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Abstract

This paper presents an advanced UAV-based system for disaster victim
localization, integrating the Ray Tracing model and Weighted Least Squares
(WLS) method to enhance the accuracy of RSSI-based distance measurements.
The disaster area is modelled by dividing it into a grid, with adaptive waypoints
selected using the adaptive Particle Swarm Optimization (APSO) algorithm. The
UAV trajectory is optimized using the RRT* algorithm, ensuring efficient
coverage with minimized flight costs. Simulation results demonstrate that the
proposed system accurately locates disaster victims with localization errors
within 5 meters. The RRT* algorithm provides a smoother and more efficient
flight path compared to the Nearest Neighbour algorithm, reducing energy
consumption and improving rescue operation speed. This integrated approach
significantly enhances UAV-based disaster response efforts, ensuring timely and
precise victim localization.
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1. Introduction

Earthquakes are one of the most destructive natural disasters, posing a significant
threat to human life and property. Earthquakes can cause building collapse,
infrastructure damage, and communication interruptions, thus requiring rapid and
effective post disaster response [1].

In recent years, unmanned aerial vehicles (UAVSs) have become an important tool
in disaster relief. Drones can conduct aerial reconnaissance, assess losses, generate
detailed maps of disaster areas, and transport medical supplies and food to people
who have been cut off by traditional supply lines [2]. Drones equipped with cutting-
edge imaging technology can capture high-definition images and videos, helping
emergency teams make informed decisions. For example, thermal imaging cameras
can detect the thermal signals of survivors, while LIDAR sensors generate three-
dimensional maps to help rescue personnel navigate through the ruins [3].

The research topic of unmanned aerial vehicles in disaster relief has long been
a subject of extensive scholarly interest. Qi et al. [4] presents a study on the
development and application of a search and rescue rotary-wing unmanned aerial
vehicle (SR-RUAV) system, focusing on its use in post-earthquake response and
evaluation, particularly during the Lushan 7.0 earthquake in China. Valarmathi et
al. [5] employed the YOLOv3 algorithm for human detection and action
recognition in disaster scenarios, showcasing the integration of machine learning,
cloud computing, and loT for enhanced disaster management.

Saif et al. [6] proposed a collaboration model between multi-UAV and SAR
teams to extend communication services over larger disaster areas, demonstrating
improved coverage and efficiency with increased UAV elevation angles.
Enhancing communication and collaboration frameworks is essential for the
success of SAR operations. Khalil et al. [7] presented a UAV-swarm-
communication model using machine learning for SAR applications, focusing on
the integration of UAV communications with space and terrestrial networks.
Alhagbani et al. [8] proposed a fish-inspired algorithm for multi-UAV task
allocation in SAR missions, demonstrating superior performance in mean rescue
time and survivor percentage compared to other paradigms.

The most critical aspect of disaster response is to quickly rescue trapped or
injured individuals. Accurately locating survivors in chaos and destruction is
crucial. Especially in urban areas, buildings may collapse into complex ruins, and
accurate positioning is crucial for effective command and rescue. This task requires
the integration of multiple technologies to overcome the challenges posed by post
disaster environments. Oh and Han [9] described a smart search system for
autonomous UAVs designed to locate and approach distressed individuals without
ground control, employing a genetic-based localization algorithm validated in real-
world test fields. Dong et al. [10] developed a real-time survivor detection system
using UAVs and deep convolutional neural networks, addressing the challenges of
limited computing capacity and small datasets for SAR missions.

Identifying disaster victims in earthquakes faces many difficulties. Chaotic
conditions, fragmentation, and damaged communication networks may render
traditional positioning methods ineffective. To help drones effectively locate
disaster victims, various methods have been explored, including GPS, WiFi and
cellular signals, as well as infrared and optical cameras [11]. Although GPS
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provides high accuracy in open spaces, its performance is poor in indoor or densely
constructed areas. Wi Fi and cellular signals provide useful data but may be
unreliable in the event of infrastructure damage. Visual methods are effective under
clear conditions, but limited in smoke, dust, or darkness.

The Integrated Received Signal Strength (IRSS) technology has shown hope in
improving positioning accuracy. By analysing the changes in signal strength
received by drones, IRSS can estimate the location of signal sources, making it a
reliable method for detecting survivors [12]. This technology has proven its
effectiveness in various environments and demonstrated its ability to perform
reliable localization in complex environments.

Despite the progress made in IRSS technology, there are still challenges such as
multipath effects, signal attenuation, and environmental barriers that can affect the
accuracy of signal localization [13, 14]. This manuscript proposes using an improved
ray tracing model to improve the positioning accuracy based on IRSS. In addition,
we have introduced an optimized path planning algorithm to ensure comprehensive
coverage of drones, thereby further improving the effectiveness of rescue operations.
By integrating these methods, we aim to overcome the limitations of current methods
and provide more reliable disaster response solutions.

2. Methods
2.1.Overview

This study aims to enhance the methods for UAV-based localization and path
planning in earthquake disaster rescue operations. First, we model the disaster area
and divide it into a 20x30 grid. This division facilitates a detailed analysis of the
disaster situation in each region. Based on actual disaster conditions, we classify
the disaster levels for each grid cell, with darker colours representing more severe
areas. Simultaneously, we collect Received Signal Strength Indicators (RSSI) from
mobile devices detected among the affected population.

Next, we use the Adaptive Particle Swarm Optimization (APSO) algorithm to
select the optimal hovering points. This ensures that UAVs can monitor and collect
the required RSSI readings for each grid cell from these positions. The APSO
algorithm simulates the movement of a swarm of particles in the search space to find
the global optimum, thereby determining the minimal number of hovering points.

After identifying the necessary hovering grid positions, we convert the path
planning problem into a Traveling Salesman Problem (TSP) and solve it using the
F-RRT* path planning algorithm. The F-RRT* algorithm combines heuristic
search and cost functions to efficiently compute the optimal path from the starting
point to all scanning points, thus enhancing coverage efficiency and path planning
accuracy. During the UAV flight, we dynamically adjust the flight path by
receiving and analysing RSSI data in real time. The F-RRT * algorithm updates the
path cost and heuristic estimates in real time, optimizing the flight trajectory to
adapt to dynamically changing environments and signal conditions.

Finally, we employ the Ray Tracing model and the Weighted Least Squares
(WLS) method for RSSI-based distance detection and personnel localization. The
Ray Tracing model simulates the actual propagation path of signals, improving the
accuracy of signal strength prediction. The WLS method uses multiple RSSI
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measurements and detailed signal propagation simulations to accurately locate
disaster victims. This combined approach offers higher localization accuracy and
reliability compared to traditional log-normal shadowing path loss models and
trilateration methods.

In summary, this methodology is summarised in Fig. 1. It improves the
efficiency and accuracy of UAV-based localization and rescue operations in
disaster environments through an enhanced signal strength prediction model and
optimized path planning algorithms. Our approach demonstrates good adaptability
and reliability in complex disaster scenarios, providing more effective technical
support for disaster response.
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Fig. 1. System framework to accurately localize victim.

2.2.Modelling earthquake scenarios

This section utilizes aerial imagery from the Wenchuan Earthquake in China as a
case example to model a disaster scenario. In the aftermath of the earthquake, the
communication infrastructure is assumed to be severely damaged, leaving
survivors potentially trapped under debris and carrying mobile devices that have
lost their wireless connectivity. In such a dire context, the swift and accurate
localization of survivors is paramount for effective rescue operations.

To achieve this objective, a systematic approach is implemented to model and
segment the affected area. The disaster-stricken region is divided into a grid
consisting of 30 rows and 55 columns, with each grid cell measuring 5 meters on
each side. Each grid cell is assigned a different colour depth to represent the
severity of the damage in that area. Darker colours indicate more severe damage,
and these areas, consequently, require a higher number of RSSI (Received Signal
Strength Indicator readings to enhance localization accuracy

As illustrated in Fig. 2(a) represents the aerial photograph of the 2008
Wenchuan Earthquake in China, while Fig. 2(b) shows the grid modelling
performed on the affected area. From the figure, it can be observed that regions
such as farmland and mountains are designated as low disaster levels, whereas
densely populated areas and collapsed buildings are assigned high disaster levels,
with a total of five levels. Different levels of areas require varying levels of
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Received Signal Strength Indicator (RSSI) signals. Each grid is a square region
with a side length of 5 meters, and the required RSSI signal for each grid is denoted
by K, where i represents the i-th row and j represents the j-th column. This grid-
based modelling approach enables refined management of the disaster area.

By dividing the entire affected region into multiple small grids, we can more
accurately assess the disaster situation of each grid cell and formulate
corresponding rescue strategies accordingly. Additionally, the grid-based approach
helps to enhance localization accuracy. In disaster scenarios, traditional GPS
localization may fail due to environmental interference. By meticulously collecting
RSSI readings for each grid cell, we can utilize wireless signal strength to estimate
device locations, thereby achieving higher localization accuracy.

20004 System model

Y(meters) %

X(meters)

(b)

Fig. 2. System model diagram (a) Aerial photo of the 2008 Wenchuan
earthquake; (b) Grid model constructed based on disaster level.

2.3. Determining UAV waypoints

This section will determine the optimal waypoint for drones to ensure the full
positioning of the affected population in the disaster area, while minimizing flight
time and resource consumption.

Firstly, based on the disaster model, each grid unit represents a specific area
that needs to be scanned. Each grid unit sets different receiving RSSI readings
based on the severity of the disaster. The higher the disaster level, the more RSSI
signals need to be received. Due to the constraints of complete coverage and
optimal flight path in the task objective, RSSI signals from all regions are received
with the minimum number of scanning points. This task has the characteristic of
combinatorial optimization, which can convert determining the optimal waypoint
of the drone into a Set Cover Problem, the problem of SCP belongs to a variant of
NP Hard problem. To solve this problem, advanced optimization techniques are
needed to find an approximate optimal solution.

This study adopts the adaptive particle swarm optimization (APSO) algorithm
to solve this problem. APSO introduces dynamic adjustment mechanisms for the
PSO parameters, specifically tailored to address the unique challenges of UAV
waypoint optimization in disaster scenarios. The key features of APSO include
dynamic inertia weight, adaptive learning factors, mutation operations, and local
search mechanisms. The specific formulas for the Adaptive Particle Swarm
Optimization (APSO) algorithm are as follows:
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Velocity update equation:
Vit + 1) = w®Vi() + crr1(pi — x:(D) + 212 (g — x:(1) 1
where V;(t + 1) represents the velocity of particle i at time ¢ + 1, w(t) is the
dynamic inertia weight, c;and c, are the adaptive learning factors controlling the
tendency of the particle to move towards its individual best position and the global
best position, respectively, r; and r, are random numbers in the range [0, 1], p;

represents the individual best position of particle i, and g represents the global best
position of all particles.

Position update equation:
xi(t+1) =x() +Vi(t+1) 2
where x;(t + 1) represents the position of particle iat time t + 1, and x;(t)
represents the position of particle iat time t.

Individual Best Position Update Equation:

by = {xi(t +1) iff(x(t+ 1) < f(p)

Di otherwise

©)

where f(xi(t + 1)) is the fitness function value of particlei at position x;(t + 1).
Global Best Position Update Equation:
g = min(f(p:)) 4)

where g represents the global best position.Constraint Conditions: Each grid cell
must be covered by at least one scanning point:

Z?zly” >1,Vie {1,2, ,m} (5)

where y;; indicates whether scanning point j covers grid cell i, m represents the
total number of grid cells, and n represents the total number of scanning points.

High-disaster-level areas require more RSSI readings, resulting in a higher
density of scanning points:
Dij
ki; = [Ts]] (6)

where K;; represents the required RSSI readings for grid cell (i, j), D;; represents
the disaster level, and r; is the signal coverage radius of each scanning point.

2.4.UAYV path planning

Given the consideration of flight costs associated with UAVs, it is imperative to
identify a flight path with the lowest possible expenses. Hence, this paper employs
the F-RRT* algorithm as the chosen method for path planning.

F-RRT* is an improved version of the RRT* (Rapidly-exploring Random
Trees Star) algorithm. The main idea of F-RRT™ is that in each iteration, instead
of just considering the nearest node to expand, a set of nearest-neighboring nodes
are considered and the best of them are selected for expansion [15]. In this way,
the algorithm can explore the configuration space faster and find high-quality
paths earlier.
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Compared to the standard RRT* algorithm, F-RRT* exhibits a faster
convergence rate. This indicates that it can find optimal or near-optimal paths in
fewer iterations. Additionally, the paths generated by F-RRT* tend to be smoother
and more direct, making it particularly suitable for applications where efficiency
and safety are of paramount importance, such as unmanned aerial vehicle flight
planning. The specific flow of the F-RRT* algorithm is shown in Table 1.

Table 1. Specific description of each step of the F-RRT* algorithm.

Step Process Description
1 Initialization Start with an initial node g4+, and define the goal
node qgoq;-

In each iteration, randomly sample a point q,,4in the
search space.

Nearest Node Find the node g,,¢qres: N the tree that is closest t0 g, qnq-
Generate a new node gy, by moving from q,,cqrest
towards q,4,q but within a maximum distance, Delta g.
Obstacle Ensure the path segment between g,cqres: aNd Gpew 1S

2 Sampling

w

4 Steering

Check free from collisions.
Cost .
6 Ealeulkitan Compute the cost to reach gyey, from qgeart Via Qrearest

Check nodes in the vicinity of g, and see if it's more
7 Rewiring cost-effective to reach them via q,,,,. Update
connections accordingly.
If @new is close enough to q4,,; and a direct connection
is possible, link them.
Once the goal is reached or after a predefined number of
9 Completion iterations, the algorithm concludes. The optimal path can
be traced back from qg,q; 10 Gseqare.

8 Goal Check

2.5.RSSI-based distance detection and personnel localization

The utilization of a singular UAV for surveillance purposes in disaster zones entails
a perpetual motion strategy aimed at gathering Received Signal Strength Indication
(RSSI) data from diverse sites. This UAV adheres to a predetermined flight
trajectory spanning the entirety of the impacted region to guarantee consistent data
acquisition. Subsequently, a ray-tracing model is employed to compute the
transmission routes of signals, accounting for intricate occurrences like reflection,
refraction, and diffraction. This theoretical framework contributes to elucidating
the transmission behavior of signals within the surroundings, their interaction with
impediments, and the attenuation of signal potency over distances.

In this study, we used a ray tracing model and weighted least squares (WLS)
method for distance detection and personnel localization based on RSSI. The ray
tracing model can simulate the actual propagation path of signals and improve
the accuracy of signal strength prediction. The following is the specific
work process:

PL(d) = PL(do) + 10nlog;o () + X, @)
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where PL(d) is the path loss at distance d, PL(d,) is the path loss at reference
distance d,,n is the path-loss exponent, and X, is a normal random variable
representing shadowing effects.

Based on the Ray Tracing model and the measured RSSI values, we estimate
the distance between the UAV and the victims' mobile devices. The distance
estimation formula is:

(RSSIg—RSSI})
d;=dy-107 1on (8)
where d; is the estimated distance to the i, victim, RSSI; is the RSSI value from
the i, victim, and RSSI, is the reference RSSI value at distance d,.

The accuracy of each RSSI measurement is influenced by the signal-to-noise
ratio (SNR). We construct a weighted matrix W based on the SNR, where the
weights are inversely proportional to the measurement uncertainties:

1
Wi =— ©9)
where g;is the standard deviation of the i-th measurement.

The Weighted Least Squares (WLS) method is utilized in the estimation of
victim positions. This approach involves the minimization of a specific objective
function to determine the most accurate position estimates.

p =argmin ¥, W; (di - @ = 02 + 0 = )2) (10)

where p = (x,y, z) is the estimated position of the victim, (x;, y;, z;) is the UAV’s
position at the i;, measurement, and d; is the estimated distance.

By solving the objective function, the two-dimensional coordinates of each
trapped individual are obtained. Iteratively update the position estimation until
convergence to the minimum error is achieved.

3.Results and Discussion

3.1.Simulation setup

In this section, we present the simulation setup and discuss the results of our
disaster victim localization algorithm. To evaluate the performance of the proposed
method, we conducted extensive simulations using MATLAB. The UAV was
assumed to operate at a fixed altitude of 4 meters. The UAV's operational radius
for victim detection was set to 30 meters, ensuring a comprehensive coverage area
around each hover point.

The UAV's speed was configured to 5 meters per second (m/s), a reasonable
speed that balances rapid area coverage and stable signal reception for accurate
RSSI measurements. The UAV's flight path started from a randomly selected initial
position within the disaster area grid. This randomness in the starting point was
introduced to simulate real-world scenarios where the UAV may not always have
a predefined starting location and needs to adapt to various initial conditions.

At each hover point, the UAV paused for a 10 s to collect the necessary RSSI
readings from the mobile devices of the disaster victims. This pausing ensured that
the UAV could accurately measure signal strengths and reduce the impact of noise
and other environmental factors on the readings.
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3.2.UAV waypoint selection results

This section presents the results of selecting optimal UAV waypoints using an
adaptive Particle Swarm Optimization (PSO) algorithm to ensure comprehensive
coverage of the disaster area. The PSO process begins with an initial random
distribution of particles across the grid. Each particle evaluates its fitness based on
the number of RSSI measurements it can collect within its coverage radius. The
particles iteratively update their positions, moving towards regions with higher
fitness values. This adaptive mechanism allows the algorithm to converge on an
optimal set of waypoints that ensures comprehensive coverage of the disaster area
while prioritizing regions with severe damage, the result is shown in Fig. 3.

As shown in Fig. 3, a total of 98 flight waypoints were generated, marked by
red dots. Each waypoint is positioned at the center of the corresponding grid cell.
From the figure, it is evident that the generated waypoints cover the entire disaster
area. In regions with severe damage, there are more waypoints, reflecting the higher
number of required RSSI signal measurements. This distribution of waypoints
aligns with the mission’s objectives, ensuring that the UAV collects sufficient data
to accurately locate victims in the most affected areas.

2000 4 Generate optimal location points

1000

Y(meters)

.

T T T
1000 2000 3000
X(meters)

o

Fig. 3. Generated optimal location points.

3.3.UAV trajectory generation results

In this section, we present the results of UAV trajectory generation using the F-
RRT*. The objective is to generate a UAV flight path that passes through all the
predetermined waypoints while minimizing the flight cost. To compare the
effectiveness of the F-RRT™* algorithm, we also utilized the Nearest Neighbour (NN)
algorithm. The resulting trajectory paths are shown in Fig. 4.

As depicted in Fig. 4, both algorithms successfully enable the UAV to cruise
through all the waypoints. However, the trajectory generated by the proposed F-
RRT* algorithm is noticeably smoother. This smoothness translates to a more
efficient path, reducing sharp turns and abrupt changes in direction, which are
beneficial for maintaining the UAV's stability and energy efficiency.
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Figure 5 illustrates the total flight distance covered by the UAV using both the
F-RRT*and NN algorithms. It is evident from the figure that the path planned using
the F-RRT* algorithm results in a significantly shorter flight distance compared to
the NN algorithm. This reduction in flight distance directly correlates to lower
energy consumption, thus extending the UAV's operational time and enhancing the
speed of rescue missions.

20004 Based F-RRT+ flight trajectory 2000 Based NN+ flight trajectory
1] |

|
I
= X!

=

] r | 1 Fa

-

Y(meters) §
|
Y(meters) §

"

[ 1000 2000 3000 [ 1000 2000 3000
X(meters) X(meters)

@ (b)

Fig. 4. System model diagram: (a) Trajectory generated using
the proposed F-RRT* algorithm; (b) Trajectory generated
using the comparative Nearest Neighbour algorithm.
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Fig. 5. Comparison result of UAV flight distance: (a) with the proposed F-
RRT* path planning algorithm; (b) using the NN path planning algorithm.

3.4.UAV disaster victim localization results

To validate the effectiveness of the proposed localization algorithm, we simulated
a scenario with 200 disaster victims, represented by yellow dots in the model. The
placement of the disaster victims was based on the severity levels of the affected
areas, ensuring a realistic distribution for the simulation.

As shown in Fig. 6, the yellow dots represent the actual positions of the disaster
victims, while the green dots indicate the estimated positions calculated by our
algorithm. It is evident from the figure that both path planning algorithms, when
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combined with our proposed localization method, can accurately pinpoint the victims'
locations. This demonstrates the superior performance of our localization system.

Furthermore, Fig. 7 illustrates the localization error of the proposed algorithm.
The graph shows that the localization errors are maintained within 5 meters,
highlighting the accuracy and reliability of our approach. The results confirm that
our system can effectively locate disaster victims in the aftermath of an earthquake,
providing critical information for timely rescue operations.

The demonstrated accuracy and efficiency of the proposed system underline its
potential to significantly enhance disaster response efforts, ensuring that victims
are quickly and precisely located, thus improving the overall effectiveness of the
rescue missions.
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Fig. 6. System localization model comparison: (a) Disaster victim
localization using the proposed F-RRT* trajectory; (b) Disaster
victim localization using the comparative NN algorithm.
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Fig. 7. Localization errors of the proposed algorithm.
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4. Conclusions

This study presents an advanced UAV-based system for disaster victim
localization, utilizing the Ray Tracing model and Weighted Least Squares (WLS)
method for enhanced RSSI-based distance measurements. The system divides the
disaster area into a grid, uses Adaptive Particle Swarm Optimization (APSO) for
optimal waypoint selection, and employs the FRRT* algorithm for efficient
trajectory planning.

Simulation results demonstrate that the proposed system accurately localizes
disaster victims, maintaining localization errors within 5 meters. The FRRT*
algorithm provides a more efficient flight path compared to the Nearest Neighbour
(NN) algorithm, reducing flight costs and energy consumption. The integration of
these advanced methods significantly improves disaster response efforts, ensuring
swift and accurate localization of victims, thereby enhancing the speed and
effectiveness of rescue operations.

Nomenclatures

D;; Disaster level at grid cell (i, )
g Global best position of all particles
K;; RSSI readings for grid cell (i, j)
p Estimated position of victim

D; Best position of particle i
PL(d) Path loss at distance d

Ty Signal coverage radius

V(1) Velocity of particle i at time t
w(t) Dynamic inertia weight

x; (t) Position of particle i at time ¢
Yij Scanning point j at grid cell i

Abbreviations

APSO Adaptive Particle Swarm Optimization
F-RRT* Fast-RRT*

IRRS Integrated Received Signal Strength
RRT* Optimized Rapid-exploring Random Trees
RSSI Received Signal Strength Indicator

SAR Search and Rescue

SNR Signal-to-Noise Ratio
UAV Unmanned Aerial Vehicle
WLS Weighted Least Square

References

1. Zhang, R.; Li, H.; Duan, K.; You, S.; Liu, K.; Wang, F.; and Hu, Y. (2020).
Automatic detection of earthquake-damaged buildings by integrating UAV
oblique photography and infrared thermal imaging. Remote Sensing,
12(16), 2621.

Journal of Engineering Science and Technology Special Issue 4/2025



10.

11.

12.

13.

14.

15.

Optimized UAV Trajectory Planning for Accurate Victims Localizationin . ... 75

Phang, S.K.; and Chen, X. (2021). Autonomous tracking and landing on
moving ground vehicle with multi-rotor UAV. Journal of Engineering Science
and Technology, 16(4), 2795-2815.

Ho, J.C.; Phang, S.K.; and Mun, H.K. (2021). 2-D UAV navigation solution
with LIDAR sensor under GPS-denied environment. Journal of Physics:
Conference Series, 2120(1), 012026.

Qi, J.;; Song, D.; Shang, H.; Wang, N.; Hua, C.; Wu, C.; Qi, X.; and Han, J.
(2016). Search and rescue rotary-wing UAV and its application to the Lushan
ms 7.0 earthquake. Journal of Field Robotics, 33(3), 290-321.

Valarmathi, B.; Kshitij, J.; Dimple, R.; Srinivasa Gupta, N.; Harold Robinson,
Y.; Arulkumaran, G.; and Mulu, T. (2023). Human detection and action
recognition for search and rescue in disasters using yolov3 algorithm. Journal
of Electrical and Computer Engineering, 2023(1), 5419384.

Saif, A.; Dimyati, K.; Noordin, K.A.; Alsamhi, S.H.; and Hawbani, A. (2024).
Multi-UAV and SAR collaboration model for disaster management in BSG
networks. Internet Technology Letters, 7(1), e310.

Khalil, H.; Rahman, S.U.; Ullah, I.; Khan, I.; Alghadhban, A.J.; Al-Adhaileh,
M.H.; Ali, G.; and El-Affendi, M. (2022). A UAV-swarm-communication
model using a machine-learning approach for search-and-rescue applications.
Drones, 6(12), 372.

Alhagbani, A.; Kurdi, H.; and Youcef-Toumi, K. (2020). Fish-inspired task
allocation algorithm for multiple unmanned aerial vehicles in search and
rescue missions. Remote Sensing, 13(1), 27.

Oh, D.; and Han, J. (2021). Smart search system of autonomous flight UAVs
for disaster rescue. Sensors, 21(20), 6810.

Dong, J.; Ota, K.; and Dong, M. (2021). UAV-based real-time survivor
detection system in post-disaster search and rescue operations. IEEE Journal
on Miniaturization for Air and Space Systems, 2(4), 209-219.

Phang, S.K.; Chiang, T.H.A.; Happonen, A.; and Chang, M.M.L. (2023). From
satellite to uav-based remote sensing: A review on precision agriculture. IEEE
Access, 11, 127057.

Demiane, F.; Sharafeddine, S.; and Farhat, O. (2020). An optimized UAV
trajectory planning for localization in disaster scenarios. Computer networks,
179, 107378.

Cui, J.Q. et al. (2015). Drones for cooperative search and rescue in post-disaster
situation. Proceedings of the 2015 IEEE 7" International Conference on
Cybernetics and Intelligent Systems (CIS) and IEEE Conference on Robotics,
Automation and Mechatronics (RAM), Siem Reap, Cambodia, 167-174.

Cui, J.Q. et al. (2016). Search and rescue using multiple drones in post-disaster
situation. Unmanned Systems, 04(01), 83-96.

Liao, B.; Wan, F.; Hua, Y.; Ma, R.; Zhu, S.; and Qing, X. (2021). F-RRT*: An
improved path planning algorithm with improved initial solution and
convergence rate. Expert Systems with Applications, 184, 115457.

Journal of Engineering Science and Technology Special Issue 4/2025



