

ETHNOMATHEMATICS INTEGRATION IN MATHEMATICS CLASSROOM: IMPACTS AND INSIGHTS ASSISTED BY ATLAS.TI 23

EDI SUPRIYADI^{1,2}, T. TURMUDI^{1,*},
JARNAWI AFGANI DAHLAN¹, DADANG JUANDI¹

¹Universitas Pendidikan Indonesia, Jl. Setiabudhi No. 229, Bandung, Indonesia

²Sekolah Tinggi Teknologi Bandung, Jl. Soekarno Hatta No.378, Bandung, Indonesia

*Corresponding author: turmudi@upi.edu

Abstract

This study investigates the incorporation of West Javanese ethnomathematics into the region's mathematics curriculum, aiming to discern its influence on student engagement and mathematical reasoning, alongside the associated educational challenges, particularly during the shift to remote learning. Employing a case study approach, in-depth interviews with junior high and vocational school teachers were conducted and analysed using Atlas.ti 2023 to extract and code thematic patterns. The exploration revealed an innovative pedagogical approach that intertwines traditional cultural elements with mathematics education, leveraging local culinary and batik motifs to enhance student interest and cognitive skills. Despite initial challenges such as creating resonant educational materials and acclimatizing students to culturally rich problem-solving, a gradual integration strategy and a supportive communication network for students and parents were developed. The study concludes that while the integration of ethnomathematics presents initial hurdles, it ultimately strengthens students' cultural understanding and engagement. The findings advocate for a deeper incorporation of ethnomathematics resources in the curriculum and suggest a potential for broader application in different educational contexts, encouraging further research into long-term impacts and pedagogical refinement. The implications suggest that ethnomathematics not only promotes academic prowess but also fosters a harmonious blend of cultural identity and mathematical literacy.

Keywords: Atlas.ti, Covid-19, Cultural, Ethnomathematics, Mathematics.

1. Introduction

Integrating ethnomathematics in the classroom blends culture with arithmetic. Ethnomathematics studies mathematical practices and conceptions across cultures [1]. It acknowledges student ethnic diversity and incorporates cultural components into the curriculum to make mathematics more meaningful. Ethnomathematics can help teachers create a more inclusive and engaging learning environment that fosters critical thinking, problem-solving, and cultural appreciation [2].

Research has demonstrated introducing ethnomathematics in math classes has many benefits. It enhances math comprehension and performance [3]. It boosts pupils' self-esteem and maths research enthusiasm [2]. Student access to and understanding of mathematics can be enhanced by ethnomathematics, reflecting classroom cultural variety [4]. It can also improve students' mathematics communication and problem-solving [5].

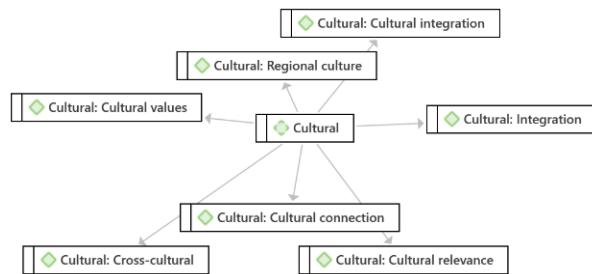
To include ethnomathematics into the mathematics curriculum, teachers must recognize its relevance and make room for it [6]. They can teach math ideas using culturally sensitive methods that respect students' cultural diversity and ordinary mathematical practises [7]. To make math more entertaining and accessible, teachers can use ethnomathematics folklore games and artifacts from diverse cultures [8]. However, integrating ethnomathematics into geometry instruction might be difficult. Proper syllabus, curriculum design, and teacher training and support are these problems [9]. This study evaluates the influence of incorporating West Javanese ethnomathematics into mathematics education.

2. Methods

The case study method involves in-depth interviews with math professors who have integrated ethnomathematics. Teacher backgrounds include junior high and vocational school. Ethnomathematics integration problems and benefits for instructors are examined in the interviews. Furthermore, the study examines how these teachers incorporate culturally appropriate examples and practices into their lessons. This study will show how ethnomathematics improves students' cultural knowledge and math participation. We analyzed interview results using atlas.ti 2023.

The software's ability to facilitate qualitative and mixed-methods research aligns with the broader trend of incorporating diverse data analysis techniques in engineering research, including machine learning, data mining, and information visualization [10]. To extract and code interview results into themes. Our analysis and interpretation of these themes revealed patterns and trends in students' cultural awareness and mathematics engagement [11-13].

3. Results and Discussion


Analysis of interview data yielded five codes. We networked these codes using Atlas.ti 2023. Cultural, educational, exploration, learning problems, and math codes were gathered. We networked these codes to find their linkages. The network of concepts and themes was complex (Figs. 1-5).

3.1. Cultural

In seventh-grade social arithmetic, West Javanese food and batik motifs merge beautifully. This innovative method makes learning fun and engaging.

Ethnomathematics helps students' cognitive and mathematical reasoning while conserving their region's rich cultural history (Fig. 1).

However, integrating ethnomathematics is difficult. Creating teaching materials that reflect this theme is difficult due to students' unfamiliarity with culturally-infused story problems. To solve these challenges, we deepen our ethnomathematics research while remaining committed to educational enrichment. By gradually adapting students to this novel pedagogical approach and providing a supportive network through consistent guidance and open communication with students and parents, the learning experience is redefined, enabling a smoother transition and deeper absorption of this culturally rich educational venture [14, 15].

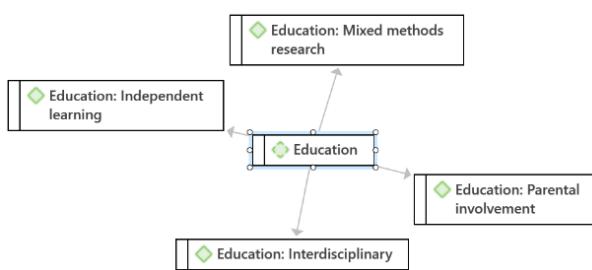


Fig. 1. Coding network of cultural.

3.2. Education

Problem-based learning and a mixed-method approach, especially an embedded design, integrate ethnomathematics into mathematics education. A rich tapestry of internet resources, a careful study of earlier studies [15, 16], and insightful contacts with Purwakarta cultural authority underpin this integration. The technique adds Purwakarta's culinary and artisanal traditions to the curriculum, incorporating cultural knowledge with math (Fig. 2).

Ethnomathematics was hard to learn, and teaching this revolutionary technique required new tools. We covered the knowledge gap by carefully searching ethnomathematics materials. Ethnomathematics' complex story problems require strong mathematical reasoning; therefore, students faced a new hurdle. To develop students' cognitive and reasoning skills and ease them into this new style of thinking, teachers introduced these hard ideas gradually. Due to the COVID-19 pandemic's high pace of distance education, children and their parents were supported in homeroom sessions to promote learning autonomy [17-21].

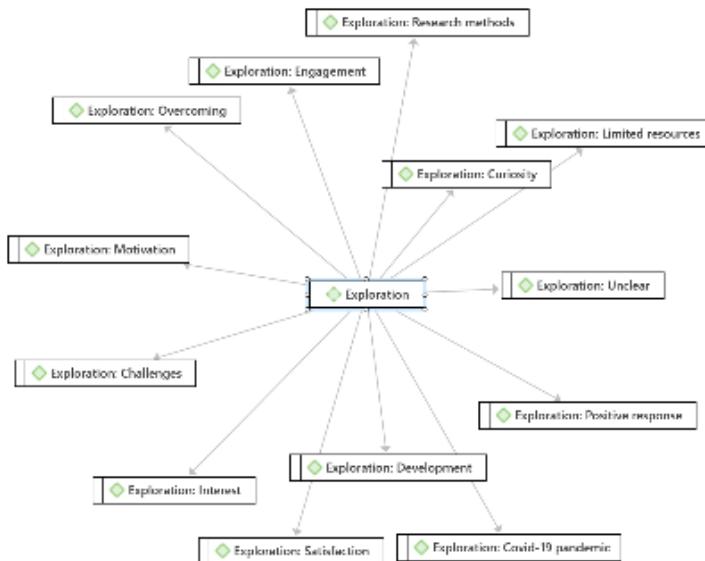
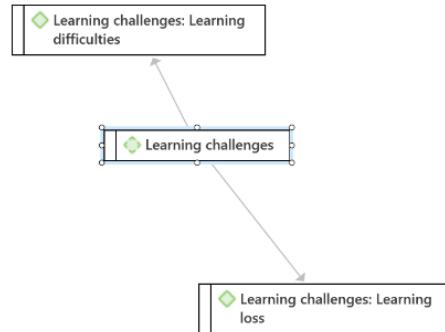


Fig. 2. Coding network of education.

3.3. Exploration

Mathematics and culture are used in ethnomathematics to explain how communities use math. To bypass textbook limits, math education uses ethnomathematics. In addition to academic content, these tools use engaging images and language to simplify complex concepts. Reflecting Purwakarta's rich culinary and craft traditions, social arithmetic problems are carefully designed. Culture lovers have promoted Purwakarta's legacy despite material difficulties (Fig. 3).

Project-Based Learning (PjBL) began ethnomathematics teaching using West Javanese batik motif conundrums. Creative math instruction through cultural narrative excites students. Ethnomathematics challenges engage students and improve their math skills. Students didn't comprehend ethnomathematics, and creating teaching aids was hard. The unexpected switch to remote learning during the epidemic exposed students to culturally relevant story problems. To overcome these challenges [22-26], educators had to diligently search for ethnomathematics references, gradually introduce students to culturally rich problem-solving, and build a supportive network that extends communication beyond the virtual classroom to engage students and their families in fostering a home-based learning environment.


Fig. 3. Coding network of exploration.

3.4. Learning challenges

Navigating ethnomathematics in mathematical education is difficult. Mathematical concepts are woven with cultural narratives, making comprehension difficult and time-consuming. To understand ethnomathematics' cultural significance, educators and students must read vast amounts of research and scholarship. Students, notably, may struggle with ethnomathematics story problems, which require more mathematical thinking than algorithms and equations (Fig. 4).

Learning has been disrupted by the COVID-19 pandemic, which has made independent study strange, especially at home. In these turbulent waters, students

must regularly tackle ethnomathematics questions to strengthen their cognitive talents and difficult mathematical reasoning. Education must also involve mentoring and helping outside the classroom. By staying in touch with parents, they can increase kids' learning autonomy and resilience to the pandemic's remote learning tidal wave [27-31].

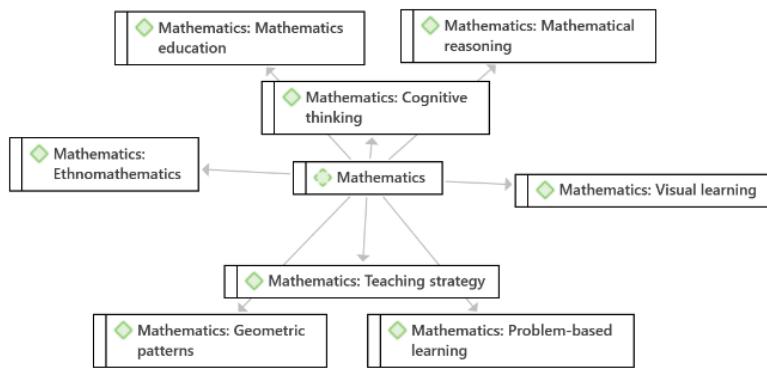


Fig. 4. Coding network of learning challenges.

3.5. Mathematics

Recently, scholarly research has focused on incorporating West Javanese culture into mathematical teaching. In a middle school classroom, ethnomathematics and social arithmetic are combined. Bright pictures and language reflect the region's rich legacy in traditional teaching materials. There are challenges to this pedagogical alchemy. Ethnomathematics is a complex subject, and students must deal with story problems that combine cultural tales and mathematical problems (Fig. 5).

Following these pedagogical problems, a thorough literary and academic examination has led to a better-grounded knowledge of ethnomathematics [4]. This foundational practice nurtures students' problem-solving skills in a culturally relevant environment as they gradually introduce ethnomathematics' complicated story problems. The mixed-method, problem-based learning model in the educational strategy promotes mathematical skills and regional cultural identity. This initiative aims to create a generation of mathematically literate, culturally aware students [32-34].

Fig. 5. Coding network of cultural.

4. Conclusions

Ethnomathematics uses West Javanese culture to engage and improve students' reasoning skills in mathematics. Teachers must acquire ethnomathematics and students must adjust to culturally infused problem-solving, making this educational innovation essential, especially during the pandemic-induced remote learning transition. Long-term effects, transferability across educational settings, and pedagogical refinement should be examined in future studies. Not simply academic performance is affected by this study. It implies that ethnomathematics can benefit cultural identity and mathematical literacy. This supports a full educational strategy that grows pupils into critical thinkers with cultural awareness.

Acknowledgments

We appreciate Nita Yudiawati and Lusi Susanti for making this study feasible. We appreciate their willingness to share their experiences.

References

1. Gusfitri, W.; Abdurrahman, A.; Andrian, D.; Rezeki, S.; and Nofriyandi, N. (2022). Development of mathematics learning tools based on ethnomathematics on rectangular and triangles in junior high school. *Prisma Sains: Jurnal Pengkajian Ilmu dan Pembelajaran Matematika dan IPA IKIP Mataram*, 10(3), 609-617.
2. Fouze, A.Q.; and Amit, M. (2017). Development of mathematical thinking through integration of ethnomathematical folklore game in math instruction. *Eurasia Journal of Mathematics, Science and Technology Education*, 14(2), 617-630.
3. Sunzuma, G.; Zezekwa, N.; Gwizangwe, I.; and Zinyeka, G. (2021). A comparison of the effectiveness of ethnomathematics and traditional lecture approaches in teaching consumer arithmetic: Learners' achievement and teachers' views. *Pedagogical Research*, 6(4), em0103.
4. Supriyadi, E.; Dahlan, J.A.; Juandi, D.; Turmudi, T.; and Sugiarni, R. (2022). Ethnomathematics in sundanese culture from scopus database: Systematic literature review. *Triple S (Journals of Mathematics Education)*, 5(2), 77-86.
5. Zaenuri, Z.; Jati, S.; Asikin, M.; J. Kehi, Y.; and Hapsari, P. (2020). The effectiveness of model eliciting activities with ethnomathematics on students' mathematical communication capabilities. *Proceedings of the 5th International Conference on Science, Education and Technology, ISET 2019*, 29th June 2019, Semarang, Central Java, Indonesia, Semarang, Indonesia.
6. Weldeana, H.N. (2016). Ethnomathematics in Ethiopia: futile or fertile for mathematics education? *Momona Ethiopian Journal of Science*, 8(2), 146-167.
7. Acharya, B.R.; Kshetree, M.P.; Khanal, B.; Panthi, R.K.; and Belbase, S. (2021). Mathematics educators' perspectives on cultural relevance of basic level mathematics in nepal. *Journal on Mathematics Education*, 12(1), 17-48.
8. Utami, N.W.; Sayuti, S.A.; and Jailani, J. (2021). Indigenous artifacts from remote areas, used to design a lesson plan for preservice math teachers regarding sustainable education. *Heliyon*, 7(3), e06417.

9. Sunzuma, G.; and Maharaj, A. (2019). Teacher-related challenges affecting the integration of ethnomathematics approaches into the teaching of geometry. *Eurasia Journal of Mathematics, Science and Technology Education*, 15(9), Article No: em1744.
10. Lou, J.-G.; Lin, Q.; Ding, R.; Fu, Q.; Zhang, D.; and Xie, T. (2013). Software analytics for incident management of online services: An experience report. *Proceedings of the 2013 28th IEEE/ACM International Conference on Automated Software Engineering (ASE)*, Silicon Valley, CA, USA, 475-485.
11. Soebagyo, J.; and Luthfiyyah, F.I. (2023). Ethnomathematics exploration of the great mosque of Al-Barkah, Bekasi city, through the learning of geometry and transformational geometry. *Indonesian Journal of Science and Mathematics Education*, 6(2), 152-164.
12. Munthahana, J.; Budiarto, M.T.; and Wintarti, A. (2023). The application of ethnomathematics in numeracy literacy perspective: A literature review. *Indonesian Journal of Science and Mathematics Education*, 6(2), 177-191.
13. Yolanda, F.O.; and Putra, A. (2022). Systematic literature review: Eksplorasi etnomatematika pada motif batik. *Prima Magistra: Jurnal Ilmiah Kependidikan*, 3(2), 188-195.
14. Prahmana, R.C.I.; and D'Ambrosio, U. (2020). Learning geometry and values from patterns: Ethnomathematics on the batik patterns of Yogyakarta, Indonesia. *Journal on Mathematics Education*, 11(3), 439-456.
15. Turmuzi, M.; Suharta, I.G.P.; and Suparta, I.N. (2023). Ethnomathematical research in mathematics education journals in Indonesia: A case study of data design and analysis. *Eurasia Journal of Mathematics, Science and Technology Education*, 19(1), em2220.
16. Wigati, T.; Wardono, W.; and Purwanti, E. (2020). Analysis of mathematical literacy skills through PMRI approaches of elementary school students. *Journal of Primary Education*, 9(3), 303-310.
17. Utami, N.W.; Sayuti, S.A.; and Jailani (2019). Math and mate in javanese prambon: Ethnomathematics study. *Journal on Mathematics Education*, 10(3), 341-356.
18. Supiyati, S.; Hanum, F.; and Jailani (2019). Ethnomathematics in sasaknese architecture. *Journal on Mathematics Education*, 10(1), 47-58.
19. Wiryanto, W.; Primaniarta, M.G.; and de Mattos, J.R.L. (2022). Javanese ethnomathematics: Exploration of the Tedhak Siten tradition for class learning practices. *Journal on Mathematics Education*, 13(4), 661-680.
20. Rafiepour, A.; and Moradalizadeh, A. (2022). Using mathematical ideas from carpet and carpet-weavers as a context for designing mathematics tasks. *Journal on Mathematics Education*, 13(3), 383-392.
21. Yuliana, Y.; Usodo, B.; and Riyadi, R. (2023). The new way improve mathematical literacy in elementary school: Ethnomathematics module with realistic mathematics education. *Al-Ishlah: Jurnal Pendidikan*, 15(1), 33-44.
22. Heriyanto, B.; and Astutik, H.S. (2021). Teachers' perceptions of ethnomathematics in Sorong Regency, West Papua. *Ethnomathematics Journal*, 2(2), 57-66.

23. Payadnya, I.P.A.A.; and Jayantika, I.G.A.N.T. (2022). How do digital native students responses to Balinese ethnomathematics problems? *Jurnal Pendidikan Progresif*, 12(2), 785-795.
24. Rahmawati, N.D.; Buchori, A.; and Ghoffar, M.H.A. (2022). The effectiveness of using virtual reality-based mathematics learning media with an ethnomathematical approach. *KnE Social Sciences*, 1005-1011.
25. Mariano-Dolesh, M.L.; Collantes, L.M.; Ibañez, E.D.; and Pentang, J.T. (2022). Mindset and levels of conceptual understanding in the problem-solving of preservice mathematics teachers in an online learning environment. *International Journal of Learning, Teaching and Educational Research*, 21(6), 18-33.
26. Lau, N.T.T.; Hawes, Z.; Tremblay, P.; and Ansari, D. (2022). Disentangling the individual and contextual effects of math anxiety: A global perspective. *Proceedings of the National Academy of Sciences*, 119(7), e2115855119.
27. Winaldi; Roza, Y. and Maimunah (2020). Mathematical learning resources using android application for online learning during pandemic Covid-19. *Journal of Physics: Conference Series*, 1655(1), 012092.
28. Aristovnik, A.; Keržič, D.; Ravšelj, D.; Tomaževič, N.; and Umek, L. (2020). Impacts of the Covid-19 pandemic on life of higher education students: A global perspective. *Sustainability*, 12(20), 8438.
29. Iyengar, K.; Upadhyaya, G.K.; Vaishya, R.; and Jain, V. (2020). COVID-19 and applications of smartphone technology in the current pandemic. *Diabetes & Metabolic Syndrome: Clinical Research & Reviews*, 14(5), 733-737.
30. Ciano, J.D.; Acerra, J.; and Tang, A. (2022). Development of a remote learning educational model for international Emergency Medicine trainees in the era of COVID-19. *International Journal of Emergency Medicine*, 15(1), 1-6.
31. Develos, J.A.; Garcia, M.D.; Torrefranca, J.C.; and Molanda, M.C. (2023). Scaffolding remote learning: A phenomenological study of parents' experiences in times of pandemic. *International Journal of Multidisciplinary: Applied Business and Education Research*, 4(4), 1089-1095.
32. Nofrima, S.; Sudiar, S.; and Purnomo, E.P. (2021). How Javanese culture shaping political ideology (case study of the people in Yogyakarta). *Jurnal Ilmiah Peuradeun*, 9(2), 435-450.
33. Kurniawan, W.; and Hidayati, T. (2020). Ethnomathematics in Borobudur Temple and its relevance in mathematics education. *Jurnal Pendidikan Progresif*, 10(1), 91-104.
34. Ratnawati, R.; Subiyantoro, S.; and Usodo, B. (2021). Puppet art extracurricular for education noble values of Javanese Culture in elementary schools. *Proceedings of the 5th International Conference on Arts Language and Culture (ICALC 2020)*, 31-37.