Journal of Engineering Science and Technology
21t EURECA 2024 Special Issue August (2025) 76 - 84
© School of Engineering, Taylor’s University

DESIGN A HIGH PERFORMANCE
32-BIT ADDER USING VERILOG

SERENE ZOE-YUC CHIN, WAI-LEONG PANG*

School of Engineering, Taylor’s University, Taylor's Lakeside Campus,
No. 1, Jalan Taylor's, 47500, Subang Jaya, Selangor DE, Malaysia
*Corresponding Author: waileong.pang@taylors.edu.my

Abstract

The usage of adder in RISC-V functions to perform various mathematical
operations such as address calculation, division, multiplication and Fast Fourier
Transform, that are essential for computer program’s arithmetic computations.
The efficiency and design of the adder are key factors that influence the overall
efficiency of the processor. Most adders nowadays are constructed using CMOS
standard digital cell library; however, CMOS transistors exhibit several
limitations such as short channel effect, inadequate gate control and high-power
leakage. The Hardware Description Language, Verilog modelled adder can act as
an alternative to existing transistor level adder. The 32-bit Kogge-Stone Adder
(KSA), the Carry Select Adder (CSA), and the Han-Carlson Adder (HCA) are
modelled using Verilog in this paper. These adders designed are simulated in
Intel Quartus Prime Software. The adders are implemented on an Intel Cyclone
IV Field-Programmable Gate Array (FPGA). Extensive simulation results are
carried out to evaluate the performance of these three adders. The performance
metrics, delay, logic utilization and power consumption are evaluated. The
simulation results shown that HCA provides the lowest delay (8.16 ns), but HCA
has the highest power consumption (0.91 mW). HCA is suitable for the high-
speed computing applications. However, KSA has the best power efficiency with
7% lower power consumption and 2.2% higher delay compared to HCA.
Therefore, KSA is appropriate for applications that are sensitive to energy use.
CSA only provides the average performance compared to HCA and KSA in

various aspects.

Keywords: Carry select adder, Han Carlson adder, Kogge stone adder.

76

Design a High Performance 32-bit Adder using Verilog 77

1. Introduction

The adder circuit serves as a fundamental building block within the Arithmetic
Logic Unit (ALU), a core component of processing units. Essential for executing a
vast array of complex mathematical computations, including multiplication,
division, and address generation, adders are indispensable in modern computing.
Their critical role extends to logarithmic operations, such as those employed in Fast
Fourier Transforms (FFT). Consequently, the pursuit of low-power, high-speed
adder circuits across various design parameters is paramount for advancing Very-
Large-Scale Integration (\VVLSI) capabilities [1].

Adder circuits are classified into distinct categories based on their underlying
logic and architectural configurations. To optimize performance metrics such as
speed, area, and power consumption, specific adder types have been developed.
Conventional adders and Parallel Prefix Adders (PPASs) represent the primary
classifications. Examples of conventional adders include Carry Lookahead Adders
(CLAs), Carry Select Adders (CSLAs), and Ripple Carry Adders (RCAS). In
contrast, PPAs employ a hybrid of sequential and parallel computations to expedite
carry generation [2].

RCAs form the foundational adder structure, characterized by sequential bitwise
addition and inherent carry propagation delays. In contrast, CLAs prioritize speed
through precomputed carry signals, albeit with increased circuit complexity. The
Carry Select Adder (CSA) balances speed and area efficiency by partitioning the
addition process into parallel blocks [3]. PPAs exemplified by the KSA, excel in
speed but demand substantial hardware resources. HCA emerges as a compromise,
blending elements from various designs to meet specific performance constraints.

To address the escalating demand for accelerated computing, specialized
hardware processors have emerged. While general-purpose central processing unit
(CPU) offers flexibility, their efficiency pales in comparison to domain-specific
architectures like graphics processing units (GPUs), which excel in data-parallel
workloads such as deep learning. Field Programmable Gate Arrays (FPGASs) and
Application Specific Integrated Circuits (ASICs) surpass both CPUs and GPUs in
terms of power efficiency and computational throughput [4, 5].

The RISC-V ISA has rapidly gained prominence since its inception in 2010,
finding applications across diverse domains. This widespread adoption is
attributable, in part, to the burgeoning ecosystem of open-source RISC-V hardware
implementations [6]. RISC-V ISA-based processor designs remove barriers in the
semiconductor industry by not requiring licensing fees for patented intellectual
property (IP) core blocks. With only 47 basic instructions, RISC-V's modular
architecture allows it to be easily customized to meet a wide range of design
requirements [7].

The RISC-V ISA does not specify implementation details or necessary subsets.
The RISC-V processors can improve additions to save memory usage, conserve
power, and reduce code size. The way instructions are implemented has a big
impact on processor efficiency. Single-cycle processors only carry out the
subsequent instruction once the current one has been completed. Efficiency
declines with instruction complexity, and latency rises when the cycle time has to
accommodate the slowest instruction.

Journal of Engineering Science and Technology Special Issue 4/2025

78 S. Z.-Y. Chin and W.-L. Pang

CMOS scaling technology has been a major driver of processor performance
progress over the past forty years [8]. But CMOS technology is getting close to its
physical limits, which makes further scaling more challenging. The design and
production of CMOS transistors are labour-intensive and intricate procedures that
can be carried out using silicon-on-insulator, twin-well, or N-or P-well technology.
The fact that every transistor manufacturing is unique makes adjustments more
difficult. Despite this, CMOS standard digital cell libraries have been used to create
a wide range of adders, from ripple carry to parallel-prefix adders [9].

Verilog is programmable Hardware Description Language (HDL), it can reduce
the design cycle of transistor-level adders, which makes circuit modifications
easier. Nevertheless, because most designs concentrate on the transistor level, there
is a dearth of study on Verilog modelling for high-performance adders.
Considerations like speed, power consumption, and resource usage are important
when choosing an adder for modelling. The CSA, KSA, and HCA is especially
well-suited for this paper because of their unique benefits. By computing sums and
carrying them in parallel for both possible carry-in values, the CSA improves
computational speed over sequential approaches such as the RCA and minimizes
propagation time.

KSA excels in high-speed operation due to its deeply parallel prefix
computation and minimal logic stages. This architectural approach enables efficient
parallel processing, leading to exceptional performance scalability across varying
bit widths. By distributing computational load across multiple stages, the KSA
mitigates power consumption and signal integrity issues commonly associated with
large-scale adder designs.

The HCA prioritizes resource efficiency without compromising performance by
optimizing gate count and reducing circuit depth compared to the KSA. Its balanced
computational approach contributes to lower power consumption, making it
suitable for power-sensitive applications.

High-performance 32-bit adders offer substantial advantages in resource-
constrained environments demanding low power consumption and rapid
computation. Their suitability for edge computing and 10T devices is evident in
applications such as power-efficient smart sensors. The adder's lower latency and
power consumption can speed up operations like convolutional neural networks
and big data analytics, which improves processing efficiency for large datasets and
speeds up the training of Al models in fields like artificial intelligence and machine
learning, where quick arithmetic computations are essential [10].

2. Methods
2.1. Carry selects adder (CSA)

To improve computational performance and properly control carry propagation, a
32-bit CSA is first implemented by splitting the adder into multiple smaller blocks,
usually consisting of 4-bit sections. Each block will carry out the addition operation
twice, under the assumptions that a carry-in of 0 and a carry-in of 1 respectively.

Since this is the first stage, the sum and carry in the least significant block
(Block 1) are determined independently of any earlier carries. Two separate 4-bit
adders are used in each block for the following blocks (Block 2 onwards); one

Journal of Engineering Science and Technology Special Issue 4/2025

Design a High Performance 32-bit Adder using Verilog 79

assumes a carry input of 0 and the other a carry input of 1. For every block, this
dual calculation produces two sets of outputs: the sums (sum0 and sum1) and the
associated carry outputs (coutO and coutl).

A 2-to-1 multiplexer is utilized to determine the proper sum and carry outputs
for each block. Sum0 and coutO are picked if the carry out from the previous block
is 0, while sum1 and coutl are chosen if it is 1. The final carry out decides the
overall carry for the full 32-bit addition operation. This selection method is repeated
for all blocks. Equations (1) and (2) can be used to determine the sum and carry.

Sum = (A®B®Cin) ()
Carry = (A-B) + (Cin- (A®B)) 2

2.2.Han Carlson Adder (HCA)

As seen in Fig. 1, the 32-bit HCA works by breaking the adder up into smaller
blocks, usually 4-bit segments. This method, which resembles the conventional
CSA, aims to streamline the design procedure and provide operational clarity.
Every segment computes the sum (sumO and sum1) and carry-out (coutO and coutl)
for two alternative carry-in conditions simultaneously, grouping adjacent blocks

(e.g., 0-3, 4-7, 8-11, etc.).

313029282726252423222120191817161514131211109876543210

(990 00ROR2R PAOLOROAA RS PIPIDIPODY Pl
JANVARVIVARvi /

/ /117

/ / / / /T 17 i
1/ /I/ |9 /1/ /l/ // /1(/J
T 1T L AT LT LT]
)| ll////li/ //l/ //I/ //'l/ o [
L+ ///////////////:///
T ot T] o1 y | | "‘E:: B ’(E:—~

—
1
Nall
1N
i
\H1
iy |
1
|
|
H
I
|

-

5 4

il

[EEEE

4119
| [TTTTTT ({P9%¥

| |
[P T

Cout. Sum(S [31:0]).

—-o

Fig. 1. Schematic of 32-bit Han Carlson Adder [11].

HCA improves performance by managing possible outcomes simultaneously.
Furthermore, by effectively sharing multiplexers across neighbouring block pairs.
The adder streamlines the design while retaining fast computing speed, reducing
hardware complexity. Equations (3) through (6) contain the specific logic equations
that control the HCA.

Generate Signal

Journal of Engineering Science and Technology Special Issue 4/2025

80 S. Z.-Y. Chin and W.-L. Pang

Gi = Ai + Bi (3)
Propagate Signal

Pi = Ai®Bi (4)
Black Cell Calculation

(Gi, Pi) = (Gi + (Pi- Gi —1),Pi - Pi — 1) (5)
Gray Cell Calculation

Gi = Gi+ (Pi-Gi—1) (6)

2.3.Kogge Stone Adder (KSA)

The 32-bit KSA makes use of a binary tree structure that shown in Fig. 2. Each
level of the tree processes increasingly larger groups of bits. This structure enables
effective parallel computation. Level 0 is where the process starts, with initial
partial sums and carry being calculated using nearby bit pairs. These partial results
are integrated as the calculation moves through following levels, each of which
integrates a bigger portion of the binary input.

313029282726252423222120191817161514131211109876543210
Lo pp 2892 PRRRREPRER |

/{/ (/.//(/ / (/{/(/ // /1/ (/(/ ’//‘/ VAl (/ /(/‘/‘l‘/ /‘/‘I//‘/{/
A

N A iy
/546? 2'2'2242'542'427 g52z72d

AMdiBKizEsas s rar i il

e
V6 b e eb b oot be e
50 ¢

‘ Post Processing Stage

|
[HT T

Cout. Sum(S [31:0]).

Fig. 2. Schematic of 32-bit Kogge Stone Adder [11].

The main benefit of the KSA is its parallel carry computation, which minimizes
propagation delay compared to sequential techniques like the ripple carry adder by
enabling carries to be computed throughout the whole structure at once. At the top
of the tree (Level logz(n) for 32 bits), the total and execution come from the
combined outcomes that have been spread through the lower levels. The exact logic
Egs. (7) to (10), which regulate this procedure, are given.

Generate Signal
Gi = Ai + Bi @)

Journal of Engineering Science and Technology Special Issue 4/2025

Design a High Performance 32-bit Adder using Verilog 81

Propagate Signal

Pi = Ai®Bi (8)
Black Cell Calculation

(Gi, Pi) = (Gi+ (Pi-Gi—1),Pi-Pi—1) (9)
Final Sum

Si = PidCi — 1 (10)

2.4.Verilog modelling of the adders

The Model Specification phase of the project kicks off with a thorough
determination and documentation of the adders' functionality, criteria, inputs, and
outputs. This initial phase guarantees a comprehensive comprehension of the
particular goals that the finished design has to accomplish. The flow chart for the
Adder Circuit Verilog Modelling Process is shown in Fig. 3. Intel Quartus Prime is
used to carry out the simulation works.

Start

Implement on
Target Device

¢

Model Specification l

Validation/ Testing

;

Modelling Entry [—— Y

End

;

Verilog Coding

;

Simulation of Model

Fig. 2. Verilog modelling process for adder circuit.

The process begins with model specification that defines the functionality of
the adders modelled in Verilog. The essential information such as the input and
output specifications, functional operations, requirements and constraints. In
modelling entry, the adder's architecture is designed and represented using a
suitable design entry method based on the specification. This often involves

Journal of Engineering Science and Technology Special Issue 4/2025

82 S. Z.-Y. Chin and W.-L. Pang

creating a block diagram or schematic to visualize the circuit's components and
their interconnections.

The behaviour and structure of the adder is modelled in Verilog, which provides
a textual representation of the hardware design. The Verilog code is simulated to
verify its functionality and identify any errors or discrepancies. This step helps
ensure that the adder circuit operates as intended before proceeding to hardware
implementation. ModelSim is used for the performance and functional verification.
Testbenches are built to evaluate the functionality of the adders.

Extensive analyses are carried out to evaluate the performance of the adder
modelled in Verilog in order to ensure the design meets the specified requirements
with correct functionality. Any issues identified during this stage necessitate
returning to the previous steps for corrections or modifications. The adder modelled
in Verilog is synthesized and implemented onto a Field-Programmable Gate Array
(FPGA) for experimental test.

3. Results and Discussion

The adders' simulated waveform, shown in Fig. 4, offers a thorough analysis of
three different adder architectures: HCA, KSA and CSA. After analysis,
performance indicators such as logic use, power consumption, and delay were
compiled into Table 1.

With the lowest delay of 8.16 ns, the HCA proved to be the fastest in terms of
speed. HCA performs better due to its parallel prefix structure, which successfully
reduces carry propagation delay. With a delay of 8.34 ns, the KSA trailed closely
after, providing a well-balanced strategy that blends speed with controlled
complexity. With a delay of 8.53 ns, the CSA offered an effective speed profile
even if it was not as quick as the KSA or HCA.

Eile Edit View Simulation Help

S 9\ X o LW 2 ERXEE R | B
Master Time Bar: 0 ps ‘ * | Pointer: 327.29 ns Interva
value |0ps 80.0 ns 160,0 ns 2400 ns 3200 ns 400,0 ns
Name
Ops Ops

& ra uo GE) X 1 X 2 X 3 it
& b uo 0 4 1 K

= cout BO

#® »sum UoO {) X 1 X 3 X 2 b

Fig. 4. The example of the simulated waveform.

Table 1. Test model specifications and test conditions.

Adders Delay Logic Utilization Power
(ns) (in ALMs) consumption (mW)
Carry Select Adder 8.53 98 0.89
Han Carlson Adder 8.16 78 0.91
Kogge Stone Adder 8.34 189 0.85

Journal of Engineering Science and Technology Special Issue 4/2025

Design a High Performance 32-bit Adder using Verilog 83

The KSA was the most energy-efficient with a power consumption of just 0.85 mW.
KSA works especially well in situations where power efficiency is crucial, including in
systems that are energy-conscious or battery-powered. However, because of its
substantial parallel processing, the HCA had the highest power usage at 0.91 mW, even
though it had a speed advantage. With a moderate power consumption of 0.89 mW, the
CSA falls in between the KSA and HCA, making it appropriate for situations where
power consumption and speed are both moderately important.

KSA required the most amount of logic resources with 189 Adaptive Logic
Modules (ALMs). This is due to the parallel prefix structure's complexity. On the
other hand, the HCA showed the best resource efficiency, using just 78 ALMs
because of its more straightforward architecture with lowers hardware overhead.
The CSA used 98 ALMs, providing a resource-use strategy that was balanced.

HCA is suite for the applications that value speed, like high-performance
computing environments where cutting down on processing time is essential. The
HCA's exceptional speed comes at the cost of increased power consumption,
rendering it less suitable for power-constrained environments. However, the KSA's
lower power profile and acceptable latency make it the preferred choice for energy-
critical applications. The CSA strikes a balance between speed, power, and resource
efficiency, making it a versatile option for general-purpose computing tasks.

4. Conclusions

The behavioural and operations of 3 adders, i.e. KSA, CSA, and HCA are modelled
in Verilog. A comprehensive simulation study was conducted in Intel Quartus
Prime Software to assess the performance of these adders across the crucial
performance metrics of delay, resource utilization, and power consumption. The
HCA exhibited the lowest delay (8.16 ns), making it ideal for high-speed
applications. However, its power consumption and resource demands limit its
suitability for power-constrained scenarios. In contrast, the KSA demonstrated
exceptional power efficiency (0.85 mW), rendering it well-suited for battery-
powered devices. CSA strikes a balance between speed, power, and resource
efficiency, making it a versatile option for general-purpose computing tasks.

Acknowledgement

This research was supported by Taylor's University, Malaysia through Taylor's
Matching grant (International) (PARTNERSHIP/QIS/2025/FIT/001).

References

1. Panda, S.K.; Achyut, K.; and Panda, D.C. (2023). Synthesis and time analysis
of FPGA-Based DIT-FFT module for efficient VLSI signal processing
applications. In Tripathi, S.L.; and Mahmud, M. (Eds.), Explainable Machine
Learning Models and Architectures. Wiley, 65-79.

2. Brzozowski, I. (2024). Comparative analysis of dynamic power consumption
of parallel prefix adder. ACM Transactions on Design Automation of
Electronic Systems, 29(3), 1-22.

3. Kadam, D.B.; Pandyaji, K.K.; and Liyakat, K.K.S. (2022). Implementation of
carry select adder (CSLA) for area, delay and power minimization.
Telematique, 21(1), 5461-5474.

Journal of Engineering Science and Technology Special Issue 4/2025

84

10.

11.

S. Z.-Y. Chin and W.-L. Pang

Kalapothas, S.; Flamis, G.; and Kitsos, P. (2022). Efficient edge-Al application
deployment for FPGAs. Information, 13(6), 279.

Kalapothas, S.; Flamis, G.; and Kitsos, P. (2021). Importing custom DNN
models on FPGAs. Proceedings of the 2021 10™ Mediterranean Conference
on Embedded Computing (MECO), Budva, Montenegro, 1-4.

Lu, T. (2021). A survey on risc-v security: Hardware and architecture.
arXiv:2107.04175 [cs.CR], 1-39.

Palmer, C. (2022). Simplified instruction set architecture accelerates chip
development and wins the 2022 draper prize. Engineering, 17, 7-9.

Chakraborty, S.; and Joshi, R.V. (2024). Cryogenic CMOS design for Qubit
control: Present status, challenges, and future directions [Feature]. IEEE
Circuits and Systems Magazine, 24(2), 34-46.

Balasubramanian, P.; and Mastorakis, N.E. (2022). High-speed and energy-
efficient carry look-ahead adder. Journal of Low Power Electronics and
Applications, 12(3), 46.

Niknejad, N.; Ismail, W.; Ghani, I.; Nazari, B.; and Bahari, M. (2020).
Understanding Service-Oriented Architecture (SOA): A systematic literature
review and directions for further investigation. Information Systems, 91,
101491.

Naik, V.M. (2015). Performance analysis of parallel prefix adder. International
Journal of Electrical Electronics and Data Communication, 3(7), 74-77.

Journal of Engineering Science and Technology Special Issue 4/2025

