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Abstract 

This paper presents an advanced UAV-based system for disaster victim 

localization, integrating the Ray Tracing model and Weighted Least Squares 

(WLS) method to enhance the accuracy of RSSI-based distance measurements. 

The disaster area is modelled by dividing it into a grid, with adaptive waypoints 

selected using the adaptive Particle Swarm Optimization (APSO) algorithm. The 

UAV trajectory is optimized using the RRT* algorithm, ensuring efficient 

coverage with minimized flight costs. Simulation results demonstrate that the 

proposed system accurately locates disaster victims with localization errors 

within 5 meters. The RRT* algorithm provides a smoother and more efficient 

flight path compared to the Nearest Neighbour algorithm, reducing energy 

consumption and improving rescue operation speed. This integrated approach 

significantly enhances UAV-based disaster response efforts, ensuring timely and 

precise victim localization. 

Keywords: Digital integrated cities, Path planning, Unmanned aerial vehicles. 
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1.  Introduction 

Earthquakes are one of the most destructive natural disasters, posing a significant 

threat to human life and property. Earthquakes can cause building collapse, 

infrastructure damage, and communication interruptions, thus requiring rapid and 

effective post disaster response [1]. 

In recent years, unmanned aerial vehicles (UAVs) have become an important tool 

in disaster relief. Drones can conduct aerial reconnaissance, assess losses, generate 

detailed maps of disaster areas, and transport medical supplies and food to people 

who have been cut off by traditional supply lines [2]. Drones equipped with cutting-

edge imaging technology can capture high-definition images and videos, helping 

emergency teams make informed decisions. For example, thermal imaging cameras 

can detect the thermal signals of survivors, while LIDAR sensors generate three-

dimensional maps to help rescue personnel navigate through the ruins [3]. 

The research topic of unmanned aerial vehicles in disaster relief has long been 

a subject of extensive scholarly interest. Qi et al. [4] presents a study on the 

development and application of a search and rescue rotary-wing unmanned aerial 

vehicle (SR-RUAV) system, focusing on its use in post-earthquake response and 

evaluation, particularly during the Lushan 7.0 earthquake in China. Valarmathi et 

al. [5] employed the YOLOv3 algorithm for human detection and action 

recognition in disaster scenarios, showcasing the integration of machine learning, 

cloud computing, and IoT for enhanced disaster management.  

Saif et al. [6] proposed a collaboration model between multi-UAV and SAR 

teams to extend communication services over larger disaster areas, demonstrating 

improved coverage and efficiency with increased UAV elevation angles. 

Enhancing communication and collaboration frameworks is essential for the 

success of SAR operations. Khalil et al. [7] presented a UAV-swarm-

communication model using machine learning for SAR applications, focusing on 

the integration of UAV communications with space and terrestrial networks. 

Alhaqbani et al. [8] proposed a fish-inspired algorithm for multi-UAV task 

allocation in SAR missions, demonstrating superior performance in mean rescue 

time and survivor percentage compared to other paradigms. 

The most critical aspect of disaster response is to quickly rescue trapped or 

injured individuals. Accurately locating survivors in chaos and destruction is 

crucial. Especially in urban areas, buildings may collapse into complex ruins, and 

accurate positioning is crucial for effective command and rescue. This task requires 

the integration of multiple technologies to overcome the challenges posed by post 

disaster environments. Oh and Han [9] described a smart search system for 

autonomous UAVs designed to locate and approach distressed individuals without 

ground control, employing a genetic-based localization algorithm validated in real-

world test fields. Dong et al. [10] developed a real-time survivor detection system 

using UAVs and deep convolutional neural networks, addressing the challenges of 

limited computing capacity and small datasets for SAR missions. 

Identifying disaster victims in earthquakes faces many difficulties. Chaotic 

conditions, fragmentation, and damaged communication networks may render 

traditional positioning methods ineffective. To help drones effectively locate 

disaster victims, various methods have been explored, including GPS, WiFi and 

cellular signals, as well as infrared and optical cameras [11]. Although GPS 
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provides high accuracy in open spaces, its performance is poor in indoor or densely 

constructed areas. Wi Fi and cellular signals provide useful data but may be 

unreliable in the event of infrastructure damage. Visual methods are effective under 

clear conditions, but limited in smoke, dust, or darkness. 

The Integrated Received Signal Strength (IRSS) technology has shown hope in 

improving positioning accuracy. By analysing the changes in signal strength 

received by drones, IRSS can estimate the location of signal sources, making it a 

reliable method for detecting survivors [12]. This technology has proven its 

effectiveness in various environments and demonstrated its ability to perform 

reliable localization in complex environments. 

Despite the progress made in IRSS technology, there are still challenges such as 

multipath effects, signal attenuation, and environmental barriers that can affect the 

accuracy of signal localization [13, 14]. This manuscript proposes using an improved 

ray tracing model to improve the positioning accuracy based on IRSS. In addition, 

we have introduced an optimized path planning algorithm to ensure comprehensive 

coverage of drones, thereby further improving the effectiveness of rescue operations. 

By integrating these methods, we aim to overcome the limitations of current methods 

and provide more reliable disaster response solutions. 

2.  Methods 

2.1. Overview 

This study aims to enhance the methods for UAV-based localization and path 

planning in earthquake disaster rescue operations. First, we model the disaster area 

and divide it into a 20×30 grid. This division facilitates a detailed analysis of the 

disaster situation in each region. Based on actual disaster conditions, we classify 

the disaster levels for each grid cell, with darker colours representing more severe 

areas. Simultaneously, we collect Received Signal Strength Indicators (RSSI) from 

mobile devices detected among the affected population. 

Next, we use the Adaptive Particle Swarm Optimization (APSO) algorithm to 

select the optimal hovering points. This ensures that UAVs can monitor and collect 

the required RSSI readings for each grid cell from these positions. The APSO 

algorithm simulates the movement of a swarm of particles in the search space to find 

the global optimum, thereby determining the minimal number of hovering points. 

After identifying the necessary hovering grid positions, we convert the path 

planning problem into a Traveling Salesman Problem (TSP) and solve it using the 

F-RRT* path planning algorithm. The F-RRT* algorithm combines heuristic 

search and cost functions to efficiently compute the optimal path from the starting 

point to all scanning points, thus enhancing coverage efficiency and path planning 

accuracy. During the UAV flight, we dynamically adjust the flight path by 

receiving and analysing RSSI data in real time. The F-RRT * algorithm updates the 

path cost and heuristic estimates in real time, optimizing the flight trajectory to 

adapt to dynamically changing environments and signal conditions. 

Finally, we employ the Ray Tracing model and the Weighted Least Squares 

(WLS) method for RSSI-based distance detection and personnel localization. The 

Ray Tracing model simulates the actual propagation path of signals, improving the 

accuracy of signal strength prediction. The WLS method uses multiple RSSI 
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measurements and detailed signal propagation simulations to accurately locate 

disaster victims. This combined approach offers higher localization accuracy and 

reliability compared to traditional log-normal shadowing path loss models and 

trilateration methods. 

In summary, this methodology is summarised in Fig. 1. It improves the 

efficiency and accuracy of UAV-based localization and rescue operations in 

disaster environments through an enhanced signal strength prediction model and 

optimized path planning algorithms. Our approach demonstrates good adaptability 

and reliability in complex disaster scenarios, providing more effective technical 

support for disaster response. 

 

Fig. 1. System framework to accurately localize victim. 

2.2. Modelling earthquake scenarios 

This section utilizes aerial imagery from the Wenchuan Earthquake in China as a 

case example to model a disaster scenario. In the aftermath of the earthquake, the 

communication infrastructure is assumed to be severely damaged, leaving 

survivors potentially trapped under debris and carrying mobile devices that have 

lost their wireless connectivity. In such a dire context, the swift and accurate 

localization of survivors is paramount for effective rescue operations. 

To achieve this objective, a systematic approach is implemented to model and 

segment the affected area. The disaster-stricken region is divided into a grid 

consisting of 30 rows and 55 columns, with each grid cell measuring 5 meters on 

each side. Each grid cell is assigned a different colour depth to represent the 

severity of the damage in that area. Darker colours indicate more severe damage, 

and these areas, consequently, require a higher number of RSSI (Received Signal 

Strength Indicator readings to enhance localization accuracy 

As illustrated in Fig. 2(a) represents the aerial photograph of the 2008 

Wenchuan Earthquake in China, while Fig. 2(b) shows the grid modelling 

performed on the affected area. From the figure, it can be observed that regions 

such as farmland and mountains are designated as low disaster levels, whereas 

densely populated areas and collapsed buildings are assigned high disaster levels, 

with a total of five levels. Different levels of areas require varying levels of 
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Received Signal Strength Indicator (RSSI) signals. Each grid is a square region 

with a side length of 5 meters, and the required RSSI signal for each grid is denoted 

by 𝐾, where 𝑖 represents the 𝑖-th row and 𝑗 represents the 𝑗-th column. This grid-

based modelling approach enables refined management of the disaster area.  

By dividing the entire affected region into multiple small grids, we can more 

accurately assess the disaster situation of each grid cell and formulate 

corresponding rescue strategies accordingly. Additionally, the grid-based approach 

helps to enhance localization accuracy. In disaster scenarios, traditional GPS 

localization may fail due to environmental interference. By meticulously collecting 

RSSI readings for each grid cell, we can utilize wireless signal strength to estimate 

device locations, thereby achieving higher localization accuracy.  

     

                                   (a)                                                             (b)  

Fig. 2. System model diagram (a) Aerial photo of the 2008 Wenchuan 

earthquake; (b) Grid model constructed based on disaster level. 

2.3. Determining UAV waypoints 

This section will determine the optimal waypoint for drones to ensure the full 

positioning of the affected population in the disaster area, while minimizing flight 

time and resource consumption. 

Firstly, based on the disaster model, each grid unit represents a specific area 

that needs to be scanned. Each grid unit sets different receiving RSSI readings 

based on the severity of the disaster. The higher the disaster level, the more RSSI 

signals need to be received. Due to the constraints of complete coverage and 

optimal flight path in the task objective, RSSI signals from all regions are received 

with the minimum number of scanning points. This task has the characteristic of 

combinatorial optimization, which can convert determining the optimal waypoint 

of the drone into a Set Cover Problem, the problem of SCP belongs to a variant of 

NP Hard problem. To solve this problem, advanced optimization techniques are 

needed to find an approximate optimal solution. 

This study adopts the adaptive particle swarm optimization (APSO) algorithm 

to solve this problem. APSO introduces dynamic adjustment mechanisms for the 

PSO parameters, specifically tailored to address the unique challenges of UAV 

waypoint optimization in disaster scenarios. The key features of APSO include 

dynamic inertia weight, adaptive learning factors, mutation operations, and local 

search mechanisms. The specific formulas for the Adaptive Particle Swarm 

Optimization (APSO) algorithm are as follows: 
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Velocity update equation: 

𝑉𝑖(𝑡 + 1) = 𝑤(𝑡)𝑉𝑖(𝑡) + 𝑐1𝑟1(𝑝𝑖 − 𝑥𝑖(𝑡)) + 𝑐2𝑟2(𝑔 − 𝑥𝑖(𝑡))                                     (1) 

where 𝑉𝑖(𝑡 + 1)  represents the velocity of particle 𝑖  at time 𝑡 + 1 , 𝑤(𝑡)  is the 

dynamic inertia weight, 𝑐1and 𝑐2 are the adaptive learning factors controlling the 

tendency of the particle to move towards its individual best position and the global 

best position, respectively, 𝑟1  and 𝑟2  are random numbers in the range [0, 1], 𝑝𝑖  

represents the individual best position of particle 𝑖, and 𝑔 represents the global best 

position of all particles. 

Position update equation: 

𝑥𝑖(𝑡 + 1) = 𝑥𝑖(𝑡) + 𝑉𝑖(𝑡 + 1)                                                                                                      (2) 

where 𝑥𝑖(𝑡 + 1)  represents the position of particle 𝑖 at time 𝑡 + 1 , and 𝑥𝑖(𝑡) 

represents the position of particle 𝑖at time 𝑡. 

Individual Best Position Update Equation: 

𝑝𝑖 = {
𝒙𝑖(𝑡 + 1) if 𝑓(𝐱𝑖(𝑡 + 1)) < 𝑓(𝑝𝑖)

𝑝𝑖 otherwise
                                                                         (3) 

where 𝑓(𝒙𝑖(𝑡 + 1)) is the fitness function value of particle𝑖 at position 𝒙𝑖(𝑡 + 1). 

Global Best Position Update Equation: 

𝑔 = 𝑚𝑖𝑛( 𝑓(𝑝𝑖))                                                                                                                              (4) 

where 𝑔 represents the global best position.Constraint Conditions: Each grid cell 

must be covered by at least one scanning point: 

∑ 𝑦𝑖𝑗
𝑛
𝑗=1 ≥ 1, ∀𝑖 ∈ {1,2, … , 𝑚}                                                                                                     (5) 

where 𝑦𝑖𝑗  indicates whether scanning point 𝑗 covers grid cell 𝑖, 𝑚 represents the 

total number of grid cells, and 𝑛 represents the total number of scanning points. 

High-disaster-level areas require more RSSI readings, resulting in a higher 

density of scanning points: 

𝐾𝑖𝑗 = ⌈
𝐷𝑖𝑗

𝑟𝑠
⌉                                                                                                (6) 

where 𝐾𝑖𝑗  represents the required RSSI readings for grid cell (𝑖, 𝑗), 𝐷𝑖𝑗  represents 

the disaster level, and 𝑟𝑠 is the signal coverage radius of each scanning point. 

2.4. UAV path planning 

Given the consideration of flight costs associated with UAVs, it is imperative to 

identify a flight path with the lowest possible expenses. Hence, this paper employs 

the F-RRT* algorithm as the chosen method for path planning. 

F-RRT* is an improved version of the RRT* (Rapidly-exploring Random 

Trees Star) algorithm. The main idea of F-RRT* is that in each iteration, instead 

of just considering the nearest node to expand, a set of nearest-neighboring nodes 

are considered and the best of them are selected for expansion [15]. In this way, 

the algorithm can explore the configuration space faster and find high-quality 

paths earlier. 
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Compared to the standard RRT* algorithm, F-RRT* exhibits a faster 

convergence rate. This indicates that it can find optimal or near-optimal paths in 

fewer iterations. Additionally, the paths generated by F-RRT* tend to be smoother 

and more direct, making it particularly suitable for applications where efficiency 

and safety are of paramount importance, such as unmanned aerial vehicle flight 

planning. The specific flow of the F-RRT* algorithm is shown in Table 1. 

Table 1. Specific description of each step of the F-RRT* algorithm. 

Step Process Description 

1 Initialization 
Start with an initial node 𝑞𝑠𝑡𝑎𝑟𝑡, and define the goal 

node 𝑞𝑔𝑜𝑎𝑙 . 

2 Sampling 
In each iteration, randomly sample a point 𝑞𝑟𝑎𝑛𝑑in the 

search space. 

3 Nearest Node Find the node 𝑞𝑛𝑒𝑎𝑟𝑒𝑠𝑡  in the tree that is closest to 𝑞𝑟𝑎𝑛𝑑. 

4 Steering 
Generate a new node 𝑞𝑛𝑒𝑤 by moving from 𝑞𝑛𝑒𝑎𝑟𝑒𝑠𝑡  

towards 𝑞𝑟𝑎𝑛𝑑 but within a maximum distance, Delta q. 

5 
Obstacle 

Check 

Ensure the path segment between 𝑞𝑛𝑒𝑎𝑟𝑒𝑠𝑡  and 𝑞𝑛𝑒𝑤 is 

free from collisions. 

6 
Cost 

Calculation 
Compute the cost to reach 𝑞𝑛𝑒𝑤 from 𝑞𝑠𝑡𝑎𝑟𝑡 via 𝑞𝑛𝑒𝑎𝑟𝑒𝑠𝑡  

7 Rewiring 

Check nodes in the vicinity of 𝑞𝑛𝑒𝑤 and see if it's more 

cost-effective to reach them via 𝑞𝑛𝑒𝑤. Update 

connections accordingly. 

8 Goal Check 
If 𝑞𝑛𝑒𝑤 is close enough to 𝑞𝑔𝑜𝑎𝑙  and a direct connection 

is possible, link them. 

9 Completion 

Once the goal is reached or after a predefined number of 

iterations, the algorithm concludes. The optimal path can 

be traced back from 𝑞𝑔𝑜𝑎𝑙  to 𝑞𝑠𝑡𝑎𝑟𝑡. 

2.5. RSSI-based distance detection and personnel localization 

The utilization of a singular UAV for surveillance purposes in disaster zones entails 

a perpetual motion strategy aimed at gathering Received Signal Strength Indication 

(RSSI) data from diverse sites. This UAV adheres to a predetermined flight 

trajectory spanning the entirety of the impacted region to guarantee consistent data 

acquisition. Subsequently, a ray-tracing model is employed to compute the 

transmission routes of signals, accounting for intricate occurrences like reflection, 

refraction, and diffraction. This theoretical framework contributes to elucidating 

the transmission behavior of signals within the surroundings, their interaction with 

impediments, and the attenuation of signal potency over distances. 

In this study, we used a ray tracing model and weighted least squares (WLS) 

method for distance detection and personnel localization based on RSSI. The ray 

tracing model can simulate the actual propagation path of signals and improve 

the accuracy of signal strength prediction. The following is the specific                    

work process: 

𝑃𝐿(𝑑) = 𝑃𝐿(𝑑0) + 10𝑛 log10 (
𝑑

𝑑0
) + 𝑋𝜎                                                     (7) 
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where 𝑃𝐿(𝑑) is the path loss at distance 𝑑, 𝑃𝐿(𝑑0) is the path loss at reference 

distance 𝑑0 , 𝑛  is the path-loss exponent, and 𝑋𝜎  is a normal random variable 

representing shadowing effects. 

Based on the Ray Tracing model and the measured RSSI values, we estimate 

the distance between the UAV and the victims' mobile devices. The distance 

estimation formula is: 

𝑑𝑖 = 𝑑0 ⋅ 10
(𝑅𝑆𝑆𝐼0−𝑅𝑆𝑆𝐼𝑖)

10⋅𝑛                                                                                                                    (8) 

where 𝑑𝑖 is the estimated distance to the 𝑖𝑡ℎ victim, 𝑅𝑆𝑆𝐼𝑖  is the 𝑅𝑆𝑆𝐼 value from 

the 𝑖𝑡ℎ victim, and 𝑅𝑆𝑆𝐼0 is the reference RSSI value at distance 𝑑0. 

The accuracy of each RSSI measurement is influenced by the signal-to-noise 

ratio (SNR). We construct a weighted matrix 𝑊  based on the SNR, where the 

weights are inversely proportional to the measurement uncertainties: 

𝑊𝑖𝑖 =
1

𝜎𝑖
2                                                                                                                                                   (9) 

where 𝜎𝑖is the standard deviation of the 𝑖-th measurement. 

The Weighted Least Squares (WLS) method is utilized in the estimation of 

victim positions. This approach involves the minimization of a specific objective 

function to determine the most accurate position estimates. 

𝒑̂ = arg min ∑ 𝑊𝑖𝑖
𝑁
𝑖=1 (𝑑𝑖 − √(𝑥𝑖 − 𝑥)2 + (𝑦𝑖 − 𝑦)2)

2
                         (10) 

where 𝒑̂ = (𝑥, 𝑦, 𝑧) is the estimated position of the victim, (𝑥𝑖 , 𝑦𝑖 , 𝑧𝑖) is the UAV’s 

position at the 𝑖𝑡ℎ measurement, and 𝑑𝑖 is the estimated distance. 

By solving the objective function, the two-dimensional coordinates of each 

trapped individual are obtained. Iteratively update the position estimation until 

convergence to the minimum error is achieved. 

3. Results and Discussion 

3.1. Simulation setup 

In this section, we present the simulation setup and discuss the results of our 

disaster victim localization algorithm. To evaluate the performance of the proposed 

method, we conducted extensive simulations using MATLAB. The UAV was 

assumed to operate at a fixed altitude of ℎ meters. The UAV's operational radius 

for victim detection was set to 30 meters, ensuring a comprehensive coverage area 

around each hover point. 

The UAV's speed was configured to 5 meters per second (m/s), a reasonable 

speed that balances rapid area coverage and stable signal reception for accurate 

RSSI measurements. The UAV's flight path started from a randomly selected initial 

position within the disaster area grid. This randomness in the starting point was 

introduced to simulate real-world scenarios where the UAV may not always have 

a predefined starting location and needs to adapt to various initial conditions. 

At each hover point, the UAV paused for a 10 s to collect the necessary RSSI 

readings from the mobile devices of the disaster victims. This pausing ensured that 

the UAV could accurately measure signal strengths and reduce the impact of noise 

and other environmental factors on the readings. 
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3.2. UAV waypoint selection results 

This section presents the results of selecting optimal UAV waypoints using an 

adaptive Particle Swarm Optimization (PSO) algorithm to ensure comprehensive 

coverage of the disaster area. The PSO process begins with an initial random 

distribution of particles across the grid. Each particle evaluates its fitness based on 

the number of RSSI measurements it can collect within its coverage radius. The 

particles iteratively update their positions, moving towards regions with higher 

fitness values. This adaptive mechanism allows the algorithm to converge on an 

optimal set of waypoints that ensures comprehensive coverage of the disaster area 

while prioritizing regions with severe damage, the result is shown in Fig. 3. 

As shown in Fig. 3, a total of 98 flight waypoints were generated, marked by 

red dots. Each waypoint is positioned at the center of the corresponding grid cell. 

From the figure, it is evident that the generated waypoints cover the entire disaster 

area. In regions with severe damage, there are more waypoints, reflecting the higher 

number of required RSSI signal measurements. This distribution of waypoints 

aligns with the mission's objectives, ensuring that the UAV collects sufficient data 

to accurately locate victims in the most affected areas. 

 

Fig. 3. Generated optimal location points. 

3.3. UAV trajectory generation results 

In this section, we present the results of UAV trajectory generation using the F-

RRT*. The objective is to generate a UAV flight path that passes through all the 

predetermined waypoints while minimizing the flight cost. To compare the 

effectiveness of the F-RRT* algorithm, we also utilized the Nearest Neighbour (NN) 

algorithm. The resulting trajectory paths are shown in Fig. 4. 

As depicted in Fig. 4, both algorithms successfully enable the UAV to cruise 

through all the waypoints. However, the trajectory generated by the proposed F-

RRT* algorithm is noticeably smoother. This smoothness translates to a more 

efficient path, reducing sharp turns and abrupt changes in direction, which are 

beneficial for maintaining the UAV's stability and energy efficiency. 
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Figure 5 illustrates the total flight distance covered by the UAV using both the 

F-RRT* and NN algorithms. It is evident from the figure that the path planned using 

the F-RRT* algorithm results in a significantly shorter flight distance compared to 

the NN algorithm. This reduction in flight distance directly correlates to lower 

energy consumption, thus extending the UAV's operational time and enhancing the 

speed of rescue missions. 

 

                    (a)      (b)  

Fig. 4. System model diagram: (a) Trajectory generated using  

the proposed F-RRT* algorithm; (b) Trajectory generated  

using the comparative Nearest Neighbour algorithm. 

 

                    (a)      (b)  

Fig. 5. Comparison result of UAV flight distance: (a) with the proposed F-

RRT* path planning algorithm; (b) using the NN path planning algorithm. 

3.4. UAV disaster victim localization results 

To validate the effectiveness of the proposed localization algorithm, we simulated 

a scenario with 200 disaster victims, represented by yellow dots in the model. The 

placement of the disaster victims was based on the severity levels of the affected 

areas, ensuring a realistic distribution for the simulation. 

As shown in Fig. 6, the yellow dots represent the actual positions of the disaster 

victims, while the green dots indicate the estimated positions calculated by our 

algorithm. It is evident from the figure that both path planning algorithms, when 
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combined with our proposed localization method, can accurately pinpoint the victims' 

locations. This demonstrates the superior performance of our localization system. 

Furthermore, Fig. 7 illustrates the localization error of the proposed algorithm. 

The graph shows that the localization errors are maintained within 5 meters, 

highlighting the accuracy and reliability of our approach. The results confirm that 

our system can effectively locate disaster victims in the aftermath of an earthquake, 

providing critical information for timely rescue operations.  

The demonstrated accuracy and efficiency of the proposed system underline its 

potential to significantly enhance disaster response efforts, ensuring that victims 

are quickly and precisely located, thus improving the overall effectiveness of the 

rescue missions. 

 

                    (a)      (b)  

Fig. 6. System localization model comparison: (a) Disaster victim  

localization using the proposed F-RRT* trajectory; (b) Disaster  

victim localization using the comparative NN algorithm. 

 

Fig. 7. Localization errors of the proposed algorithm. 



74       J. Che et al. 

 
 
Journal of Engineering Science and Technology                Special Issue 4/2025 

 

4.  Conclusions 

This study presents an advanced UAV-based system for disaster victim 

localization, utilizing the Ray Tracing model and Weighted Least Squares (WLS) 

method for enhanced RSSI-based distance measurements. The system divides the 

disaster area into a grid, uses Adaptive Particle Swarm Optimization (APSO) for 

optimal waypoint selection, and employs the FRRT* algorithm for efficient 

trajectory planning.  

Simulation results demonstrate that the proposed system accurately localizes 

disaster victims, maintaining localization errors within 5 meters. The FRRT* 

algorithm provides a more efficient flight path compared to the Nearest Neighbour 

(NN) algorithm, reducing flight costs and energy consumption. The integration of 

these advanced methods significantly improves disaster response efforts, ensuring 

swift and accurate localization of victims, thereby enhancing the speed and 

effectiveness of rescue operations. 

 

Nomenclatures 
 

𝐷𝑖𝑗  Disaster level at grid cell (𝑖, 𝑗) 

g Global best position of all particles 

𝐾𝑖𝑗  RSSI readings for grid cell (𝑖, 𝑗) 

𝒑̂ Estimated position of victim 

𝑝𝑖  Best position of particle 𝑖 
𝑃𝐿(𝑑) Path loss at distance 𝑑 

𝑟𝑠 Signal coverage radius 

𝑉𝑖(𝑡) Velocity of particle 𝑖 at time 𝑡 

𝑤(𝑡) Dynamic inertia weight 

𝑥𝑖(𝑡) Position of particle 𝑖 at time 𝑡 

𝑦𝑖𝑗 Scanning point 𝑗 at grid cell 𝑖 
 

Abbreviations 

APSO Adaptive Particle Swarm Optimization 

F-RRT* Fast-RRT* 

IRRS Integrated Received Signal Strength 

RRT* Optimized Rapid-exploring Random Trees 

RSSI Received Signal Strength Indicator 

SAR Search and Rescue 

SNR Signal-to-Noise Ratio 

UAV Unmanned Aerial Vehicle 

WLS Weighted Least Square 
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