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Abstract

The challenge of undetected corrosion in oil pipelines requires the development
of a machine learning based solution to predict progression and optimize
maintenance to prevent leaks and contamination. This project aims to determine
the most effective machine learning algorithm among k-nearest Neighbours (k-
NN), Support Vector Machine (SVM) and Random Forest and implement it in a
real-time pipeline model with an alarm system. The study uses an open-source
dataset from GitHub, originally intended for regression analysis, and applies
binarization of labels to classify corrosion defects as 'high' or 'low' The research
highlights the importance of data quality, starting with data cleaning, to ensure
reliable training data. The data is split in an 8:2 ratio, with 80% training and 20%
testing. Metrics such as the Flscore, ROC-AUC and confusion matrix are used
to assess performance. The results show that the SVM model achieves the highest
accuracy with 95.82%, while the k-NN model has the lowest accuracy with
85.14%. However, as this dataset comes from an external source, the validity of
the results still needs to be proven. The main goal remains to implement the
model in a real-time system with an alert function to achieve individualised
performance results. In summary, while the SVM model is effective in this
analysis, its true validation will depend on its implementation in a real-time
pipeline monitoring system. This step is crucial to ensure its practical
applicability and reliability in operational environments.

Keywords: K-nearest neighbour, Machine learning, Oil pipeline, Random forest,
Real-Time, SVM.

148



Real-Time Detection of Oil Pipeline Leakage using Machine Learning . . . . 149

1. Introduction

Oil pipelines are essential in the energy sector for the cost-effective transportation
of oil and gas over long distances. They connect lines between producers,
production suppliers, and end users. Corrosion is a common issue in the oil pipeline
industry and is the primary cause of both internal and external leaks. Internal
corrosion occurs due to chemical reactions between the pipeline material and
transported fluids, which can include water, salts, acids, and bacteria.

Excessive water content, especially fluids reaching up to 50%, significantly
increases the likelihood of localized corrosion along the pipeline's bottom [1]. On
the other hand, external corrosion, on the other hand, results from interactions
between the pipeline and its surrounding soil and moisture in the environment,
exacerbated by factors such as poor soil conditions, degradation of coatings, and
inadequate cathodic protection [2].

Corrosion is critical to consider in efforts to mitigate leaks not only because it
creates pits and holes in pipeline walls but also because as wall thickness decreases
over time with more pits and holes, the risk of pipeline rupture and subsequent
environmental damage, particularly to marine life, increases [3, 4].

Therefore, maintaining the integrity of pipelines is critical, as a pipeline leak
can have catastrophic economic and environmental consequences, such as damage
to the marine ecology, high legal costs, and litigation. Traditional leak detection
methods are often ineffective, especially for early detection, since they primarily
depend on visual inspections due to human bias [5]. This can result in tiny leakage
problems not being detected early, leading to significant losses.

Machine learning models can be employed to detect early signs of corrosion by
analysing sensor data such as pressure, flow rate, and acoustic signals throughout
the pipeline. Machine learning is a rapidly expanding technology in various fields
due to its ability to work without human intervention. Machine learning recognises
patterns and makes predictions without extensive complex programming.
Integrating sensor data and leakage detection results in oil pipeline management
can significantly benefit from developing machine learning models [6].

The Support vector machine (SVM) model begins by inputting the sensor data
from the various sensors along the pipelines as points in a multidimensional space,
with each dimension representing a specific feature extracted from the sensor
readings. The algorithm seeks to identify an optimal hyperplane within this space
that effectively distinguishes between the data points, allowing a comparison
between normal operating conditions and the situations that indicate potential leaks.

The effectiveness of SVM, in this instance, stems from its ability to optimise
the margin between different types of data points. This margin is known as the
support vector representing the distance from the hyperplane to the nearest data
points in each class [7]. By maximising this margin, SVM enhances its ability to
generalise and accurately classify new data points. During training, SVM learns
from labelled historical data, including normal pipeline activities and confirmed
leak based. This supervised learning method allows SVM to modify and construct
the ideal hyperplane that best distinguishes between these two states using the
extracted sensor characteristics [8].
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Once trained, the SVM model can classify real-time sensor data streams,
quickly detecting deviations from normal operation that may reveal pipeline leaks.
The effectiveness of SVM in this context lies in its capacity to maximize the margin
between different types of data points; this margin represents the distance from the
hyperplane to the nearest data points in each class, known as support vectors. By
maximizing this margin, SVM enhances its ability to generalize and accurately
classify new data points.

Another type of machine learning is the k-Nearest Neighbours (k-NN)
algorithm uses supervised learning to classify pipeline conditions based on their
proximity to historical data points. Each sensor data point is represented in a feature
space, with dimensions corresponding to sensor readings or derived features such
as mean or standard deviation.

Then, k-NN identifies the k-nearest neighbour to a new data point using
distance metrics like Euclidean distance, where k specifies the number of
neighbours considered [9]. The Euclidian distance formula is as shown in Eq. (1).
The algorithm then classifies the new data point by majority voting if a
classification task is performed or averages if a regression task is performed based
on its nearest neighbours [10]. The assumption made in this model is that nearby
data points in the feature space belong to the same class meaning that the class or
boundary is determined by the closeness of the data cluster [10].

The efficacy of k-NN depends significantly on the choice of k whereby smaller k
values create complex decision boundaries that may be sensitive to noise resulting in
higher accuracy predictions while larger values smooth out boundaries but may
overlook local patterns. The Euclidean distance formula is shown in Eq. (1).

dey) = | X (i —)? 1)

where x and y are data points, and n is the number of features.

There are also Random Forest that operates by constructing multiple decision
trees during the training process. It generates the final output by taking the mode
of the classes for classification tasks or the mean of the predictions for regression
tasks from the individual trees. Each decision tree is created independently and
trained on a randomly sampled subset of the training data, known as bootstrap
samples, with replacement. Rather than using all features at each node, Random
Forest selects a random subset of features to make splits, introducing diversity and
randomness among the trees in the ensemble.

A recursive binary splitting process develops each decision tree based on the
chosen features. The splitting criteria differ between classification and regression
tasks, where classification splits aim to maximize information gain, while
regression splits focus on minimizing variance at each node. The majority vote
(mode) of all the individual trees’ predictions determines the Random Forest’s final
prediction in the classification tasks. In contrast, regression tasks are calculated as
the average (mean) of the predictions from all the trees [11].

These models autonomously identify leakage patterns and predict potential
leakage hot spots in the pipeline. Hence, this study aims to evaluate three machine
learning models which are SVM, k-NN and Random Forest to evaluate the model
with the highest accuracy in detecting leakage in oil pipelines. The motivation for this
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study is to implement machine learning as part of the leakage detection system in
pipelines that can learn patterns from the sensor data such as pressure sensor and flow
rate sensor and make accurate predictions of identifying leakages and normal state.

2. Methods

Figure 1 shows the flowchart of the methodology for developing a machine-
learning system for detecting oil pipeline leakages. The method used an external
dataset with eight features from GitHub containing 10,293 data instances of leakage
and normal states that will be used for model training and testing.

The first part of creating the model is data preprocessing, which involves
binarizing the target attribute and standardising the feature value by applying a
polynomial transformation to allow the model to classify the instances based on the
threshold value.

The next step is creating the correlation matrix heatmap between the eight
features in the dataset to determine the features with the highest correlation to the
corrosion factor. Once the map is generated, the next part will split the data into
80:20 for training and testing purposes. Three machine learning models, SVM, k-
NN, and Random Forest, were trained and evaluated using accuracy, precision,
recall, specificity, F1-score, and ROC-AUC metrics. The results were analysed to
identify the best-performing model.

These findings will be compared with those from the pipeline model developed
using pressure and flow sensors, which were also trained on the same three models,
to confirm that the model excels in both scenarios.

Support Vector Machine (SVM) K-Nearest Nelgnbors (k-NN) Random Focest

Fig. 1. Main flow chart of the methodology for developing
a machine learning system for detecting oil pipeline leakage.
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An open-source dataset on oil pipeline corrosion defects from GitHub was used,
containing eight features and 10,293 instances, including attributes like
temperature, wellhead pressure, gas flow, oil production, water production, CO-
concentration, and gas gravity.

The target attribute, "corrosion defect,” was adapted from a regression to a
classification problem by binarizing it: values <0.211 were labelled 'low' (no leaks),
and values >0.211 were labelled 'high' (leaks present).

Feature values were transformed into a NumPy array to establish the leakage
threshold and standardized to achieve a mean of 0 and a standard deviation of 1, as
illustrated in Fig. 2. This standardization guarantees that all features contribute
equally to the model's predictions, thereby improving algorithm performance. A
polynomial transformation was applied to capture non-linear relationships within
the data. Finally, a pre-trained model was utilized to predict corrosion defects based
on these processed features.

Wellhead Wellhead MMCFD- BOPD (barrel of oil BWPD (barrel of water BSW - basic solid €02 mol. (%) @ Gas
Temp. (C)  Press (psi) gas  produced per day) producedperday)  and water (%) 25C&1Atm.  Grav.

0 53.3549 11051310 12.8663 13789315 75.6442 3.3628 07205

1 72.2534 1026.3148 34239 1028.7463 44,2063 3.8679  0.8940

65.0794 7229642 6.2303 2017.9195 12124212 17.5518 23552 07661
60.7060 1557.2321 17114 5582210 1716.0908 65.7869 17253 07738

4 46.1874 13044192 8.5750 1280.4693 1929.2197 37.4468 18327 07611

X2 = df2.iloc[:,1:
X2.head( )

X2 = X2.values

X2 = StandardScaler().fit_transforn(X2)
X2_poly = pre_process.fit_transform(X2)

71

df2['CR-corrosion defect']= model.predict(X2_poly)

Fig. 2. Derivation of corrosion defect value from the eight features.

A correlation matrix heatmap was produced to display the correlation
coefficients between the features in the dataset and comprehend the linear
relationships between numerical variables. The correlation coefficients between all
pairs of variables were determined using the Pearson correlation method, which
quantifies the linear correlation between two continuous variables. Figure 3 shows
the generation of the correlation matrix heatmap.

(’ #-Correlation matrix-heatmap
plt.figure(figsize=(10, 8))
sns.heatmap(data.corr(), annot=True, cmap="coolwarm', fmt=".2f")
plt.title('Correlation Matrix Heatmap')
plt.show()

Fig. 3. Generation of correlation matrix heatmap.

The heatmap illustrates linear relationships between variables, demonstrating
positive correlations (increases in tandem) and negative correlations (varies
inversely). To improve the interpretability and performance of the model, features
that are strongly correlated with the target variable and have minimal inter-
correlation among themselves are chosen. The dataset was then pre-processed by
specifying features and binarizing the target variable based on a threshold of 0.211
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(corresponding to 'high' for values above and 'low' for values at or below). The
distribution of the target variable was visualized using a count plot, which was used
to evaluate potential imbalances and class balance as shown in Fig. 4.

[ ]

Define features and target variable
= data.drop('CR-corrosion defect', axis=1)
= np.where(data[ 'CR-corrosion defect'] » 8.211, ‘high', "low")

< X H

[ 1 # Plot count plot for 'y’
plt.figure(figsize=(6, 4))
sns.countplot(x=y)
plt.title( 'Distribution of Target Variable')
plt.xlabel('CR-corrosion defect"')
plt.ylabel( ' Count")
plt.show()

Fig. 4. Features and target variable splitting.

The dataset was partitioned into training and testing sets to facilitate the model's
development and evaluation. As shown in Fig. 5, 80% of the data was designated
for training, while the remaining 20% was designated for assessment. To guarantee
reproducible results across multiple trials, a random state of 42 was established.
Setting a random state ensures that the random processes involved in data splitting
yield the same result each time the code is run.

[ 1 # split data into training and testing sets
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)

Fig. 5. Train and test data splitting.

Next, feature scaling-a data preprocessing step-was applied to the training and
validation sets to ensure that all features contributed equally to the model's
performance. This was achieved using the StandardScaler function from sci-Kkit-
learn, which standardises the features by removing the mean and scaling them to
unit variance. As a result, each feature is adjusted to have a mean of zero and a
standard deviation of one. The code for the feature scaling step is shown in Fig. 6.

[ ] # Feature scaling
scaler = standardscaler()

X _train_scaled = scaler.fit _transform(X train)
X test scaled = scaler.transform(X test)

Fig. 6. Feature scaling.

The dataset was utilised to train three machine learning models-SVM, k-NN, and
Random Forest-to detect anomalies in parameters such as temperature, pressure, and
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flow rate, allowing the models to learn the underlying patterns and relationships.
After completing the training phase, the models underwent testing to assess their
performance using various metrics, including accuracy, precision, recall, specificity,
F1-score, and ROC-AUC. These metrics were used to calculate the confusion matrix,
which determines the number of true positives (TP), true negatives (TN), false
positives (FP), and false negatives (FN), thus helping to evaluate the accuracy of the
predictions. Additionally, a Receiver Operating Characteristic (ROC) Curve was
produced to analyse the classification capabilities of the models by considering the
Area Under the Curve (AUC) value. The AUC value reflects the classifier's
effectiveness in distinguishing between the 'low' and 'high' classes, with a higher
AUC indicating a greater accuracy in the model's predictions.

3.Results and Discussion
3.1.Correlation matrix heatmap

Figure 7 shows the correlation matrix heatmap generated to study the relationships
between the 8 key attributes used in the dataset which are Wellhead Temperature
(°C), Wellhead Pressure (psi), Gas Flow Rate (MMCFD), Qil Production Rate
(BOPD), Water Production Rate (BWPD), Basic Solid and Water Content (BSW,
%), CO2 Mole Fraction (%) and Gas Gravity to the Corrosion Defect Rate (CR).

The analysis of each attribute based on the matrix is as follows:

1. Wellhead Temperature (°C): Weak correlations with all parameters where the
highest value obtained is 0.02 with Gas Gravity indicating that it has minimal
influence on the other factors.

2. Wellhead Pressure (psi): Has a notable negative correlation with Corrosion
Defect Rate with a value of -0.37, suggesting that when the pressure is higher,
the rate of corrosion defects is lower.

3.Gas Flow Rate (MMCFD): Moderate positive correlation with Corrosion
Defect Rate with a value of 0.22 implying that the rate of corrosion defects is
higher when the flow rate is higher.

4. Oil Production Rate (BOPD): Negligible correlations with all parameters.

5. Water Production Rate (BWPD): Weak correlations with all parameters where
the highest value obtained is -0.12 with Corrosion Defect Rate indicating that
it has minimal influence on the other factors.

6.Basic Solid and Water Content (BSW, %): Weak correlations with all
parameters where the highest value obtained is 0.12 with Corrosion Defect
Rate indicating that it has slightly above average influence towards corrosion
defect compared to the other attributes.

7.CO; Mole Fraction (%): Weak correlations with all parameters.

8. Gas Gravity: Negligible correlations with all parameters.

9.Corrosion Defect Rate (CR): Has significant negative correlations with
Wellhead Pressure producing a value of -0.37 and positive correlations with
the Gas Flow Rate producing a value of 0.22.

Hence, despite many parameters showing weak interdependencies with each
other, the highlight of this matrix is the notable correlations between wellhead
pressure and gas flow rate to the corrosion defect rate, which underscores that the
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pressure and flow rate parameters play a pivotal role in detecting the corrosion
defect in an oil pipeline. Therefore, for the next phase of the project, which involves
constructing the pipeline model, the pressure and flow sensors should be considered
and prioritized since they have a strong correlation to the corrosion defects rate.

Correlation Matrix Heatmap

1.0
-0.01 0.01 -0.01 -0.01 -0.00 0.02 0.01 I
- 0.8

-0.6

Wellhead Temp, (C)

Wellhead Press (psi) -

MMCFD- gas 4 «0.01

BOPD (barrel of il produced per day) 0.01
-0.4
BWPD (barrel of water produced per day) - 0.01

-2
BSW - basic solid and water (%) 4 0.00

COZ mol. (%) @ 25 C & 1 Atm. - 0.00 0.0

Gas Grav. | 0,02

-0.2

CR-corrosion defect | 0,01

Wellhead Temp. (C) -
Wellhead Press (psi)
MMCFD- gas -
BOPD (barrel of cil produced per day)
BSW - basic solid and water (%) -
Cc0oz mol. (%) @ 25 C & 1 Atm. -|
Gas Grav. -
CR-corrosion defect

BWPD (barrel of water produced per day) -

Fig. 7. Correlation matrix heatmap of the features.

3.2. Machine learning models

Figure 8 illustrates the calculations used to derive evaluation metrics, including
precision, recall, F1-score, support, accuracy, macro average, and weighted average
for the Random Forest model. In contrast, Fig. 9(a) presents the confusion matrix
for the same model. The ROC curve is a graphical representation of the model's
performance, with the x-axis depicting the False Positive Rate (FPR) and the y-axis
representing the True Positive Rate (TPR).

The AUC value of 0.97, as shown in Fig. 9(b), indicates a high level of accuracy,
suggesting that the Random Forest model effectively distinguishes between the two
classes: leakage and no leakage. An AUC of 1.0 indicates a perfect model, while an
AUC of 0.5 represents a model with no ability to discriminate between classes. The
confusion matrix confirms the model's robust performance, showing a significant
number of true positives (858) and true negatives (996). However, it also reveals
some false positives (98) and false negatives (107), indicating areas where
improvement is needed. The model's overall accuracy is 0.90, meaning it accurately
predicted the class 90% of the time. These findings suggest that while the Random
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Forest model performs well for this task, there is still potential for improvement,
particularly in reducing false positives and false negatives.

3% Accuracy: ©.9004371053909664

Classification Report:
precision recall fl-score  support
high 8.906 9.91 9.91 16894
low 8.90 9.89 9.89 965
accuracy 0.90 2059
macro avg .90 9.9 8.9 2059
weighted avg 9.90 9.90 0.90 2059

Fig. 8. The classification report for the Random Forest model includes precision,
recall, F1-score, support, accuracy, macro average, and weighted average.

(@) Confusion Matrix (b) Receiver Operating Characteristic (ROC) Curve

True Label
True Positive Rate

= ROC curve (AUC = 0.97)

low high 0o 02 04 06 08 10
Predicted Label False Positive Rate

Fig. 8. Confusion matrix of the Random Forest model
(b) ROC curve of the Random Forest model.

Figure 10 displays the calculations for the evaluation metrics, including
precision, recall, F1-score, support, accuracy, macro average, and weighted average
for the k-NN model. In contrast, Fig. 11(a) presents the confusion matrix associated
with the k-NN model. The AUC value of 0.93 indicates a high level of accuracy,
as shown in Fig. 11(b). The overall accuracy of the k-NN model is 0.85, indicating
that it correctly predicts the class 85.13% of the time. The confusion matrix reveals
a substantial number of true positives (804) and true negatives (949), reflecting
strong performance. While these results demonstrate that the k-NN model is
effective for this task, there is still potential for improvement, particularly in
minimizing false positives (145) and false negatives (161).

S5¥ Accuracy: ©.8513841670713939

Classification Report:
precision recall fi1l-score support
high ©.85 0.87 @.86 1094
low ©.85 9.83 @.84 965
accuracy .85 2059
macro avg ©.85 9.85 @.85 2659
weighted avg ©.85 9.85 ©.85 2859
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Fig. 10. The classification report for the k-NN model encompasses precision,
recall, f1-score, support, accuracy, macro average, and weighted average.

(@) Confusion Matrix - KN (b) Receiver Operating Characteristic (ROC) Curve - KNN

ow

True Label

igh

f 200 — ROC curve (AUC = 0.93)

[t} 02 04 06 (L] 10
Predicted Labe! False Positive Rate

Fig. 11. (a) Confusion matrix of the k-NN model, (b) ROC curve of the k-NN model.

Figure 12 presents the calculations used to derive the evaluation metrics for the
SVM model. Figure 13(a) showcases the confusion matrix for the SVM model,
which achieves an impressive AUC value of 0.99, as shown in Fig. 13(b). This high
AUC indicates the model's outstanding ability to distinguish between the two
classes, confirming its effectiveness in identifying leakage versus no leakage
conditions. The confusion matrix highlights a substantial number of true positives
(917) and true negatives (1056), emphasizing the model's strong performance.
Furthermore, the low counts of false positives (38) and false negatives (48) indicate
that the model is both reliable and precise in distinguishing between normal and
leakage states in a pipeline. As such, the SVM model stands out as the preferred
option for implementation in a pipeline model that incorporates real-time data.

S Accuracy: 8.9582321515298688

Classification Report:
precision recall f1-score support

high 9.96 9.97 08.96 1094

low 9.96 9.95 08.96 965

accuracy 08.96 2059
macro avg 9.96 9.96 08.96 2059
weighted avg 0.96 9.96 0.96 2059

Fig. 12.9 The classification report for the SVM model encompasses precision,
recall, f1-score, support, accuracy, macro average, and weighted average.

(a) Confusion Matrix - SVM (b) Receiver Operating Characteristic (ROC) Curve - SVWM

1000 10
o 1056 » 800 ue
500 4 [ 13

igh

True Label

200

— ROC curve (AUC = 0.99)

00 02 04 06 1] Lo

predicted Label False Positive Rate |

Journal of Engineering Science and Technology Special Issue 4/2025



158 R. P. A. Poongkuntran et al.

Fig. 13. (a) Confusion matrix of the SVM model,
(b) . ROC Curve of the SVM model.

3.3. Model comparison

Based on the results, SVM shows the best model compared to the Random Forest
and k-NN models, with an AUC score of 0.99 and an accuracy of 95.82%. This
exceptional performance shows that SVM can distinguish between a leak and a
non-leak state in an oil pipeline. The SVM model also has far fewer false positives
and negatives than the other models, indicating that the probability of obtaining a
false alarm is also relatively low compared to the other models.

The SVM outperformed Random Forest, and k-NN can be explained by its
ability to work effectively in high dimensional space with many attributes such as
in this study (wellhead temperature, pressure, flow rate, etc. [12]. Aside from that,
SVM works well in recognizing patterns even with a small number of training
samples, which is a great advantage in pipeline leakage detection, where the
number of samples is often limited.

On the other hand, although the Random Forest and k-NN models performed
well, both models still fell short of SVM. Despite its capability to handle noisy data,
the Random Forest model tends to overfit training data, leading to slightly higher
rates of false positives and false negatives. Meanwhile, the k-NN model relies
heavily on local similarity measures and can struggle to distinguish boundaries for
leak and non-leak states when the dataset is not uniformly distributed, causing the
optimal k value not to be readily identifiable.

There are also limitations due to the usage of external datasets from GitHub.
The quality and relevancy of the different oil pipeline conditions will be
questionable. Moreover, the training models using external datasets may yield
different results and exhibit sub-par performance when implemented using a
pipeline model with real-time data in the subsequent phases. Challenges persist as
variations in operational conditions and sensor readings can impact the model's
capability to differentiate between normal fluctuations and genuine leaks.

4. Conclusion

In summary, this study illustrates the assessment of machine learning models for
detecting oil pipeline leakage caused by corrosion using an external dataset from
GitHub. ROC-AUC, F1-Score, and the Confusion Matrix are the evaluation metrics
employed to assess the efficacy of the models. The results show that SVM obtained
the highest accuracy at 95.82%, followed by Random Forest at 90.04% and k-NN
at 85.14%. This may be attributed to the working principle of SVM, which is to
maximize the margin between classes in high-dimensional spaces to establish a
more precise decision boundary between the leak and no-leak classes.
Nevertheless, it is important to acknowledge that the performance results derived
from the external dataset are insufficient to validate the performance of SVM in
real-time operational settings. Additional validation is required using
individualized results to ensure that SVM still yields the highest accuracy of all
three models, even in real-time operation.
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