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Abstract 

This article aims to explore the simulation research of Industry 4.0 virtual assembly 

workstations. The study first introduced the core concepts of Industry 4.0 and its 

important role in the manufacturing industry, with a particular emphasis on the 

crucial role of virtual simulation technology in achieving intelligent production 

processes. Subsequently, the paper elaborated on the functional characteristics of 

Factory IO simulation software and its application advantages in virtual assembly 

workstation simulation. This article uses Factory IO to construct a digital model of 

a virtual assembly workstation and simulates the operation process of a 

programmable logic controller through PLC-SIM. Through the integrated 

application of these two software, a high degree of simulation of the production 

process of the assembly workstation has been achieved, including equipment 

layout, material transmission, assembly operations, and other various links. The 

research results indicate that virtual assembly workstation simulation based on 

Factory IO and PLC-SIM can effectively simulate the actual production 

environment, providing strong support for optimizing production processes and 

improving production efficiency. This article summarizes the important 

significance of virtual simulation technology in the era of Industry 4.0. Through 

this study, we provide an effective solution for simulating virtual assembly 

workstations in Industry 4.0 and provide useful exploration and reference for the 

intelligent upgrading of the manufacturing industry. 

Keywords: Factory IO, Industry 4.0, PLC-SIM, Virtual assembly. 
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1.  Introduction 

With the rapid advancement of technology, the industrial sector is undergoing a 

profound transformation led by Industry 4.0 [1]. This is not only a technological 

revolution, but also a leap in thinking, pushing traditional manufacturing to a new 

height [2]. The core of Industry 4.0 lies in the digital integration of the entire 

manufacturing process, supply chain, logistics and other aspects, achieving 

maximum data flow and information sharing [3]. This transformation not only 

enables enterprises to adapt to market dynamics more quickly, but also greatly 

improves production efficiency and product quality. Under the framework of 

Industry 4.0, intelligent manufacturing has become the core driving force [4].  

With the help of advanced sensors, automation equipment, and data analysis 

technology, the production process can be made intelligent, not only improving 

production efficiency, but also significantly reducing human errors [5], making the 

manufacturing process more precise and reliable. In addition, the digital industry 

provides the possibility for personalized customization, allowing enterprises to gain 

insights into customer needs through data and customize products that meet 

individual needs, greatly improving customer satisfaction. In the context of 

Industry 4.0, digital and intelligent factories are gradually becoming the 

mainstream of industrial manufacturing [6]. 3D simulation technology, as an 

indispensable part of digital industry, will continue to play a crucial role in 

industrial automation. This article aims to explore Industry 4.0 and its impact and 

application prospects on digital industry, especially 3D simulation technology, in 

order to provide useful thinking and inspiration for sustained innovation and 

development in the industrial field [7]. 

In the wave of Industry 4.0, there are still many unanswered questions and 

research spaces on how to combine services, instruments, and material assembly 

systems to achieve autonomous and intelligent production, as well as how to 

effectively manage production processes and real-time data communication [8]. 

This study aims to provide new insights and practices in this field. 

In order to achieve the practical application of 3D intelligent factories in the 

field of material assembly, this study combines Factory IO software and PLC-SIM. 

By simulating the key steps in the actual material assembly process, such as 

material production, handling, assembly, etc., this study created a virtual material 

assembly system. This system can not only help us visually identify bottlenecks 

and optimization points in the production process but also predict production 

efficiency and output [9]. 

This study proposes a series of suggestions to improve the efficiency and 

performance of material assembly systems, such as optimizing production 

processes, adjusting equipment layout, and enhancing automation levels [10]. 

To verify the effectiveness of these suggestions, a series of systematic 

evaluations were also conducted in this study, include testing and analysing the 

material assembly system with the aim of identifying potential issues and 

improvement points. The evaluation results not only verify the accuracy of the 

simulation system but also provide strong data support for subsequent 

improvement work. Meanwhile, optimizing the production cycle time is also of 

great significance for shortening customer delivery time and improving 

customer satisfaction. 
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In summary, this study provides useful exploration and practice for the 

intelligent upgrade of material assembly systems in the context of Industry 4.0. In 

the future, we can further expand the application of digital twin models in the field 

of material assembly, continuously optimize production processes and improve 

system performance through data analysis and simulation, providing strong support 

for achieving intelligent, efficient, and sustainable material assembly production. 

2.  Overview of the Related Work 

2.1. The concept and composition of industry 4.0 

Industry 4.0 refers to the integration of the real world and virtual networks, with 

information physical systems as the core and communication technology as the 

foundation. Forming a new era of technology that combines virtual and real in the 

field of industrial manufacturing. The goal of Industry 4.0 is to build intelligent, 

networked, flexible, and personalized manufacturing systems to meet diverse, high-

quality, and low-cost market demands [11]. 

The main components of Industry 4.0 include the following aspects: 

1) Intelligent products refer to products that have the ability to autonomously 

recognize, locate, perceive, interact, learn, and make decisions, and can 

adaptively adjust according to user needs and environmental changes. 

2) Intelligent devices refer to devices with autonomous perception, control, 

optimization, coordination, and maintenance capabilities that can intelligently 

interact with other devices, products, and systems. 

3) Intelligent factory refers to the use of technologies such as the Internet of 

Things, cloud computing, big data, and artificial intelligence to achieve 

information integration within and outside the factory, enabling real-time 

monitoring, simulation, optimization scheduling, and autonomous 

management of the production process.  

4) Intelligent services refer to intelligent services based on digital twin 

technology, providing full lifecycle services from product design, production 

and manufacturing, logistics distribution, use and maintenance to recycling 

and reuse, improving product added value and customer satisfaction. 

Digital twin technology is one of the key technologies in Industry 4.0. By 

combining real physical foundations with virtual technology and monitoring virtual 

models, comprehensive monitoring and simulation of the production process can 

be achieved, thereby improving production efficiency, reducing costs, and 

improving product quality. Digital twin technology has been widely applied in 

various fields of manufacturing, such as intelligent machine tools, intelligent 

factories, intelligent logistics, and intelligent services. 

2.2. Smart factory and digital twin 

In today’s highly informative era, the combination of intelligent factories and 

digital twins is gradually becoming a new trend in the development of 

manufacturing industry [12]. As an important product of modern manufacturing, 

intelligent factories achieve automation and intelligence in production processes by 

integrating advanced Internet of Things technology, big data analysis, cloud 

computing, and more. As a product of the integration of digital technology and the 
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physical world, digital twins provide a new perspective and method for the 

production management of intelligent factories. 

Intelligent factories achieve real-time monitoring and precise control of the 

production process through digital twin technology. Digital twin technology builds 

a virtual production environment and maps real-time production data from the real 

world to virtual models, enabling managers to have a more intuitive understanding 

of production status, timely identify potential problems, and carry out targeted 

optimization and improvement [13]. 

Digital twin technology provides powerful data support for the production 

management of intelligent factories. Through big data analysis, managers can gain 

a deeper understanding of various patterns in the production process, predict future 

production trends, and develop more scientific and reasonable production plans. 

This can not only improve production efficiency, but also effectively avoid 

resource waste. 

The combination of smart factories and digital twins helps to improve product 

quality and reliability. By monitoring various parameters in real-time during the 

production process, managers can promptly detect abnormalities in the production 

process and make timely adjustments and treatments. This can not only ensure the 

quality of the product but also improve its reliability and enhance the market 

competitiveness of the enterprise. 

The application of smart factories and digital twins helps drive the digital 

transformation of enterprises. With the continuous development of digital 

technology, the combination of intelligent factories and digital twins will become 

an important direction for the transformation and upgrading of the manufacturing 

industry. Through digital transformation, enterprises can more efficiently 

integrate resources, improve production efficiency, reduce costs, and achieve 

sustainable development. 

The combination of intelligent factories and digital twins is of great significance 

for the development of modern manufacturing industry. Through real-time 

monitoring, precise control, data support, and digital transformation, smart 

factories and digital twins will bring more efficient, intelligent, and sustainable 

production methods to enterprises, promoting the transformation and upgrading of 

the manufacturing industry. 

3.  Methodology and Approach 

3.1. Production and processing centre 

The first production centre on the top left as shown in Fig. 1 is responsible for 

producing lids, while the second production centre on the top right is responsible 

for producing bases. Both production and processing centres produce grey, blue, 

and green raw materials. When the start button of the control cabinet is pressed, the 

raw material launch device transfers the raw materials to the processing centre for 

processing and production. After production is completed, the processing centre 

places the materials at the outlet. At this time, the outlet sensor detects the materials, 

and the conveyor belt transfers the materials to the next station. A simulated view 

of the machining centre is shown in Fig. 2. 
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Fig. 1. Overall design block diagram of the system. 

 

Fig. 2. Machining centre 3D simulation view with labels. 

3.2. Material classification 

Material classification consists of visual sensors, classifiers, material push arms, 

collection devices, and other essential parts, as shown in Fig. 3. When the conveyor 

belt transfers the corresponding grey lids, bases, blue lids, bases, and green lids and 

bases to the visual sensor, different types of items are classified into different channels 

based on the set corresponding information classifier. The corresponding parameters 

for the visual sensor to recognize items are shown in Table 1. 
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Table 1. Visual sensor output values. 

Material Sensor Output Values 

Gray Cover 8 

Gray Base 9 

Blue Cover 2 

Blue Base 3 

Green Cover 5 

Green Base 6 

 

Fig. 3. Classification centre 3D simulation view with labels. 

If the visual sensor recognizes the material as grey, and the classifier rotates to the 

left. Then, the roller continues to move and sends the material to the right conveyor 

belt; If it is a blue material, the classifier roller will operate normally; Green indicates 

a right turn. At this point, based on the recognition of the visual sensor, the material 

pushing arm can be classified accordingly. When the base enters the corresponding 

conveyor belt, the entrance sensor recognizes it, with the purpose of adjusting the 

working status of the installation robot arm. When there is a base, the corresponding 

robot arm can start to move to prevent equipment mis-operation. 

3.3. Material assembly 

The material assembly module consists of a conveyor belt, photoelectric sensors, 

robotic arms, fixing devices, control cabinets, and many more. Two buttons were 

installed in a distribution cabinet in the assembly centre. When there is a problem 

during the equipment process, such as excessive accumulation of the same material, 

press the collection button. At this time, the equipment enters the material 

collection state, allowing excess material to be collected; Press the run button to 

put the device into normal operation. 

When the sensor on the robotic arm detects the arrival of materials, the baffle 

fixes the material cover and base. When the sensor determines that there are 

materials on both conveyor belts, the robotic arm starts to grab the cover and install 

it on the base. After assembly is completed, the bottom baffle descends, and the 

assembled materials are transported to the collection device. 
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3.4. Model design 

Factory IO has a built-in scene editor that allows you to select desired workpieces 

from the parts library, such as conveyor belts, sensors, push arms, etc. After the 

model is built, it needs to communicate with PLC-SIM. The steps are as follows: 

1) Firstly, edit the scene and call relevant conveyor belts, sensor production and 

processing centres, etc. according to the requirements to form the required 

factory model. 

2) To communicate with Factory IO software through S7-PLCSIM, a 

communication protocol is required. Here, the engineering template provided 

by Factory IO needs to be used to communicate with Botong software PLC-

SIM. After successful communication, the address in the configuration model 

is connected to the corresponding PLC's IO port. 

3) By aligning the variable address with the corresponding variable address in 

TIAPortal16 and setting it correctly, Factory IO can communicate normally 

with PLC-SIM to achieve joint simulation. 

4) Two processing and production centres are equipped with raw material 

launchers, which can be configured with material types, launch time interval 

parameters, etc. When conducting classification experiments, the material 

emitters are configured with three types of materials: grey, blue, and green, for 

production and transportation. 

5) There are three types of classifier attributes: left turn, straight turn, and right 

turn. The classifier can be selected based on the actual model construction 

method and can perform forward and reverse turns. In this model, only the 

classifier needs to be turned forward. 

6) Visual sensors classify materials of different colours and need to implement 

corresponding functions in the program.  

The assembly experiment requires two inlet materials of the same colour. After 

the materials are classified, they will enter different conveyor belts. If there are 

materials on the grey, blue, green bottom and grey, blue, and green colour cover 

conveyor belts, the mechanical arm will perform the assembly action. The assembly 

process diagram is shown in Fig. 4. 

3.5. Material assembly 

Upon pressing the Factory IO start button, the raw material transmitter emits the 

raw material, and the inlet detects the raw material. Start the production robotic arm 

to grab the raw material for production, and the feeding conveyor belt stops. At the 

end of production, the robotic arm places the material at the outlet, and the outlet 

conveyor belt starts. The production centre is idle, and the feeding conveyor belt is 

started to continue the next round of production, as shown in Figs 5(a) and (b). 

When using a visual sensor, a wheeled classifier is activated based on its value 

to achieve the first classification based on colour; Activate the classification push 

arm based on the values of the visual sensor to achieve classification of the cover 

and bottom. When the material reaches the bottom and the sensor detects it, the 

conveyor belt stops. If there is a base and cover on the conveyor belt, the 

mechanical arm is activated to sequentially move the X-axis and Z-axis to grab the 

cover and assemble it. The three colours of packaging are shown in Figs 5(c), (d), 
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and (e). The actions of each component of the virtual model are connected to the 

PLC, and some variable allocation tables are shown in Table 2. 

 

Fig. 4. Workflow diagram of the designed plant. 

 
(a)     (b) 

 
(c)     (d) 

 
(e) 

Fig. 5. 3D rendering and simulation of each step. 
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Table 2. PLC variable table. 

Action 
PLC 

variables 
Action 

PLC 

variables 

Production Center 1 

Raw Material Launcher 

Q0.1 Mechanical arm 3 

suction cup 

Q3.3 

Production Center 2 

Raw Material Launcher 

Q0.2 Robot arm 3X axis 

action 

Q3.4 

Production and 

processing centre 1 

started 

Q0.5 Robot arm 3Z axis 

action 

Q3.5 

Production and 

processing centre 2 

started 

Q0.6 Gray suction cup Q3.6 

Production Center 1 

Entrance Conveyor Belt 

Q1.0 Classification push 

arm grey base 

Q1.5 

Production Center 2 

Entrance Conveyor Belt 

Q1.1 Classification push 

arm blue cover 

Q1.6 

Wheel steering - left 
turn 

Q4.0 Classification push 

arm blue base 

Q1.7 

Wheel steering - right 
turn 

Q4.1 Classification push 

arm green cover 

Q2.0 

Wheel steering - 

forward rotation 

Q4.2 Classification push 

arm green base 

Q2.1 

Mechanical arm 1 

suction cup 

Q2.5 Green cover and 

baffle 

Q5.2 

Robot arm 1X axis 

action 

Q2.6 vision sensor ID30 

Robot arm 1Z axis 
action 

Q2.7 Gray bottom inlet 

sensor 

I1.0 

Mechanical arm 2 

suction cup 

Q3.0 Gray left position 

sensor 

I0.7 

Robot arm 2X axis 

action 

Q3.1 Green bottom in 

place sensor 

I1.4 

Robot arm 2Z axis 

action 

Q3.2 Blue bottom inlet 

sensor 

I1.5 

4.  Results and Discussion 

The main role of Industry 4.0 is to combine mass production and customization. 

Therefore, in the current customized virtual assembly workstation system, 

productivity is a key performance indicator. This experiment will count the time of 

the 100 components produced. 

𝑇𝑡 = 𝑇𝑠 + 𝑇𝑦 + 𝑇𝑎 + 𝑇𝑑                                                                                                                 (1) 

where 𝑇𝑡 : Total production time, 𝑇𝑠 : Production and processing time, 𝑇𝑎 : 

Transportation time, and 𝑇𝑑 : Waiting time. We then have productivity,  

𝑅𝑡 =
60

𝑇𝑡
                                                                                                                                                         (2) 
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Based on the simulation process of Factory IO, the material production process 

was observed, and the production of 100 materials was calculated as a case study. 

In addition, the time for material production and processing is assumed to be equal. 

For example, the production and processing time for covers and bases in gray, 

green, and blue colors is 55 seconds, as shown in Table 3. 

Table 3. PLC variable table. 

Colour Gray Green Blue 

Number (pcs) 46 22 32 

Average production and processing time (sec) 55 55 55 

Average transportation time (sec) 21.2 18.4 19.2 

average waiting time (sec) 25 63 42 

Productivity (𝑹𝒕) 101.4 136.2 116.4 

Simulation analysis shows that due to slight differences in the length of the 

conveyor belt, it can be seen that there are differences in the average transportation 

time of each material. Although the simulation scenario produces green products 

with higher productivity, due to the randomness of production, the number of green 

products is relatively small, resulting in shorter waiting times; But the overall 

simulation results were smooth. When using simulation and software applications 

(i.e. Botu software and Factory IO), potential improvements can be identified 

before actual implementation by integrating IR4.0 enabling technologies such as 

simulation based modeling compared to physical models. Another potential 

improvement is to identify the sites affected by the fault as early as possible. This 

is one of the potential improvements related to maintenance. 

Therefore, use TIA Protal and all variables in PLC-SIM and factory IO to ensure 

that the later simulation can correspond to the actual scene. A 3D production line 

model has been developed in the factory IO program to make supervision easier. 

Can track finished products and record faults. The clear image of the final 3D 

simulation factory is shown in Fig. 6. It can be seen that these two software 

programs are synchronized and the system is running normally. 

In this study, in order to determine whether the system can operate accurately 

and stably, 9 sets of data were measured, each producing 100 materials for 

recording. Collecting data is to understand the stability, intelligence, efficiency, and 

sustainability of the system. This provides useful exploration and practice for future 

research on the intelligent upgrading of material assembly systems in the context 

of Industry 4.0. Average productivity statistics as shown in Table 4. 

 
(a)     (b) 

Fig. 6. (a) Overview of the 3D rendering and simulation;  

(b) Run block diagram coded for the simulation. 
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Table 4. Average productivity statistics. 

Tests Grey material 

production 

Green material 

production 

Blue material 

production 

1 108.5 116.2 115.8 

2 122.2 113.3 121.6 

3 144.3 118.5 115.0 

4 114.9 119.8 116.2 

5 117.4 120.2 119.3 

6 132.1 117.9 117.5 

7 130.7 141.4 119.2 

8 110.8 119.5 118.3 

9 119.1 118.6 117.7 

Average 122.8 117.4 118.9 

5.  Conclusions 

When factories meet their internal needs, they need to conduct system simulation and 

functional testing in advance. Good test results can have a significant impact on the 

current costs and revenue generated by the company. As part of this study, in order 

to implement the concept of Industry 4.0, a virtual assembly workstation simulation 

for Industry 4.0 was developed. In addition, the assembly of materials has been 

successfully achieved, and through testing, the logic has been made feasible. 

The combination of PLC-SIM and Factory IO is used to calculate and simulate 

the possible results of the designed virtual assembly workstation. The ladder 

diagram aims to track and predict faults. Based on simulation results, an interactive 

mode for step-by-step inspection of the operational processes is proposed in this 

paper. Synchronizing these two software systems can better predict, identify system 

faults, and accurately locate fault locations. In addition, through the software's 

ability to simulate the layout of a visual factory, the performance and configuration 

of the system can be analyzed more easily and quickly based on customer changes. 

According to the simulation results, it can be seen that the simulation efficiency 

is high and the success rate is high, which proves the effectiveness and efficiency 

of digital twin modelling. In addition, by analysing the digital twin model, it is 

possible to effectively understand the specific problems encountered during actual 

production and transportation, and to systematically diagnose the performance of 

the assembly workstation system. For example, the proposed simulation system can 

predict fault problems such as sorting and assembly, and can change programming 

logic, sensor positions, and factory structure in real time. 
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