matrix highlights a substantial number of true positives 

(917) and true negatives (1056), emphasizing the model's strong performance. 

Furthermore, the low counts of false positives (38) and false negatives (48) indicate 

that the model is both reliable and precise in distinguishing between normal and 

leakage states in a pipeline. As such, the SVM model stands out as the preferred 

option for implementation in a pipeline model that incorporates real-time data. 

 

Fig. 12.9 The classification report for the SVM model encompasses precision, 

recall, f1-score, support, accuracy, macro average, and weighted average. 
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Fig. 13. (a) Confusion matrix of the SVM model,  

(b) . ROC Curve of the SVM model. 

3.3. Model comparison 

Based on the results, SVM shows the best model compared to the Random Forest 

and k-NN models, with an AUC score of 0.99 and an accuracy of 95.82%. This 

exceptional performance shows that SVM can distinguish between a leak and a 

non-leak state in an oil pipeline. The SVM model also has far fewer false positives 

and negatives than the other models, indicating that the probability of obtaining a 

false alarm is also relatively low compared to the other models.  

The SVM outperformed Random Forest, and k-NN can be explained by its 

ability to work effectively in high dimensional space with many attributes such as 

in this study (wellhead temperature, pressure, flow rate, etc. [12]. Aside from that, 

SVM works well in recognizing patterns even with a small number of training 

samples, which is a great advantage in pipeline leakage detection, where the 

number of samples is often limited.  

On the other hand, although the Random Forest and k-NN models performed 

well, both models still fell short of SVM. Despite its capability to handle noisy data, 

the Random Forest model tends to overfit training data, leading to slightly higher 

rates of false positives and false negatives. Meanwhile, the k-NN model relies 

heavily on local similarity measures and can struggle to distinguish boundaries for 

leak and non-leak states when the dataset is not uniformly distributed, causing the 

optimal k value not to be readily identifiable.  

There are also limitations due to the usage of external datasets from GitHub. 

The quality and relevancy of the different oil pipeline conditions will be 

questionable. Moreover, the training models using external datasets may yield 

different results and exhibit sub-par performance when implemented using a 

pipeline model with real-time data in the subsequent phases. Challenges persist as 

variations in operational conditions and sensor readings can impact the model's 

capability to differentiate between normal fluctuations and genuine leaks. 

4.  Conclusion  

In summary, this study illustrates the assessment of machine learning models for 

detecting oil pipeline leakage caused by corrosion using an external dataset from 

GitHub. ROC-AUC, F1-Score, and the Confusion Matrix are the evaluation metrics 

employed to assess the efficacy of the models. The results show that SVM obtained 

the highest accuracy at 95.82%, followed by Random Forest at 90.04% and k-NN 

at 85.14%. This may be attributed to the working principle of SVM, which is to 

maximize the margin between classes in high-dimensional spaces to establish a 

more precise decision boundary between the leak and no-leak classes. 

Nevertheless, it is important to acknowledge that the performance results derived 

from the external dataset are insufficient to validate the performance of SVM in 

real-time operational settings. Additional validation is required using 

individualized results to ensure that SVM still yields the highest accuracy of all 

three models, even in real-time operation. 
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