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Abstract 

This research provides an exhaustive examination of the pivotal role that three-
dimensional (3D) reconstruction techniques play in the post-seismic assessment 
of architectural structures, with a pronounced emphasis on the deployment of 
Unmanned Aerial Vehicles (UAVs). Given the profound ramifications of seismic 
events on urban infrastructures, the study underscores the imperative of 
conducting timely and meticulous evaluations of the affected edifices. The paper 
commences by undertaking a 3D modelling of the architectural ensemble, 
strategically positioning cameras around the target structures to capture 
previously uncharted points. Subsequently, two sophisticated clustering 
algorithms, namely spectral clustering and Fuzzy K-means, are employed to 
cluster these positional points. These clustered points are then judiciously 
allocated to a fleet of four UAVs for optimal coverage. The research introduces 
the F-RRT* algorithm, an augmented version of the conventional RRT* 
algorithm tailored for path planning. This enhancement is spotlighted for its 
superior convergence rate and its ability to generate more streamlined and 
efficient trajectories. In summation, this comprehensive investigation furnishes 
invaluable insights and avant-garde technical methodologies for post-disaster 
architectural evaluations, championing the advancement of UAV-centric 3D 
reconstruction endeavours. 

Keywords: 3D Reconstruction, Intelligent system, Path planning, Post-disaster, 
UAV. 
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1.  Introduction 
The perpetual movement of tectonic plates on the Earth has rendered earthquakes 
a significant natural peril that can potentially affect all regions of the globe [1]. In 
recent times, a series of devastating earthquakes have resulted in significant human 
and infrastructural losses. Among the most affected infrastructures are buildings, 
which are pivotal in human life as primary residences and workspaces. Their 
vulnerability during seismic events often results in substantial damage, 
jeopardizing their structural integrity and safety [2]. Post-disaster, there is an urgent 
need for a swift and precise assessment of these structures. Such evaluations are 
not just pivotal for human safety but also set the stage for informed decisions in the 
subsequent recovery and rebuilding phases. 3D building reconstruction emerges as 
a potent tool, facilitating comprehensive visual inspections of damaged buildings 
across varied angles and dimensions. By generating detailed 3D building 
representations and providing essential data that aids in the restoration process [3]. 

In the evolution of 3D reconstruction technology, numerous methods and 
strategies have been proposed and extensively researched. For instance, laser 
scanning technology, despite its unparalleled measurement accuracy, is limited in 
its widespread adoption for large-scale and remote applications due to high 
requirements in equipment investment and operational complexity [4]. 
Stereophotography, as an economically efficient approach, still possesses certain 
advantages in certain application scenarios, although it may encounter difficulties 
in handling complex surfaces and textures [5]. 

Structured light scanning technology exhibits outstanding performance in 
indoor environments, but its application in outdoor settings is hindered by 
interference from natural light, thus limiting its scope of use [6]. Given the 
limitations of the aforementioned techniques, unmanned aerial vehicles (UAVs) 
offer a promising alternative for 3D building reconstruction [7]. They can rapidly 
cover large areas, particularly in terrains that are complex or difficult to access. By 
incorporating high-resolution imaging technology, UAVs can capture rich details, 
providing high-quality data input for subsequent 3D modelling [8]. Furthermore, 
their unique manoeuvrability allows for capturing images from multiple angles, 
further enhancing the accuracy and completeness of the 3D model [9]. 

In the realm of 3D reconstruction of buildings using unmanned aerial vehicles 
(UAVs), path planning holds paramount importance. Proper path planning ensures 
the safety of the UAV during flight by avoiding collisions with other objects, while 
also ensuring efficient and high-quality image capture [10]. Optimizing the flight 
path guarantees the capture of images from the optimal angles and positions, 
thereby enhancing the accuracy and completeness of life the 3D model. 
Furthermore, effective path planning conserves the UAV's battery and extends its 
flight time, thereby improving overall operational efficiency. 

In recent years, numerous scholars have delved deep into the study of UAV path 
planning. Yang et al. have developed an unmanned aerial vehicle (UAV) path 
planning method aimed at ensuring the desired image overlap and optimizing the 
flight route during the application of UAVs for digital terrain model (DTM) 
reconstruction [11]. Qi Kuang et al. has proposed an UAV real-time path-planning 
method for autonomous urban scene reconstruction [12]. Song et al. proposed a 
novel view path planning method based on an online Multi-View Stereo (MVS) 
system [13]. This method aims to incrementally construct a target three-
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dimensional (3D) model in real time. Ryosuke Nagasawa et al. has proposed a 
multi-UAV coverage path planning method for the three-dimensional 
reconstruction of post-disaster damaged buildings [14]. This method has been 
implemented in the multi-agent modelling environment NetLogo3D and tested in 
the virtual construction environment of Unity3D. 

Despite many path planning algorithms being proposed, the challenge of selecting 
and optimizing algorithms suitable for the 3D reconstruction of post-disaster 
buildings remains [15]. Scholars have conducted research in this area. Particularly in 
complex urban environments, where there are numerous damaged buildings, a single 
UAV is insufficient for the reconstruction task, and multiple UAVs are required for 
task allocation. This poses a great challenge to path planning [16]. 

Clustering methods also play a critical role in UAV-based 3D building 
reconstruction. Although various clustering methods, such as K-MEAN and 
spectral clustering, have been proposed and applied, the selection and optimization 
of the most suitable clustering method for this application scenario is still an open 
research question [17]. This is especially true when considering the 3D 
reconstruction task with multiple UAVs, where ensuring effective collaboration 
among UAVs and addressing task allocation and energy management are important 
research directions. 

This study aims to explore new methods and strategies for path planning of 
drones in 3D building reconstruction. Modelling of disaster-stricken areas and 
generating 3D building models are conducted. In addition, shooting positions are 
set around each target building. A novel clustering method is introduced to allocate 
tasks more effectively and optimize flight paths. Finally, the path planning problem 
is transformed into the traveling salesman problem, and a path planning algorithm 
is designed to achieve optimal flight costs. This research will provide more 
advanced and practical technical support for the rapid and accurate assessment of 
post-disaster buildings. Through these innovative approaches, it is expected to 
make meaningful contributions to the field of drone-based 3D building 
reconstruction. 

2. Methodology  
In this section, a systematic strategy for post-disaster structural reconstruction using 
UAVs is delineated in Fig. 1. 3D models for 25 structures are constructed, with 13 
designated as primary targets for reconstruction. Precise determination of camera 
angles and positions is imperative for capturing accurate and comprehensive 3D 
representations. Utilizing clustering techniques ensures efficient distribution of 
camera positions across multiple drones, guaranteeing coverage of distinct, non-
overlapping areas.  

 
Fig. 1. Workflow and scope of this methodology. 
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The Robust and Sparse Fuzzy K-Means Clustering Algorithm approach is 
examined in depth and contrasted with spectral clustering to discern relative merits. 
Central to the research is the development of drone flight paths. Given constraints 
such as battery duration and flight range, F-RRT* path planning algorithms are 
selected and augmented with optimization methods to ensure optimal flight 
performance and safety. 

The primary objective of this model's construction lies in establishing a 
foundational framework for subsequent camera positioning and path planning, 
ensuring comprehensive observation and analysis of architectural structures [18]. 
Initialization of the model involves setting a deterministic seed for the random 
number generator, guaranteeing reproducibility across various iterations. 
Parameters including number of buildings, dimensions, spacing, and potential 
height variations were defined [19]. Buildings are characterized by a width of 25 
units, a depth of 30 units, and a height, randomly ascertained, ranging between 40 
and 150 units. Emulating the inherent unpredictability of urban sprawl, building 
positions, originally grid-based, undergo randomization. A dichromatic scheme 
differentiates the structures: deep blue signifies target buildings central to this 
investigation, whereas red demarcates ancillary structures.  

Conclusively, this 3D modelling offers an invaluable instrument for 
stakeholders in urban planning and architectural design, presenting a holistic 
architectural layout via a 3D visualization crafted using MATLAB's fill3 function. 
This visual representation is denoted as 3D Representation of Buildings in Fig. 2. 

 
Fig. 2. 3D representation of buildings. 

2.1.  Arrangement of camera shooting points 
In the context of 3D architectural reconstruction, the strategic selection of camera 
shooting positions is of paramount importance [20]. To ensure the accuracy and 
completeness of the 3D model, this study adopts a comprehensive strategy for choosing 
camera shooting points [21]. Firstly, considering the scenario of multiple cooperative 
unmanned aerial vehicles (UAVs), a planning adjustment mechanism is introduced to 
analyse the flight trajectories of each UAV and the estimated image acquisition time, 
ensuring a safe distance between UAVs to avoid collisions and image overlap. 
Secondly, a series of fundamental parameters are defined, including the flight speed of 
the UAVs, the field of view angle of the camera, and the expected image overlap rate, 
which serve as the basis for subsequent selection of shooting points. 
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Furthermore, to ensure the continuity and overlap of images, the camera 
footprint for each shooting position is calculated based on the camera's focal length, 
sensor size, and predetermined flight altitude. Lastly, in order to further optimize 
the selection of shooting points, an overlap measurement mechanism is introduced, 
which compares the overlapping areas between consecutive images to ensure that 
each image provides sufficient information for the 3D reconstruction. The 
following Table 1 presents the camera shooting point-related information. 

Table 1. Camera shooting point-related parameter. 
Parameter Description 
Planning 
Adjust 

Consideration of the distance between drones to avoid flying 
too close 

Basic 
Parameters 

Determined by drone speed, camera field of view, and 
expected image overlap 

Camera 
Footprint Based on camera focal length, sensor size, and flight altitude 

Overlap 
Measure 

Optimization of shooting point selection by comparing 
overlap areas of consecutive images 

2.2. Two types of clustering algorithms 
In this study, two clustering algorithms were employed to analyse the data. Firstly, 
the spectral clustering algorithm was introduced as a reference benchmark. Spectral 
clustering, as a graph-based method, possesses certain advantages in handling 
complex data structures. However, despite its impressive performance in certain 
application scenarios, it does not always meet all clustering requirements. 
Therefore, in order to delve deeper into and address the specific issues in our 
research, Fuzzy K-Means was selected as the primary clustering algorithm in this 
paper. Fuzzy K-Means is capable of providing a membership degree for each data 
point, rather than a fixed class label, making it more flexible and robust in handling 
fuzziness and uncertainty. Through this approach, our aim is to ensure that the 
chosen clustering method maximally meets the research needs and provides a 
reliable foundation for subsequent analysis. 

2.2.1. Spectral clustering algorithm 
The spectral clustering technique is rooted in graph theory. It envisions data points 
as graph nodes and builds the graph by gauging the similarity between these nodes 
[22]. Within this graph, edges connecting similar data points carry higher weights, 
whereas those linking dissimilar points have reduced weights or none at all. The 
goal of spectral clustering is to group these nodes so that nodes within a group share 
high similarity, and those across different groups have low similarity. The 
underlying mathematical representation of spectral clustering is given by the 
subsequent formula. 

Compute the similarity matrix: For each pair of data points 𝑥𝑥𝑖𝑖  and 𝑥𝑥𝑗𝑗  in a 
dataset, the similarity between them is calculated, usually using a Gaussian kernel 
function or other kernel function. 

𝑆𝑆𝑖𝑖𝑗𝑗 = exp �−
∥𝑥𝑥𝑖𝑖−𝑥𝑥𝑗𝑗∥2

2𝜎𝜎2
�                 (1) 
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where 𝜎𝜎 is the width parameter of the Gaussian kernel. 

Calculation degree matrix 𝐷𝐷 is a diagonal matrix, where each diagonal element 
𝑑𝑑𝑖𝑖𝑖𝑖  is the degree of node 𝑖𝑖, the sum of the weights of all edges connected to node 𝑖𝑖. 

𝑑𝑑𝑖𝑖𝑖𝑖 = ∑ 𝑆𝑆𝑖𝑖𝑗𝑗𝑛𝑛
𝑗𝑗=1                   (2) 

Compute the Laplace matrix 

𝐿𝐿 = 𝐷𝐷 − 𝑆𝑆                  (3) 
Standardized Laplace matrix 

𝐿𝐿𝑠𝑠𝑠𝑠𝑠𝑠 = 𝐷𝐷−1/2𝐿𝐿𝐷𝐷−1/2                 (4) 

Calculation the eigenvectors corresponding to the smallest 𝑘𝑘  non-zero 
eigenvalues of 𝐿𝐿 and use these eigenvectors for 𝑘𝑘-means clustering. 

2.2.2. Robust and sparse fuzzy K-means clustering algorithm 
The conventional fuzzy K-means clustering algorithm may suffer from the 
influence of noise and outliers, resulting in a decrease in the accuracy of the 
clustering results [23]. To address this issue, researchers have proposed the 
robustness and sparsity-based fuzzy K-means clustering algorithm. This algorithm 
combines the advantages of sparsity and robustness, enhancing its stability and 
accuracy when dealing with noise and outliers. 

The Robust and Sparse Fuzzy K-Means Clustering algorithm focuses primarily 
on three core formulas, which collectively define how to compute the membership 
degrees of data points, how to update cluster centres, and how to optimize the 
weights of data points [24]. 

Affiliation matrix 𝑈𝑈 = [𝑢𝑢𝑖𝑖𝑗𝑗]: 

𝑢𝑢𝑖𝑖𝑗𝑗 = 1

∑𝑘𝑘=1
𝑐𝑐 �

∥𝑥𝑥𝑖𝑖−𝑣𝑣𝑗𝑗∥2

∥𝑥𝑥𝑖𝑖−𝑣𝑣𝑘𝑘∥2
�

2
𝑚𝑚−1

                 (5) 

where 𝑢𝑢𝑖𝑖𝑗𝑗 denotes the degree of affiliation of data point 𝑥𝑥𝑖𝑖 belonging to cluster 𝑗𝑗, 
𝑣𝑣𝑗𝑗  is the center of cluster 𝑗𝑗, 𝑐𝑐 is the number of clusters and 𝑚𝑚 is the ambiguity 
parameter (usually greater than 1). 

Cluster centre 𝑣𝑣𝑗𝑗 is updated: 

𝑣𝑣𝑗𝑗 =
∑𝑖𝑖=1
𝑛𝑛 𝑤𝑤𝑖𝑖𝑢𝑢𝑖𝑖𝑗𝑗

𝑚𝑚𝑥𝑥𝑖𝑖

∑𝑖𝑖=1
𝑛𝑛 𝑤𝑤𝑖𝑖𝑢𝑢𝑖𝑖𝑗𝑗

𝑚𝑚                   (6) 

where 𝑤𝑤𝑖𝑖 is the weight of data point 𝑥𝑥𝑖𝑖 , which can be optimized by sparsity 
constraints and a robustness loss function. 

The update of the weight matrix w can be solved by the following optimization 
problem: 

min𝑊𝑊∑𝑖𝑖=1
𝑛𝑛 ∑𝑗𝑗=1

𝑐𝑐 𝑢𝑢𝑖𝑖𝑗𝑗𝑠𝑠𝑙𝑙(𝑥𝑥𝑖𝑖 , 𝑣𝑣𝑗𝑗 ,𝑤𝑤𝑖𝑖) + 𝜆𝜆 ∥ 𝑤𝑤𝑖𝑖 ∥ 1               (7) 

where 𝑙𝑙 is the robustness loss function, the 𝜆𝜆 is the regularization parameter for the 
sparsity constraint. The comparison of the steps for the two algorithms is illustrated 
in Table 2. 
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Table 2. Comparison of clustering methods:  
spectral clustering vs. robust and sparse fuzzy K-means clustering. 

Steps Spectral clustering Robust and sparse fuzzy K-means clustering 
1 Construct the similarity matrix S using 

the Gaussian kernel function. 
Determine the number of clusters c and initialize 
the cluster centres. 

2 Compute the degree matrix D. Calculate the membership matrix U based on the 
initial cluster centres. 

3 Formulate the Laplacian matrix L. Compute the objective function 𝐽𝐽𝑠𝑠 using U, 
cluster centers, and data points. 

4 Calculate the eigenvectors and 
eigenvalues of L. 

Update the cluster centres based on U. 

5 Select k smallest eigenvalues and their 
corresponding eigenvectors to form 
matrix X. 

Update U based on the new cluster centres. 

6 Use K-means to cluster the rows of X. Calculate the sparsity-inducing regularization 
term and incorporate it into 𝐽𝐽𝑠𝑠. 

7 Obtain the final cluster assignments. Iterate steps 3-6 until 𝐽𝐽𝑠𝑠 converges or a 
predefined number of iterations is reached. 

8 - Obtain the final cluster assignments based on U. 

2.3. Path planning algorithm 
Given the consideration of flight costs associated with UAVs, it is imperative to 
identify a flight path with the lowest possible expenses. Hence, this paper employs 
the F-RRT* algorithm as the chosen method for path planning. 

F-RRT* is an improved version of the RRT* (Rapidly-exploring Random Trees 
Star) algorithm. The main idea of F-RRT* is that in each iteration, instead of just 
considering the nearest node to expand, a set of nearest-neighbouring nodes are 
considered and the best of them are selected for expansion. In this way, the algorithm 
can explore the configuration space faster and find high-quality paths earlier. 

Compared to the standard RRT* algorithm, F-RRT* exhibits a faster 
convergence rate. This indicates that it can find optimal or near-optimal paths in 
fewer iterations. Additionally, the paths generated by F-RRT* tend to be smoother 
and more direct, making it particularly suitable for applications where efficiency 
and safety are of paramount importance, such as unmanned aerial vehicle flight 
planning. The specific flow of the F-RRT* algorithm is shown in Table 3. 

Table 3. Specific description of each step of the F-RRT* algorithm. 
Step Process Description 
1 Initialization Start with an initial node 𝑞𝑞𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠, and define the goal node𝑞𝑞𝑔𝑔𝑔𝑔𝑠𝑠𝑔𝑔 . 
2 Sampling In each iteration, randomly sample a point 𝑞𝑞𝑠𝑠𝑠𝑠𝑛𝑛𝑟𝑟in the search space. 
3 Nearest Node Find the node 𝑞𝑞𝑛𝑛𝑛𝑛𝑠𝑠𝑠𝑠𝑛𝑛𝑠𝑠𝑠𝑠 in the tree that is closest to 𝑞𝑞𝑠𝑠𝑠𝑠𝑛𝑛𝑟𝑟. 
4 Steering Generate a new node 𝑞𝑞𝑛𝑛𝑛𝑛𝑤𝑤 by moving from 𝑞𝑞𝑛𝑛𝑛𝑛𝑠𝑠𝑠𝑠𝑛𝑛𝑠𝑠𝑠𝑠  towards 𝑞𝑞𝑠𝑠𝑠𝑠𝑛𝑛𝑟𝑟 but within a 

maximum distance, Delta q. 
5 Obstacle Check Ensure the path segment between 𝑞𝑞𝑛𝑛𝑛𝑛𝑠𝑠𝑠𝑠𝑛𝑛𝑠𝑠𝑠𝑠  and 𝑞𝑞𝑛𝑛𝑛𝑛𝑤𝑤 is free from collisions. 
6 Cost 

Calculation 
Compute the cost to reach 𝑞𝑞𝑛𝑛𝑛𝑛𝑤𝑤 from 𝑞𝑞𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 via 𝑞𝑞𝑛𝑛𝑛𝑛𝑠𝑠𝑠𝑠𝑛𝑛𝑠𝑠𝑠𝑠  

7 Rewiring Check nodes in the vicinity of 𝑞𝑞𝑛𝑛𝑛𝑛𝑤𝑤 and see if it's more cost-effective to reach them via 
𝑞𝑞𝑛𝑛𝑛𝑛𝑤𝑤. Update connections accordingly. 

8 Goal Check If 𝑞𝑞𝑛𝑛𝑛𝑛𝑤𝑤 is close enough to 𝑞𝑞𝑔𝑔𝑔𝑔𝑠𝑠𝑔𝑔  and a direct connection is possible, link them. 
9 Completion Once the goal is reached or after a predefined number of iterations, the algorithm 

concludes. The optimal path can be traced back from 𝑞𝑞𝑔𝑔𝑔𝑔𝑠𝑠𝑔𝑔  to 𝑞𝑞𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠. 
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3. Results and Discussion 

3.1. Analysis of clustering algorithms 
Considering the parameters in Table 1, camera positions for shooting were generated 
around the target building in the constructed 3D architectural model. These positions serve 
as waypoints for the drone during 3D reconstruction. The final result is shown in Fig. 3.  

 
Fig. 3. 3D representation of buildings. 

Subsequently, the generated waypoints need to be assigned to four drones. To 
achieve this, the clustering algorithm proposed in this paper, as well as the spectral 
clustering algorithm used for comparison, were employed to cluster the shooting 
points. The resulting clusters are depicted in Figs. 4(a) and (b), where points of the 
same cluster are represented by the same colour. 

 
(a) (b) 

Fig. 4. Cluster algorithm comparisons (a) Results from the  
robust and sparse fuzzy K-means clustering algorithm;  

(b) Outcomes of the spectral clustering algorithm. 

The major difference between the two clustering algorithms discussed in this 
paper is evident. In the clustering result of the Robust and Sparse Fuzzy K-Means 
Clustering Algorithm, the position points of a certain building are assigned to two 
drones, whereas the spectral clustering algorithm assigns all the position points of 
the entire building to the same drone. 
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Considering factors such as the spatial location and volume of the target 
building, it is inevitable that the workload of the four drones will be uneven, with 
one drone having a disproportionately high workload. The typical flight time of a 
drone is 20-30 minutes. If it exceeds the battery's working time, it needs to return 
to change the battery, resulting in a waste of human resources. Therefore, it can be 
seen that the clustering algorithm proposed in this paper has a greater advantage 
when applied to the clustering of camera position points for multiple buildings. 

3.2. Result of path planning 
In this section, the F-RRT* algorithm is employed for path planning on the drone 
camera capture points generated by two clustering methods. In order to assess the 
effectiveness of path planning, we have established a cost function based on flight 
distance and time. 

𝐽𝐽 = 𝑤𝑤1 × (𝐷𝐷horizontal+Dvertical) + 𝑤𝑤2 × (𝑇𝑇horizontal + 𝑇𝑇vertical + 𝑇𝑇yaw)            (8) 

where 𝑤𝑤1 and 𝑤𝑤2 are weights to balance the effects of distance and time, J is the total 
cost, 𝐷𝐷horizontal and 𝐷𝐷verticalis the horizontal and vertical flight distance, 𝑇𝑇horizontal and 
𝑇𝑇vertical is the corresponding flight time, 𝑇𝑇yaw is time for the drone to turn. The UAVs 
flight speed parameters required to calculate the flight time are shown in Table 4. 

The path planning of the two clustering methods for the drones is illustrated in Fig. 
5. Four drones take off from the safe point in the middle of the map and ascend to a safe 
altitude before following their respective paths to capture the designated points.  

 
(a) 

 
(b) 

Fig. 5. Path planning graphs for two clustering algorithms:  
(a) Path planning graph for robust and sparse fuzzy K-means clustering 

(b) Path planning graph for spectral clustering algorithm. 
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Table 4. Camera shooting point-related parameter. 
Parameter value Description 
Horizontal flight 
speed 

15/m Consideration of the distance between drones to avoid 
flying too close 

Vertical Rise 
Speed 

6m/s Determined by drone speed, camera field of view, and 
expected image overlap 

Vertical descent 
speed 

4m/s Based on camera focal length, sensor size, and flight 
altitude 

Overlap Measure 12°/s Optimization of shooting point selection by comparing 
overlap areas of consecutive images 

The simulation graph demonstrates that both clustering algorithms yield 
optimal drone paths, achieving complete coverage of the target buildings of interest 
without any collisions. This validates the capability of the F-RRT* algorithm to 
generate efficient and safe flight paths in various complex environments. It is worth 
noting that due to the different assignment of camera capture points by the two 
clustering algorithms, different cost functions are generated, as shown in Fig. 6. 

 
(a) 

 
(b) 

Fig. 6. Cost function graph path for two clustering algorithms:  
(a) Cost function for Robust and sparse fuzzy K-means clustering  

(b) Cost function for Spectral clustering algorithm. 

The cost function plots for two clustering scenarios are shown in Fig. 5, with the 
horizontal axis representing the time taken to complete the path and the vertical axis 
representing the cost function values. Each plot consists of five curves, which are the 
cost function curves for four drones individually and their total cost function.  
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By comparing the images, it is evident that the total cost of the Robust and Sparse 
Fuzzy K-Means Clustering path is significantly lower than that of the Spectral 
Clustering algorithm path. Examining the cost function values for the drones in Fig. 
6(a), they are notably similar. However, Fig. 6(b) shows a pronounced discrepancy. 
This discrepancy arises from the uneven distribution of camera points to drones, as 
determined by different clustering algorithms. Furthermore, the completion time can 
also be observed from the horizontal axis, with Fig. 6(a) taking 345 timesteps, while 
Fig.6(b) takes nearly 470 timesteps. This is the main reason for the significant 
difference in cost function between the two algorithms. 

4. Conclusion 
In this research, intricate 3D models of urban structures have been developed, 
laying the groundwork for subsequent phases. Following the establishment of these 
models, strategic placement of camera shooting points around the target buildings 
was executed, adhering to specific predefined parameters. These points were 
pivotal in facilitating comprehensive capture. Other than that, a comparative study 
between the Spectral Clustering algorithm and the Robust and Sparse Fuzzy K-
Means Clustering Algorithm were discussed, the latter being the focal point of this 
paper. The analysis revealed that the Robust and Sparse Fuzzy K-Means Clustering 
Algorithm outperformed its counterpart, adeptly distributing shooting points 
among four drones. This led to enhanced coverage with reduced redundancy. 

Building on this foundation, the F-RRT* algorithm was applied to determine 
optimal routes for each UAV. This strategy ensured that the flight paths were not only 
comprehensive but also tailored to meet each UAV's unique flight capabilities. Our 
research's strength lies in the amalgamation of potent clustering with sophisticated 
path planning. The introduction of the Robust and Sparse Fuzzy K-Means Clustering 
Algorithm stands out, providing a refined strategy for drone task distribution. 

Future avenues could delve into real-time trajectory modifications, enabling 
drones to navigate unexpected challenges or evolving scenarios. Integrating data-
driven methodologies might further refine the precision and adaptability of both 
clustering and navigation phases. To sum up, this work offers a multi-faceted 
perspective on drone activities within urban landscapes, merging 3D visualization, 
cutting-edge clustering, and advanced navigation strategies. 
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