
Journal of Engineering Science and Technology
20th EURECA 2023 Special Issue October (2024) 20 - 42
© School of Engineering, Taylor’s University

20

OPTIMIZING V-SLAM FOR BETTER DYNAMIC
ENVIRONMENT HANDLING ON MOBILE ROBOTS

ZHENG SHEN WONG, SWEE KING PHANG*

School of Engineering, Taylor’s University,
No. 1 Jalan Taylor's, 47500, Subang Jaya, Selangor DE, Malaysia

*Corresponding Author: sweeking.phang@taylors.edu.my

Abstract

The adoption of automation has accelerated due to the 4th industrial revolution,
particularly in robotics and automated vehicles. Visual Simultaneous
Localization and Mapping (V-SLAM) has seen widespread adoption. However,
there exist limitations to this technology as well, i.e., its degradation in accuracy
when dealing with dynamic environments. To address this, a new V-SLAM
which relies on object tracking and masking to achieve better accuracy is
proposed. This novel algorithm differs from the current market with an emphasis
on low computational demands as compared to current market solutions with
complex algorithms requiring higher-cost hardware. This work aims to improve
V-SLAM performance by reducing computational load by 15% when handling
dynamic environments as compared to current dynamic V-SLAM solutions while
achieving a 20% or greater accuracy boost compared to the base ORBSLAM3.
YOLO (You Only Look Once) is used for object detection aided with motion
estimation techniques for object state classification to achieve masking of
dynamic objects for removal of poor feature point selection allowing for more
accurate V-SLAM positioning estimation. The system will exist in Ubuntu while
using ROS Noetic as a base for the program. Validation of project objectives was
performed through analysis of processing speed, Absolute Trajectory Error
(ATE) and relative Pose Error (RPE) against base ORBSLAM3 using the TUM
RGB-D dataset along with real-world sample data with algorithm optimization
being done in the processing pipeline to further decrease computational demand
and increase speeds by optimizing YOLO models and motion models. The results
show a significant improvement in accuracy in high-motion scenes with an
improvement of 96.64% based on the testing sets.

Keywords: Accuracy, Computational speed, Lightweight, Moving object
tracking, V-SLAM, YOLO.

mailto:sweeking.phang@taylors.edu.my

Optimizing V-SLAM for Better Dynamic Environment Handling on Mobile 21

Journal of Engineering Science and Technology Special Issue 5/2024

1. Introduction
Camera vision refers to software applications which enable the interpretation of
visual data from a camera. This technology has become a fundamental part of our
modern society. These applications take the form of processing algorithms that can
recognize, interpret, and utilize patterns, objects, colours, or other visual data from
within an image or a series of images with applications in surveillance, face
recognition, and optical character recognition (OCR) [1]. This technology is
particularly useful in robotics. Current robotics technologies utilize GPS systems
to obtain localization [2]. However, this comes with the limitation of operating
outdoors exclusively. Camera vision then provides an alternative method for
localization by being used for obstacle avoidance, object recognition and visual
simultaneous localization and mapping (V-SLAM) [3]. V-SLAM is a type of
SLAM algorithm which uses visual data to navigate and map the environment or a
combination of other sensors. This algorithm estimates robot position, and
orientation differs from LiDAR SLAM which uses Light Distance and Ranging
(LiDAR) sensors [4], allowing for a robust algorithm that performs in a wide range
of environments [5]. V-SLAM, although harder to implement, also uses cheaper
materials than LiDAR SLAM, which requires expensive LiDAR systems [6].

Multiple instances of V-SLAM exist such as Visual-Only SLAM uses colour
data only to estimate its location while mapping out the environment using an
algorithm which detects features to determine location [7]. While using the Direct
Method, uses the whole image to be compared with other frames to determine pose
[8]. The hybrid method mixes both types to get feature points while refining the
image using the direct method to increase accuracy [9]. In addition, when using
other sensor data such as motion using an Inertial Measurement Unit (IMU), a new
form of V-SLAM is formed called Visual Inertial SLAM (VI-SLAM) which cross-
references inertial and visual data. There exist 2 subclasses, namely filter-based and
optimization-based method which both uses Kalman filters to perform SLAM in
which feature points are later converged to optimize the resulting map and remove
uncertainty except for optimization-based being more computationally heavy [10].
In addition, a combination of radar data can also assist in the quality of V-SLAM
by removing the effect of foliage as proposed by [11]. Lastly, for Colour Depth
SLAM (RGB-D SLAM), instead of using inertial data, this method uses depth data
from an RGB-D camera to improve the accuracy of the algorithm [9]. Similarly, to
V-SLAM, it uses feature points obtained and tracks their depth to form the map.
Alternatively, it can also use an optimization approach like VI-SLAM [12].

Through further research on the topic of V-SLAM, some limitations were
found, include the requirement for high computational resources, a lack of
robustness, and difficulties in handling dynamic environments [5]. This is mainly
due to the feature point method mentioned in which the image is compared frame
by frame allowing for features to be matched to achieve an estimation of the motion
of the camera. Due to this nature, the introduction of dynamic objects forces
confusion when matched frame by frame as the algorithm assumes that motion is
resultant of the translation of the camera not the objects in the frame. To combat
this, we propose the use of object detection in which the user can utilise custom-
trained classification and detection models as done in [13]. However, the model
would be specifically trained to classify dynamic objects to aid in V-SLAM.

Hence, the objectives for this research project can be identified as such,

22 Z. S. Wong and S. K. Phang

Journal of Engineering Science and Technology Special Issue 5/2024

1. To propose an optimised V-SLAM solution designed to handle dynamic
environments which have better real-time performance while being
lightweight by striking a better accuracy-to-efficiency ratio.

2. To investigate and benchmark object identification and segmentation models
to be compared based on performance, processing speed and ease of
implementation into ORBSLAM3.

3. To perform a comparative analysis of the proposed algorithm against current
market solutions using objective parametric on identical datasets such as
computational requirement, accuracy, and processing speed.

To further the research into the topic of V-SLAM and the handling of dynamic
objects, a comprehensive literature review was done to identify the problems, root
causes and current solutions for the handling of dynamic objects in V-SLAM.

2. Summary of Literature Review
For this research project, a qualitative literature review was performed with a total
of 43 publications being analysed to broaden the knowledge area on the topic in
which 17 distinctive works were marked and highlighted to discuss the topics of V-
SLAM, Feature Selection, Object Detection, Motion Tracking, and current
dynamic V-SLAM solutions as shown in Table 1.

In this literature review, various topics were covered such as dynamic V-
SLAM, object segmentation, motion tracking and feature detection [14] in which
research into the use of high-level features for motion tracking was done using
methods such as Deep Learning Neural Networks such as You Only Look Once
(YOLO), Mask Regional-Convolutional Neural Network (Mask R-CNN). Several
current methods were also explored that achieved moving object tracking to be used
in V-SLAM applications. These methods include DOT-SLAM, RD-SLAM,
DynaSLAM, and RDS-SLAM. These methods achieved high accuracy by
identification and tracking of motion in the frame to be segmented before feature
point selection was done. This method allows for the SLAM algorithm to have
clean input data by clearing the potential moving feature points. From the literature
review, a trend can be drawn for the usage of different deep learning networks for
SLAM with the distribution being displayed in Fig. 1. In addition, through analysis
of each dynamic V-SLAM solution, a generic formula can be drawn showing the
sub-processes within these systems as shown in Fig. 2.

Fig. 1. Distribution of MOT models.

Optimizing V-SLAM for Better Dynamic Environment Handling on Mobile 23

Journal of Engineering Science and Technology Special Issue 5/2024

Fig. 2. Flowchart for dynamic V-SLAM.

Table 1. Highlighted documents from the literature review.
No. Year Research Title
1. 2021 A survey: which features are required for dynamic visual simultaneous

localization and mapping? [14]
2. 2004 Performance of optical flow techniques for indoor navigation with a

mobile robot [15]
3. 2012 SLAMMOT-SP: Simultaneous SLAMMOT and Scene Prediction [16]

4. 2017 Incomplete 3D motion trajectory segmentation and 2D-to-3D label transfer
for dynamic scene analysis [17]

5. 2022 Multiple Object Tracking in Robotic Applications: Trends and Challenges
[18] Click or tap here to enter text.

6. 2021 DOT: Dynamic Object Tracking for Visual SLAM (DOT-SLM) [19]

7. 2017 Faster R-CNN: Towards Real-Time Object Detection with Region
Proposal Networks [20]

8. 2021 Visual SLAM in dynamic environments based on object detection [21]
Click or tap here to enter text.

9. 2021 Comparison of YOLO v3, Faster R-CNN, and SSD for Real-Time Pill
Identification [22]

10. 2018 Mask-YOLO: Efficient Instance-level Segmentation Network based on
YOLO-V2 [23]

11. 2022 LRD-SLAM: A Lightweight Robust Dynamic SLAM Method by
Semantic Segmentation Network [24]

12. 2019 Improving monocular visual SLAM in dynamic environments: an optical-
flow-based approach [25]

13. 2022 A Monocular-Visual SLAM System with Semantic and Optical-Flow
Fusion for Indoor Dynamic Environments [26]

14. 2014 Optimal representation of multi-view video [27]

15. 2018 DynaSLAM: Tracking, Mapping, and Inpainting in Dynamic Scenes [28]

16. 2020 RDS-SLAM: Real-Time Dynamic SLAM Using Semantic Segmentation
Methods [29]

Using this framework for dynamic V-SLAM in Fig. 2, the process can be split
into 4 stages in which a high-level feature detector will be used for object
classification and masking. From there, motion estimation algorithms segment out
motion objects before sending inputs to SLAM. One such example of these

24 Z. S. Wong and S. K. Phang

Journal of Engineering Science and Technology Special Issue 5/2024

algorithms is the use of the Structure from Motion (SfM) algorithm which creates
a three-dimensional image through multiple images as shown in [30]. However,
within this research, the performance, processing speed and computational draw
were also evaluated. A summary was reached in which dynamic V-SLAM
algorithms which use these neural networks and motion estimation methods such
as multi-view geometry (MVG) and projection estimation create a high dependence
on Graphics Processing Units (GPUs) resulting in high computational demands and
long processing times [21, 22]. Convolutional neural networks and motion
estimation methods require pixel-to-pixel alignment and matrix computation in
which GPU units excel due to their batch processing capacity.

Through analysis of LRD-SLAM [24], DynaSLAM [28] and RDS-SLAM [29],
the entirety of this data will be qualitatively derived from the respective e-journals
to be used for comparison with obtained results. These algorithms were
investigated as they use unique combinations of object tracking and motion
estimation in which LRD-SLAM uses FNET, DynaSLAM uses MVG and Mask R-
CNN, while RDS-SLAM uses Mask R-CNN and SegNet. LRD-SLAM using
FNET managed to achieve a root mean square absolute pose error (ATERMSE) of
0.0194 for w/half, 0.0141 for w/xyz, 0.0379 for w/rpy which shows a 96-98% when
compared to base ORBSLAM2 with a processing speed per frame of 65 ms.
Whereas for DynaSLAM, it shows an ATERMSE of w/half at 0.0296, w/xyz at
0.0164, w/rpy at 0.0354 and w/static at 0.0068 with a processing speed of 195 ms
on a NVIDIA Tesla M40 GPU + Mask R-CNN. While RDS-SLAM shows a 91.6%
improvement with a running speed of 65 ms running on a P4000 and SegNet.

3. Research Gap and Objectives
It is shown that a solution exists for the handling of dynamic objects. These
solutions use a combination of high-level feature detection using deep learning
neural networks with motion estimation algorithms. However, these methods are
found to be effective but come at a high price of complexity, processing speed and
high computational power draw leading to the high cost of implementation with
most algorithms being benchmarked on high-end GPU such as RTX 2080Ti and
P4000 graphic cards. Therefore, a research gap has been found in which the
implementation of a lightweight, faster processing time application of V-SLAM
while balancing the adequate accuracy ratio to computational consumption and
speed is prevalent when referring to [26] which benchmarks current V-SLAM
solutions. Further, it validates the research questions and the objective to
investigate the effects and its aptitude in handling dynamic environments as well
as the research into new novel solutions to perform dynamic V-SLAM.

4. Research Methodology
To achieve these objectives a work flowchart was established denoting all the sub-
work packages needed to achieve implementation of a lightweight V-SLAM
solution for dynamic objects. We have adopted the CDIO framework which splits
the workload into conceive, design, implement and operate stages as shown in Fig.
3. The conceive and design stages will consist of a literature review and preliminary
while implementation and operation would include prototyping and benchmarking
the algorithm with base ORBSLAM3.

Optimizing V-SLAM for Better Dynamic Environment Handling on Mobile 25

Journal of Engineering Science and Technology Special Issue 5/2024

Fig. 3. Research flowchart.

A generic flowchart was drawn to denote the sub-processes in which data were used
to achieve the lightweight implementation of dynamic V-SLAM, as shown in Fig. 4.
The proposed algorithm was solely built on computer software running Ubuntu 20.04
ROS Noetic, with base ORBSLAM3 being used for feature detection, but extra
processing layers were applied to the raw data before being fed into ORBSLAM3. The
image first underwent object detection and segmentation using YOLOv8, utilizing the
base YOLOv8 COCO-trained models to output objects and masks before being
classified as in-motion or static. Using this processed data, the output was fed into
ORBSLAM3 to perform feature extraction, during which features from the identified
moving objects were removed before performing SLAM.

Fig. 4. Proposed algorithm architecture.

26 Z. S. Wong and S. K. Phang

Journal of Engineering Science and Technology Special Issue 5/2024

4.1. Research materials
The operation of the proposed lightweight V-SLAM algorithm involved the
utilization of a series of hardware and software components. The selection of these
software and hardware components was carried out with consideration given to four
main factors: performance, processing speed, computational demand, and price. A
summary of the research materials employed for the development and testing of the
proposed algorithm is provided in Table 2 for all software components used and
Table 3 for all hardware components used.

Table 2. Summary of software components for research.
Software Category Functionality
Ubuntu 20.04 Operating System Manage Software and Hardware on the

computing unit
ROS Noetic Operating System Operate ROS files for RealSense and

ORBSLAM3
Python Language Run scripts for YOLO and RealSense
OpenCV Computer Vision Image Processing and Camera Controls
YOLOv8 Computer Vision Object Detection and Segmentation
ORBSLAM3 SLAM Algorithm Used to perform visual SLAM from the

processed image
TUM RGB-D
Dataset

Benchmark
Dataset

Use for benchmarking of object detection
and SLAM performance

Rviz Visualization Used to visualize data from ORBSLAM3

Table 3. Summary of hardware components for research.
Hardware Category Functionality
RealSense D435i RGB-D Camera Capture Raw RGB and Depth Data
MSI Katana GF66
11UE

11th Gen i5 CPU
RTX 3060 GPU

Processing Unit for Dynamic V-SLAM
algorithm

4.2. YOLOv8 output for moving object classification
As previously mentioned in the flowchart, YOLOv8 segmentation was utilized to
obtain object detection, object classification, object mask, bounding box, size, and
position within the frame. Based on prior analysis, the utilization of YOLOv8m-
seg.pt was deemed most suitable for this application. To achieve this, a Python script
was developed for use in ROS, facilitating the seamless publishing and subscription
between the RealSense Node, YOLOv8 Node, ORBSLAM3 Node, and visualization
nodes. Figure 5 illustrates the application of YOLOv8 using the RGBD camera.

Moreover, the results from YOLOv8 were extracted into binary masks to be
passed into ORBSLAM3 to remove dynamic objects. Figure 6 shows a
visualization of the classification between humans and objects. This was then used
to pre-classify high dynamic risk objects (people, vehicles, etc.) and low dynamic
risk objects (tables, crates, TV, etc.)

The classification masks were utilized in ORBSLAM3 to filter out undesirable
feature points by restricting feature selections to areas outside the human masks.
These segmentation masks were convoluted with the original RGB image before
being forwarded into ORBSLAM3. Subsequent enhancements could involve
implementing optical flow or perspective projection methods to enhance the

Optimizing V-SLAM for Better Dynamic Environment Handling on Mobile 27

Journal of Engineering Science and Technology Special Issue 5/2024

accuracy of dynamic object classification. However, such enhancements may result
in increased computational demands and longer processing times due to the
heightened complexity of the algorithm, as multi-view geometry and perspective
projection methods typically impose greater GPU requirements.

(a) RGB frame. (b) Colorized depth frame.

Fig. 5. Yolov8m-Seg model on d435i camera input.

(a) RGB frame. (b) Human segmentation mask.

Fig. 6. Classification of dynamic objects.

4.3. Algorithm benchmarking methodology

To evaluate the performance of the proposed algorithm, a scientific benchmarking
standard was employed, assessing it across four key factors: accuracy, measured by
absolute trajectory error (ATE) and relative pose error (RPE) in meters (m);
processing speed, quantified by the time taken per frame in milliseconds (ms); and
computational power draw. The algorithm was benchmarked against other notable
dynamic V-SLAM datasets identified in the literature review, utilizing the same
TUM RGB-D dataset, particularly focusing on variations such as w/static, w/xyz,
w/rpy, w/halfsphere, and s/static. Furthermore, raw data obtained from Taylor’s
University School of Engineering Labs was utilized to evaluate real-world
applications. Figure 7 illustrates the testing environments planned for this project.

28 Z. S. Wong and S. K. Phang

Journal of Engineering Science and Technology Special Issue 5/2024

(a) TUM RGB-D dataset. (b) SOE engineering labs.

Fig. 7. Testing environments for the algorithm.

For both the ATE and RPE, they were computed and calculated within
MATLAB to represent the deviation from the ground truth. ATE represents the
difference between the ground truth and estimated points given in root mean square
error and standard deviation while RPE represents the error in motion between
frames also represented in root mean square or standard deviation. Both ATE and
RPE can be calculated as shown in Eq. 1 and Eq. 2.

𝐴𝐴𝐴𝐴𝐴𝐴𝑟𝑟𝑟𝑟𝑟𝑟 = �1
𝑁𝑁
∑ 𝑑𝑑(𝑇𝑇𝑖𝑖

𝑔𝑔𝑔𝑔 ,𝑇𝑇𝑖𝑖𝑒𝑒𝑒𝑒𝑒𝑒)2𝑛𝑛
𝑖𝑖=1 (1)

where N is the number of samples, 𝑇𝑇𝑖𝑖
𝑔𝑔𝑔𝑔 represents the ground truth points, 𝑇𝑇𝑖𝑖𝑒𝑒𝑒𝑒𝑒𝑒

shows the estimated points. Thus, ATE is the average error for the sum of distances
between truths and estimates. As for RPE, it is represented by,

𝑅𝑅𝑅𝑅𝑅𝑅𝑟𝑟𝑟𝑟𝑟𝑟 = �1
𝑁𝑁
∑ 𝑑𝑑(∆𝑇𝑇𝑖𝑖

𝑔𝑔𝑔𝑔 ,∆𝑇𝑇𝑖𝑖𝑒𝑒𝑒𝑒𝑒𝑒)2𝑛𝑛
𝑖𝑖=1 (2)

where N is the number of samples of trajectories, ∆𝑇𝑇𝑖𝑖
𝑔𝑔𝑔𝑔 represents the ground truth

pose, ∆𝑇𝑇𝑖𝑖𝑒𝑒𝑒𝑒𝑒𝑒 show the estimated pose while ∑ 𝑑𝑑(∆𝑇𝑇𝑖𝑖
𝑔𝑔𝑔𝑔 ,∆𝑇𝑇𝑖𝑖𝑒𝑒𝑒𝑒𝑒𝑒)2𝑛𝑛

𝑖𝑖=1 shows the sum of
relative pose measurements. Thus, ATE is the average error for the sum of distances
of relative pose measurements between truths and estimates. To ease implementation,
TUM RGB-D provides an online evaluation tool as shown in Fig. 8.

Fig. 8. Tum RGB-D ATE and RPE online evaluation tool.

Optimizing V-SLAM for Better Dynamic Environment Handling on Mobile 29

Journal of Engineering Science and Technology Special Issue 5/2024

5. Results and Discussion
In this section, the obtained results during the development and deployment of the
proposed algorithm were reviewed, encompassing the performance of the object
detection neural network as well as the performance of the aided ORBSLAM3.
Before showcasing the results, the test environment was established. The system
ran on Ubuntu 20.04 ROS Noetic, and all testing was conducted on an 11th Gen i5-
11400H CPU unit from Intel, supported by a NVIDIA RTX 3060 GPU.

Firstly, a preliminary test was conducted to identify the performance and speed of
different deep-learning neural networks. Primarily, Mask R-CNN and YOLOv8 were
pitted against each other using the TUM RGB-D Dataset. As for the models used Mask
R-CNN base COCO configuration was used along with YOLOv8n-seg model was used
during testing. 3 iterations were tested namely YOLOv8 on CPU only, Mask R-CNN
on CPU only and YOLOv8 on CPU + GPU. Using these configurations, the average
time taken per frame was taken for each dataset along with the mean average precision
to compare between both models as shown in Fig. 9 for the segmentation, Table 4 for
the processing speed and Table 5 for the mean average precision.

(a) YOLOv8n-Seg. (b) Base mask R-CNN.

Fig. 9. Segmentation from detection models on tum RGB-D dataset.

Table 4. Average processing speed per frame (ms/frame).
 s/static w/static w/xyz w/rpy w/hp

YOLOv8n-Seg
(CPU+Intel) 56.3 39.8 46.1 41.7 45.9

YOLOv8-Seg
(CPU+GPU) 7.3 6.8 6.8 6.9 7.3

Mask R-CNN
(CPU+Intel) 3234.8 3362.9 3321.9 3441.0 3455.2

Table 5. Mean average precision (mAP) of Yolov8n-
Seg and Mask R-CNN on COCO validation dataset.

 mAPmask50 mAPmask50-95 mAPbb50 mAPbb50-95
YOLOv8n-Seg 0.570 0.367 0.597 0.335
Mask R-CNN 0.600 0.371 0.623 0.398

Using this information, it is shown that Mask R-CNN shows a significant mask
precision improvement at higher thresholds with all precision metrics performing

30 Z. S. Wong and S. K. Phang

Journal of Engineering Science and Technology Special Issue 5/2024

better than YOLOv8n-Seg. This is due to the two-stage detector and refinement of
Mask R-CNN compared to the direct optimized detection model of YOLO.
Similarly, Mask R-CNN also has more parameters and FLOPs compared to
YOLOv8n-Seg resulting in a more precise detection model. However, conversely,
it comes with the price of computation demand and speed as shown in Table 4,
YOLOv8 shows a significant speed increase using CPU and Intel integrated
graphics vs Mask R-CNN also due to the single stage detector and lower parameters
needing less parallel processing capabilities of an GPU.

5.1. Comparison between different YOLOv8 models
To compensate for the performance differences between the models, the use of a
higher complexity of YOLOv8 was explored to find a balance between
performance and speed. The comparison models consist of YOLOv8n-Seg,
YOLOv8s-Seg, YOLOv8m-Seg, YOLOv8l-Seg, YOLOv8x-Seg. Similarly, the
processing speeds on the TUM RGB-D dataset along with raw data from the D435i
camera and benchmarks of each model using the same COCO Validation dataset.
Table 6 and Table 7 show the processing speed data from each model. Furthermore,
the precision benchmarks show the mean average precision for mAPmask

50,
mAPmask

50-95, mAPbox
50, and mAPbox

50-95 as shown in Table 8.

Table 6. Processing speed per frame using CPU+Intel (ms/frame).

Model Yolov8n-
Seg

Yolov8s-
Seg

Yolov8m-
Seg

Yolov8l-
Seg

Yolov8x-
Seg

D435i Data 50.1 120.4 245.6 444.0 635.0
w/xyz 50.1 112.5 245.0 470.9 678.4
w/rpy 48.8 96.4 269.7 442.8 720.1
w/hp 49.6 111.7 243.0 396.0 630.8

Table 7. Processing speed per frame using CPU+GPU boosted (ms/frame).

Model Yolov8n-
Seg

Yolov8s-
Seg

Yolov8m-
Seg

Yolov8l-
Seg

Yolov8x-
Seg

D435i Data 6.7 9.4 13.8 30.7 39.1
w/xyz 4.5 7.6 13.7 24.2 37.1
w/rpy 4.3 7.6 13.7 24.1 37.6
w/hp 4.2 7.1 13.6 23.6 37.2

Table 8. Precision results from COCO
validation dataset on YOLOv8-Seg models.

Precision Yolov8n-
Seg

Yolov8s-
Seg

Yolov8m-
Seg

Yolov8l-
Seg

Yolov8x-
Seg

BBox(P) 0.686 0.857 0.719 0.745 0.795
mAPbb50 0.570 0.607 0.653 0.669 0.665
mAPbb50-95 0.367 0.446 0.499 0.523 0.534
mAPmask50 0.597 0.939 0.926 0.955 0.977

Using these data entries from Tables 6, 7 and 8, the results for processing speed
and performance can be tabulated and plotted as shown in Figs. 10 and 11. From
here, we can extrapolate the processing speed vs performance efficiency to
determine the best-performing model for our lightweight application.

Optimizing V-SLAM for Better Dynamic Environment Handling on Mobile 31

Journal of Engineering Science and Technology Special Issue 5/2024

Fig. 10. Processing speed per frame (ms).

Fig. 11. Mean average precision based on

COCO validation dataset (mAPbb50-95 // mAPmask50-95).

From here, a concatenated graph to show the relationship between performance
in terms of average precision (mAPmask

50-95) and processing speed (ms) can be
drawn to show the performance efficiency as shown in Fig. 12.

This graph shows the performance-to-processing speed ratio of each model. By
comparing each model, the n model is the fastest but least accurate while the x
model is the most accurate but slowest. According to previous data, Mask R-CNN
mask precision is at 0.6 for mAPmask

50. Therefore, to stay competitive with current
dynamic V-SLAM solutions using YOLOv8m-Seg while providing better
processing time as compared to Mask R-CNN.

Fig. 12. Mean average precision against
processing speed (mAPmask50-95 vs. ms).

32 Z. S. Wong and S. K. Phang

Journal of Engineering Science and Technology Special Issue 5/2024

5.2. Base ORBSLAM3 ATE and RPE benchmark
To conduct the assessment of absolute trajectory error (ATE) and relative pose error
(RPE) on ORBSLAM3, the TUM RGB-D Dynamic Objects dataset was employed.
Specifically, the TUM RGB-D Evaluation tool was used to compare the estimated
trajectory with the ground truth datasets provided here [31]. Essentially, the TUM
evaluation tools assist by comparing the ground truth trajectory and estimated
trajectory as shown in Fig. 13.

(a) Ground truth. (b) Estimated trajectory.

Fig. 13. Trajectory plots for s/static.

Using this, the ORBSLAM3ROS algorithm was used to simulate the initial results
of ORBSLAM3 before the implementation of YOLOv8. Figure 14 shows the
interface and results from ORBSLAM3ROS w/xyz. Table 9 shows the RPE and ATE
for translation and rotation of each dataset, s/static, w/static, w/xyz, w/rpy, and
w/halfsphere in both roots mean square error (RMSE) and standard deviation (STD).

Fig. 14. ORBSLAM3ROS visualization in Rviz on w/xyz.

Table 9. ATE (m) and RPEtrans (m) RPErot (deg.) results for base ORBSLAM3.
 ATErmse ATEstd RPErmse

t RPEstd
t RPErmse

r RPEstd
r

s/static 0.0092 0.0043 0.0055 0.0029 0.1643 0.0853
w/static 0.0222 0.0114 0.0141 0.0102 0.2837 0.1730
w/xyz 0.4829 0.2366 0.0231 0.0158 0.5588 0.3933
w/rpy 0.5211 0.2381 0.0289 0.0194 0.6802 0.4293
w/hp 0.2022 0.0661 0.0214 0.0141 0.5351 0.3243

This shows the current performance of ORBSLAM3 without the integration of
dynamic object handling. When the frame object is stationary as seen in sitting_static,

Optimizing V-SLAM for Better Dynamic Environment Handling on Mobile 33

Journal of Engineering Science and Technology Special Issue 5/2024

the performance of ORBSLAM3 shows adequate accuracy with minimal drift.
However, once dynamic motion is introduced in the form of human movement as
shown in w/static, w/xyz, w/rpy and w/halfsphere the drift is significantly higher with
sequences combined with camera motion having the highest ATE and RPE. To
visualize this, Fig. 15 shows the ATE drift between the ground truth and estimated
trajectory indicated with red lines separating the true point and estimated point along
with the RPE which shows the translational error per frame in terms of time
visualizing the maximum error during the entire sequence.

(a) s/static ATE. (b) s/static RPE.

(c) w/static ATE. (d) w/static RPE.

(e) w/xyz ATE. (f) w/xyz RPE..

(g) w/rpy ATE. (h) w/rpy RPE.

(i) w/hp ATE (j) w/hp RPE

Fig. 15. ORBSLAM3 result visualization for ATE and RPE.

34 Z. S. Wong and S. K. Phang

Journal of Engineering Science and Technology Special Issue 5/2024

5.3. Proposed algorithm benchmark (YOLOv8-Seg + ORBSLAM3)
The proposed algorithm uses YOLOv8 with ORBSLAM3ROS. The RGB
image is first passed into the YOLOv8 node to detect humans before extracting
the segmentation mask to be subtracted from the base image. This segmented
image is then published into ORBSLAM3. Figure 16 shows the difference
before and after integration of YOLOv8 masking, The same TUM RGB-D
Datasets were used to evaluate the performance to obtain ATE and RPE as shown
in Table 10 using the TUM RGB-D Evaluation Tool as done with the base
ORBSLAM3 results.

(a) Original RGB image. (b) YOLOv8 Masked RGB image.

Fig. 16. Visualization of proposed algorithm.

Table 10. ATE (m) and RPEtrans (m) RPErot
(deg) results for the proposed algorithm.

 ATErmse ATEstd RPErmset RPEstdt RPErmser RPEstdr
s/static 0.0074 0.0032 0.0060 0.0029 0.1679 0.0838
w/static 0.0098 0.0056 0.0098 0.0060 0.2125 0.1179
w/xyz 0.0163 0.0087 0.0138 0.0085 0.4088 0.2908
w/rpy 0.1228 0.0890 0.0264 0.0180 0.6204 0.4148
w/hp 0.0321 0.0167 0.0167 0.0107 0.4885 0.2931

This result was compared with base ORBSLAM3 performance results. The data
shows that for s/static, no significant improvement can be seen. Whereas for the
walking sets, a significant improvement is shown for both ATE and RPE. This is
due to the system masking out highly dynamic humanoids from the image. For
w/xyz, a change in ATE can be seen from 0.4829m to 0.0163m. Comparatively
against other dynamic V-SLAM options, all ATE and RPE fall within the same
performance category [24, 29]. A better visualization of the improvement can be
seen through the ATE and RPE plots as shown in Fig. 17. Comparing this to base
ORBSLAM3, the red lines are shown to be significantly reduced after the
introduction of YOLOv8-Seg.

Optimizing V-SLAM for Better Dynamic Environment Handling on Mobile 35

Journal of Engineering Science and Technology Special Issue 5/2024

(a) s/static ATE. (b) s/static RPE.

(c) w/static ATE. (d) w/static RPE.

(e) w/xyz ATE. (f) w/xyz RPE.

(g) w/rpy ATE. (h) w/rpy RPE.

(i) w/hp ATE (j) w/hp RPE

Fig. 17. Proposed algorithm result visualization for ATE and RPE.

36 Z. S. Wong and S. K. Phang

Journal of Engineering Science and Technology Special Issue 5/2024

5.4. Comparison between YOLOv8 and current market solutions
These results show varying improvements based on the dataset with s/static and w/static
only showing an improvement of 19.57% and 55.41% respectively. However, when
evaluating the performance increase for w/xyz, w/rpy, and w/half, a significant increase
of 96.64%, 87.65% and 84.17% respectively. Using the performance data of
DynaSLAM [28] and RDS-SLAM [29] found in their e-journals for comparison against
base ORBSALM3 and our proposed algorithm as shown in Table 11.

Table 11. ATErmse comparison for V-SLAM solutions (m) [28, 29].

 ORB
SLAM3

Proposed
Algorithm
(Yolov8)

RDS-SLAM
(MRCNN)

RDS-SLAM
(SegNet)

DynaSLAM
(MRCNN)

s/static 0.0092 0.0074 0.0088 0.0084 0.0108
w/static 0.0222 0.0098 0.0815 0.0206 0.0068
w/xyz 0.4829 0.0163 0.0213 0.0571 0.0164
w/rpy 0.5211 0.1228 0.1468 0.1604 0.0354
w/hp 0.2022 0.0321 0.0259 0.0807 0.0296

Using these results, the YOLOv8-aided ORBSLAM3 outperforms base
ORBSLAM3 and obtains similar performance to both versions of RDS-SLAM and
DynaSLAM. In addition, RDS-SLAM and DynaSLAM utilize both more complex
CNN masking as well as motion estimation techniques to obtain better results.
However, this comes with higher computational demand and longer processing speeds
due to more GPU-intensive tasks and larger detection models. To show a comparison,
Table 12 shows the comparison between segmentation model parameters while Table
13 shows the processing speed comparison between separate V-SLAM algorithms.

Table 12. Parameters for V-SLAM segmentation models [28, 29].

 Proposed Algorithm
(YOLOv8m-seg)

RDS-SLAM
(Mask R-CNN)

RDS-SLAM
(SegNet)

DynaSLAM
(Mask R-CNN)

Parameters
(M) 27.3 M 63.7 M 29.5 M 63.7 M

Table 13. Processing speed comparison for V-SLAM algorithm [28, 29].
SLAM
Algorithm GPU TFLOPS

FP32 Model Detection
Time (ms)

Mean Tracking
Time (ms)

ORB
SLAM3

RTX 3060
Mobile 10.94 - - 59.07

Proposed
Algorithm

RTX 3060
Mobile 10.94 YOLOv8m-

seg 13.7 81.96

RDS-SLAM
(M)

RTX
2080Ti 13.45 Mask R-

CNN 200 66.7

RDS-SLAM
(S)

RTX
2080Ti 13.45 SegNet 30 66.7

DynaSLAM RTX 2060 6.451 Mask R-
CNN 195 801.9

Using these results, from Table 12, we can see that YOLOv8 is the smallest
model compared to Mask R-CNN and SegNet with only 27.3 M parameters
indicating that YOLOv8 is less computationally intensive. As for Table 13, the
comparison for processing speed is given in terms of mean tracking time (ms). The
TFLOPS FP32 shows the computational power of the GPU, the higher the
TFLOPS the more powerful the GPU. YOLOv8 has a mean tracking time of 81.96
ms with 10.95 TFLOPS while RDS-SLAM shows 66.7 ms at 13.45 TFLOPS. The

Optimizing V-SLAM for Better Dynamic Environment Handling on Mobile 37

Journal of Engineering Science and Technology Special Issue 5/2024

results cannot be directly compared but by linearly normalizing the data based on
performance per TFLOPS, YOLOv8 aided SLAM shows an approximate
performance of ~66.62ms comparable to RDS-SLAM. In addition, RDS-SLAM
runs parallel processing with ORBSLAM3 and Segmentation running on separate
threads allowing for faster tracking times as compared to the blocked method of
our proposed algorithm. As such, YOLOv8 shows to have comparable
performance to the current market while achieving a 96.64% improvement in
accuracy from base ORBSLAM3 using w/xyz. In addition, YOLOv8 also proves
to be a lighter-weight option than RDS-SLAM and DynaSLAM with a lower
number of parameters and a fast mean tracking time comparable to RDS-SLAM’s
66.7ms when normalizing for computational power. The proposed algorithm can
achieve this while maintaining improved performance on base ORBSLAM3 and
comparable performance to RDS and DynaSLAM.

5.5. Real-world application showcase
To showcase the real-world application capabilities of the proposed algorithm, an
experiment was done within the grounds of Taylor’s University in the proposed V-
SLAM solution was integrated into an Autonomous Mobile Robot (AMR) platform
to test the proposed algorithm in a real-world setting. A simple test was initiated in
which the mobile robot was tasked to perform a predetermined and measured circuit.
The sequence was to complete a U-shape path in which the AMR would travel
4.534m forward, rotate 90 degrees to the left and travel 2.4m, rotate again 90 degrees
to the left, and travel back 4.534m. This experiment was done to test the performance
of the proposed algorithm on a 2D plane with major dynamic object influence in the
frame. Figure 18 shows the AMR platform used within this research while Fig. 19
shows a visual representation of the task assigned to the AMR platform.

Fig. 18. AMR platform for real-world testing of the proposed algorithm.

Fig. 19. Visual representation of the predetermined track.

38 Z. S. Wong and S. K. Phang

Journal of Engineering Science and Technology Special Issue 5/2024

The AMR platform was assembled using two hub motors and controlled
through a ROS package interface through a personal laptop as the processor. Table
14 shows the specifications of the AMR platform for this research.

Table 14. Specifications of AMR platform.
Specifications Details
Processor 11th Gen. Intel® Core™ i5 Processor (11400H)

NVIDIA® GeForce RTX™ 3060 Laptop GPU 6GB GDDR6 16GB
DDR4-3200

Motors ZLLG65ASM250-L 4096 Motor
Motor Driver ZLAC706-CAN AC Servo Driver
Camera Intel Real sense D435i (RGB-D)
Chassis 40mm x 40mm Aluminium Profile
Dimensions 850mm x 420mm x 500 mm

Using this AMR and collecting data through the set 2D path, both the proposed
algorithm and ORBSLAM3 were launched, and the RealSense RGB and Depth
data was streamed into each V-SLAM algorithm. Figures 20 and 21 show the
implementation of the captured data on ORBSLAM3 and the proposed algorithm.

Fig. 20. Implementation of real-world data on ORBSLAM3.

Fig. 21. Implementation of real-world data on the proposed algorithm.

Once implemented, the trajectories were then saved into a text document and
plotted via Matplotlib to show the difference in performance of base ORBSLAM3
against the proposed algorithm as shown in Fig. 22.

Optimizing V-SLAM for Better Dynamic Environment Handling on Mobile 39

Journal of Engineering Science and Technology Special Issue 5/2024

(a) ORBSLAM3. (b) Proposed algorithm.

Fig. 22: Trajectory plots for real-world data.

Once the data was plotted, the resulting plots can be compared against the path
visualization shown in Fig. 19 to see the effects of segmentation of humans in the
frame. From Fig. 22, segmentation of dynamic objects has improved the translational
drift showing less effects on the first straight of the path. However, as for rotational
drift, the elimination of dynamic objects shows drastic improvement allowing for
better rotational pose estimation. This shows the viability of the proposed algorithm
in real-world applications. Allowing for better performance with minimal
computational investment in highly dynamic environments. To improve this
implementation further, the use of a wheel encoder would allow for the collection of
odometry data allowing for better ground truth setting allowing for the computation
of ATE and RPE as odometry data can output translational change and rotational
change synchronized with the V-SLAM implementation.

6. Conclusions
In conclusion, this project proposes a new lightweight V-SLAM solution to
improve dynamic object handling while maintaining low processing speeds and
computational demands. Our research aims to investigate and benchmark object
identification models to design a novel V-SLAM solution to handle dynamic
environments tested using the TUM RGB-D Dataset. The results were validated
through a comparative analysis between the proposed algorithm and current market
solutions using ATE and RPE. The proposed solution uses the YOLOv8
segmentation model to achieve object detection to categorize highly dynamic
objects before masking and performing ORBSLAM3. Using Ubuntu 20.06 ROS
Noetic. Intel 11th 11400H CPU and a Nvidia RTX 3060 GPU, a comparison
between YOLOv8 against Mask R-CNN on the TUM RGB-D dataset shows a
significant increase in speed with an average processing time on the CPU being
51.95 ms per frame due to its single-stage detection compared to Mask R-CNN
which shows an average of 3363.16 ms while having better performance than
YOLOv8. In addition, each model of YOLOv8 namely n, s, m, l, and x was tested
on processing speed and precision using the mean average precision (mAP) metric
with the n model being the fastest but least accurate and the x model being the most
accurate but slowest. YOLOv8m-Seg was chosen as it had the best speed-to-
performance ratio with a mean average precision being on par with Mask R-CNN
with a lower computational speed. Lastly, a benchmark was made for base
ORBSLAM3 and the proposed algorithm by providing the ATE and RPE.

40 Z. S. Wong and S. K. Phang

Journal of Engineering Science and Technology Special Issue 5/2024

The results show a significant improvement in accuracy in high-motion scenes
with an improvement of 96.64% on walking_xyz while having minimal
improvements in static scenes. This performance boost was also compared to RDS-
SLAM and DynaSLAM, which shows performance to be on par. In addition, when
comparing computational draw and processing speed, YOLOv8m-Seg shows the
lowest number of parameters of 27.3 M indicating lower computational power draw
while the processing speed tested on the RTX3060 Mobile shows a mean tracking
time of 81.96ms which is significantly faster than DynaSLAM and comparable to
RDS-SLAM. However, these results were approximately normalized due to the
difference in benchmarking environments, namely the GPU used. For future
improvements, testing on identical hardware, obtaining results from self-testing
with RDS and DynaSLAM along with metric considerations of difference in CPU
will allow for a more accurate comparison result.

References
1. Iskandar, N.; Chew, W.J.; and Phang, S.K. (2023). The application of image

processing for conversion of handwritten mathematical expression. Journal of
Physics: Conference Series, 2523(1), 012014.

2. Phang, S.K.; Chiang, T.H.A.; Happonen, A.; and Chang, M.M.L. (2023). From
satellite to UAV-based remote sensing: A review on precision agriculture.
IEEE Access, 11, 127057-127076.

3. Szeliski, R. (2022). Computer vision: algorithms and applications. Springer
Nature, Switzerland.

4. Yousif, K.; Bab-Hadiashar, A.; and Hoseinnezhad, R. (2015). An overview to
visual odometry and visual SLAM: Applications to mobile robotics. Intelligent
Industrial Systems, 1(4), 289-311.

5. Barros, A.M.; Michel, M.; Moline, Y.; Corre, G.; and Carrel, F. (2022). A
comprehensive survey of visual slam algorithms. Robotics, 11(1), 24.

6. Garigipati, B.; Strokina, N.; and Ghabcheloo, R. (2022). Evaluation and
comparison of eight popular Lidar and Visual SLAM algorithms. Proceedings
of 25th International Conference on Information Fusion (FUSION, 2022),
Linköping, Sweden, 1-8.

7. Nirmal. (2022). Visual SLAM: possibilities, challenges, and the future.
Retrieved September 23, 2023, from https://ignitarium.com/visual-slam-
possibilities-challenges-and-the-future/

8. Chen, Z.; Sheng, W.; Yang, G.; Su, Z.; and Liang, B. (2019). Comparison and
analysis of feature method and direct method in visual SLAM technology for
social robots. Proceedings of 13th World Congress on Intelligent Control and
Automation (WCICA, 2018), Changsha, China, 413-417.

9. Merzlyakov, A.; and MacEnski, S. (2021). A comparison of modern general-
purpose visual SLAM approaches. Proceedings of 2021 IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS), 9190-9197.

10. Chen, C.; Zhu, H.; Li, M.; and You, S. (2018). A review of visual-inertial
simultaneous localization and mapping from filtering-based and optimization-
based perspectives. Robotics, 7(3), 45.

11. Chow, K.L.; and Phang, S.K. (2023). Design and control of autonomous rover
for foliage navigation. Journal of Physics: Conference Series, 2523(1), 012029.

https://ignitarium.com/visual-slam-possibilities-challenges-and-the-future/
https://ignitarium.com/visual-slam-possibilities-challenges-and-the-future/

Optimizing V-SLAM for Better Dynamic Environment Handling on Mobile 41

Journal of Engineering Science and Technology Special Issue 5/2024

12. Zhang, S.; Zheng, L.; and Tao, W. (2021). Survey and evaluation of RGB-D
SLAM. IEEE Access, 9, 21367-21387.

13. Lim, J.H.X.; and Phang, S.K. (2023). Classification and detection of obstacles
for rover navigation. Journal of Physics: Conference Series, 2523(1), 012030.

14. Xu, Z.; Rong, Z.; and Wu, Y. (2021). A survey: which features are required
for dynamic visual simultaneous localization and mapping? Visual Computing
for Industry, Biomedicine, and Art, 4(1), 1-16.

15. McCarthy, C.; and Bames, N. (2004). Performance of optical flow techniques
for indoor navigation with a mobile robot. Proceedings of IEEE International
Conference on Robotics and Automation (ICRA'04. 2004), New Orleans, LA,
USA, 5093-5098.

16. Chung, S.-Y.; and Huang, H.-P. (2012). Slammot-sp: simultaneous slammot
and scene prediction. Advanced Robotics, 24(7), 979-1002.

17. Jiang, C.; Paudel, D.P.; Fougerolle, Y.; Fofi, D.; and Demonceaux, C. (2017).
Incomplete 3D motion trajectory segmentation and 2D-to-3D label transfer for
dynamic scene analysis. Proceedings of IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS, 2017), Vancouver, BC, Canada, 606-613.

18. Gad, A.; et al. (2022). Multiple objects tracking in robotic applications: Trends
and challenges. Applied Sciences 2022, 12(19), 9408.

19. Ballester, I.; Fontán, A.; Civera, J.; Strobl, K.H.; and Triebel, R. (2021). DOT:
Dynamic object tracking for visual SLAM. Proceedings of IEEE International
Conference on Robotics and Automation (ICRA, 2021), Xi'an, China, 11705-11711.

20. Ren, S.; He, K.; Girshick, R.; and Sun, J. (2017). Faster R-CNN: Towards real-
time object detection with region proposal networks. IEEE Transactions on
Pattern Analysis and Machine Intelligence, 39(6), 1137-1149.

21. Ai, Y.-B. et al. (2021). Visual SLAM in dynamic environments based on object
detection. Defence Technology, 17(5), 1712-1721.

22. Tan, L.; Huangfu, T.; Wu, L.; and Chen, W. (2021). Comparison of YOLO v3,
faster R-CNN, and SSD for real-time pill identification. Research Square.

23. Liu, H. (2018). Mask-YOLO: Efficient Instance-level Segmentation Network
based on YOLO-V2. Retrieved October 5, 2023, from https://ansleliu.github.io
/MaskYOLO.html

24. Jia, S. (2022). LRD-SLAM: A lightweight robust dynamic SLAM method by
semantic segmentation network. Wireless Communications and Mobile
Computing, 2022(1), 7332390.

25. Cheng, J.; Sun, Y.; and Meng, M.Q.-H. (2019). Improving monocular visual
SLAM in dynamic environments: an optical-flow-based approach. Advanced
Robotics, 33(12), 576-589.

26. Chen, W. et al. (2022). A Monocular-visual SLAM system with semantic
and optical-flow fusion for indoor dynamic environments. Micromachines,
13(11), 2006.

27. Volino, M.; Casas, D.; Collomosse, J.; and Hilton, A. (2014). Optimal
representation of multi-view video. Proceedings of the British Machine Vision
Conference (BMVC, 2014), University of Nottingham, UK.

42 Z. S. Wong and S. K. Phang

Journal of Engineering Science and Technology Special Issue 5/2024

28. Bescos, B.; Facil, J.M.; Civera, J.; and Neira, J. (2018). DynaSLAM: Tracking,
mapping, and inpainting in dynamic scenes. IEEE Robotics and Automation
Letters, 3(4), 4076-4083.

29. Liu, Y.; and Miura, J. (2021). RDS-SLAM: Real-time dynamic SLAM using
semantic segmentation methods. IEEE Access, 9, 23772-23785.

30. Shahid, I.G.; Phang, S.K.; and Chew, W.J. (2023). Fast 3D mapping solution
with UAV. Journal of Physics: Conference Series, 2523(1), 012019.

31. Sturm, J.; Engelhard, N.; Endres, F.; Burgard, W.; and Cremers, D. (2012). A
benchmark for the evaluation of RGB-D SLAM systems. Proceedings of
IEEE/RSJ International Conference on Intelligent Robot Systems, Vilamoura-
Algarve, Portugal, 573-580.

