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Abstract 

The adoption of automation has accelerated due to the 4th industrial revolution, 
particularly in robotics and automated vehicles. Visual Simultaneous 
Localization and Mapping (V-SLAM) has seen widespread adoption. However, 
there exist limitations to this technology as well, i.e., its degradation in accuracy 
when dealing with dynamic environments. To address this, a new V-SLAM 
which relies on object tracking and masking to achieve better accuracy is 
proposed. This novel algorithm differs from the current market with an emphasis 
on low computational demands as compared to current market solutions with 
complex algorithms requiring higher-cost hardware. This work aims to improve 
V-SLAM performance by reducing computational load by 15% when handling 
dynamic environments as compared to current dynamic V-SLAM solutions while 
achieving a 20% or greater accuracy boost compared to the base ORBSLAM3. 
YOLO (You Only Look Once) is used for object detection aided with motion 
estimation techniques for object state classification to achieve masking of 
dynamic objects for removal of poor feature point selection allowing for more 
accurate V-SLAM positioning estimation. The system will exist in Ubuntu while 
using ROS Noetic as a base for the program. Validation of project objectives was 
performed through analysis of processing speed, Absolute Trajectory Error 
(ATE) and relative Pose Error (RPE) against base ORBSLAM3 using the TUM 
RGB-D dataset along with real-world sample data with algorithm optimization 
being done in the processing pipeline to further decrease computational demand 
and increase speeds by optimizing YOLO models and motion models. The results 
show a significant improvement in accuracy in high-motion scenes with an 
improvement of 96.64% based on the testing sets. 

Keywords: Accuracy, Computational speed, Lightweight, Moving object 
tracking, V-SLAM, YOLO.  
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1.  Introduction 
Camera vision refers to software applications which enable the interpretation of 
visual data from a camera. This technology has become a fundamental part of our 
modern society. These applications take the form of processing algorithms that can 
recognize, interpret, and utilize patterns, objects, colours, or other visual data from 
within an image or a series of images with applications in surveillance, face 
recognition, and optical character recognition (OCR) [1]. This technology is 
particularly useful in robotics. Current robotics technologies utilize GPS systems 
to obtain localization [2]. However, this comes with the limitation of operating 
outdoors exclusively. Camera vision then provides an alternative method for 
localization by being used for obstacle avoidance, object recognition and visual 
simultaneous localization and mapping (V-SLAM) [3]. V-SLAM is a type of 
SLAM algorithm which uses visual data to navigate and map the environment or a 
combination of other sensors. This algorithm estimates robot position, and 
orientation differs from LiDAR SLAM which uses Light Distance and Ranging 
(LiDAR) sensors [4], allowing for a robust algorithm that performs in a wide range 
of environments [5]. V-SLAM, although harder to implement, also uses cheaper 
materials than LiDAR SLAM, which requires expensive LiDAR systems [6]. 

Multiple instances of V-SLAM exist such as Visual-Only SLAM uses colour 
data only to estimate its location while mapping out the environment using an 
algorithm which detects features to determine location [7]. While using the Direct 
Method, uses the whole image to be compared with other frames to determine pose 
[8]. The hybrid method mixes both types to get feature points while refining the 
image using the direct method to increase accuracy [9]. In addition, when using 
other sensor data such as motion using an Inertial Measurement Unit (IMU), a new 
form of V-SLAM is formed called Visual Inertial SLAM (VI-SLAM) which cross-
references inertial and visual data. There exist 2 subclasses, namely filter-based and 
optimization-based method which both uses Kalman filters to perform SLAM in 
which feature points are later converged to optimize the resulting map and remove 
uncertainty except for optimization-based being more computationally heavy [10]. 
In addition, a combination of radar data can also assist in the quality of V-SLAM 
by removing the effect of foliage as proposed by [11]. Lastly, for Colour Depth 
SLAM (RGB-D SLAM), instead of using inertial data, this method uses depth data 
from an RGB-D camera to improve the accuracy of the algorithm [9]. Similarly, to 
V-SLAM, it uses feature points obtained and tracks their depth to form the map. 
Alternatively, it can also use an optimization approach like VI-SLAM [12]. 

Through further research on the topic of V-SLAM, some limitations were 
found, include the requirement for high computational resources, a lack of 
robustness, and difficulties in handling dynamic environments [5]. This is mainly 
due to the feature point method mentioned in which the image is compared frame 
by frame allowing for features to be matched to achieve an estimation of the motion 
of the camera. Due to this nature, the introduction of dynamic objects forces 
confusion when matched frame by frame as the algorithm assumes that motion is 
resultant of the translation of the camera not the objects in the frame. To combat 
this, we propose the use of object detection in which the user can utilise custom-
trained classification and detection models as done in [13]. However, the model 
would be specifically trained to classify dynamic objects to aid in V-SLAM.  

Hence, the objectives for this research project can be identified as such, 
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1. To propose an optimised V-SLAM solution designed to handle dynamic 
environments which have better real-time performance while being 
lightweight by striking a better accuracy-to-efficiency ratio. 

2. To investigate and benchmark object identification and segmentation models 
to be compared based on performance, processing speed and ease of 
implementation into ORBSLAM3. 

3. To perform a comparative analysis of the proposed algorithm against current 
market solutions using objective parametric on identical datasets such as 
computational requirement, accuracy, and processing speed. 

To further the research into the topic of V-SLAM and the handling of dynamic 
objects, a comprehensive literature review was done to identify the problems, root 
causes and current solutions for the handling of dynamic objects in V-SLAM. 

2.  Summary of Literature Review 
For this research project, a qualitative literature review was performed with a total 
of 43 publications being analysed to broaden the knowledge area on the topic in 
which 17 distinctive works were marked and highlighted to discuss the topics of V-
SLAM, Feature Selection, Object Detection, Motion Tracking, and current 
dynamic V-SLAM solutions as shown in Table 1. 

In this literature review, various topics were covered such as dynamic V-
SLAM, object segmentation, motion tracking and feature detection [14] in which 
research into the use of high-level features for motion tracking was done using 
methods such as Deep Learning Neural Networks such as You Only Look Once 
(YOLO), Mask Regional-Convolutional Neural Network (Mask R-CNN). Several 
current methods were also explored that achieved moving object tracking to be used 
in V-SLAM applications. These methods include DOT-SLAM, RD-SLAM, 
DynaSLAM, and RDS-SLAM. These methods achieved high accuracy by 
identification and tracking of motion in the frame to be segmented before feature 
point selection was done. This method allows for the SLAM algorithm to have 
clean input data by clearing the potential moving feature points. From the literature 
review, a trend can be drawn for the usage of different deep learning networks for 
SLAM with the distribution being displayed in Fig. 1. In addition, through analysis 
of each dynamic V-SLAM solution, a generic formula can be drawn showing the 
sub-processes within these systems as shown in Fig. 2. 

 

Fig. 1. Distribution of MOT models. 
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Fig. 2. Flowchart for dynamic V-SLAM. 

Table 1. Highlighted documents from the literature review. 
No. Year Research Title 
1. 2021 A survey: which features are required for dynamic visual simultaneous 

localization and mapping? [14] 
2. 2004 Performance of optical flow techniques for indoor navigation with a 

mobile robot [15] 
3. 2012 SLAMMOT-SP: Simultaneous SLAMMOT and Scene Prediction [16] 

4. 2017 Incomplete 3D motion trajectory segmentation and 2D-to-3D label transfer 
for dynamic scene analysis [17] 

5. 2022 Multiple Object Tracking in Robotic Applications: Trends and Challenges 
[18] Click or tap here to enter text. 

6. 2021 DOT: Dynamic Object Tracking for Visual SLAM (DOT-SLM) [19] 

7. 2017 Faster R-CNN: Towards Real-Time Object Detection with Region 
Proposal Networks [20]  

8. 2021 Visual SLAM in dynamic environments based on object detection [21] 
Click or tap here to enter text. 

9. 2021 Comparison of YOLO v3, Faster R-CNN, and SSD for Real-Time Pill 
Identification [22] 

10. 2018 Mask-YOLO: Efficient Instance-level Segmentation Network based on 
YOLO-V2 [23] 

11. 2022 LRD-SLAM: A Lightweight Robust Dynamic SLAM Method by 
Semantic Segmentation Network [24] 

12. 2019 Improving monocular visual SLAM in dynamic environments: an optical-
flow-based approach [25] 

13. 2022 A Monocular-Visual SLAM System with Semantic and Optical-Flow 
Fusion for Indoor Dynamic Environments [26] 

14. 2014 Optimal representation of multi-view video [27] 

15. 2018 DynaSLAM: Tracking, Mapping, and Inpainting in Dynamic Scenes [28] 

16. 2020 RDS-SLAM: Real-Time Dynamic SLAM Using Semantic Segmentation 
Methods [29] 

Using this framework for dynamic V-SLAM in Fig. 2, the process can be split 
into 4 stages in which a high-level feature detector will be used for object 
classification and masking. From there, motion estimation algorithms segment out 
motion objects before sending inputs to SLAM. One such example of these 
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algorithms is the use of the Structure from Motion (SfM) algorithm which creates 
a three-dimensional image through multiple images as shown in [30]. However, 
within this research, the performance, processing speed and computational draw 
were also evaluated. A summary was reached in which dynamic V-SLAM 
algorithms which use these neural networks and motion estimation methods such 
as multi-view geometry (MVG) and projection estimation create a high dependence 
on Graphics Processing Units (GPUs) resulting in high computational demands and 
long processing times [21, 22]. Convolutional neural networks and motion 
estimation methods require pixel-to-pixel alignment and matrix computation in 
which GPU units excel due to their batch processing capacity. 

Through analysis of LRD-SLAM [24], DynaSLAM [28] and RDS-SLAM [29], 
the entirety of this data will be qualitatively derived from the respective e-journals 
to be used for comparison with obtained results. These algorithms were 
investigated as they use unique combinations of object tracking and motion 
estimation in which LRD-SLAM uses FNET, DynaSLAM uses MVG and Mask R-
CNN, while RDS-SLAM uses Mask R-CNN and SegNet. LRD-SLAM using 
FNET managed to achieve a root mean square absolute pose error (ATERMSE) of 
0.0194 for w/half, 0.0141 for w/xyz, 0.0379 for w/rpy which shows a 96-98% when 
compared to base ORBSLAM2 with a processing speed per frame of 65 ms. 
Whereas for DynaSLAM, it shows an ATERMSE of w/half at 0.0296, w/xyz at 
0.0164, w/rpy at 0.0354 and w/static at 0.0068 with a processing speed of 195 ms 
on a NVIDIA Tesla M40 GPU + Mask R-CNN. While RDS-SLAM shows a 91.6% 
improvement with a running speed of 65 ms running on a P4000 and SegNet. 

3.  Research Gap and Objectives 
It is shown that a solution exists for the handling of dynamic objects. These 
solutions use a combination of high-level feature detection using deep learning 
neural networks with motion estimation algorithms. However, these methods are 
found to be effective but come at a high price of complexity, processing speed and 
high computational power draw leading to the high cost of implementation with 
most algorithms being benchmarked on high-end GPU such as RTX 2080Ti and 
P4000 graphic cards. Therefore, a research gap has been found in which the 
implementation of a lightweight, faster processing time application of V-SLAM 
while balancing the adequate accuracy ratio to computational consumption and 
speed is prevalent when referring to [26] which benchmarks current V-SLAM 
solutions. Further, it validates the research questions and the objective to 
investigate the effects and its aptitude in handling dynamic environments as well 
as the research into new novel solutions to perform dynamic V-SLAM.  

4.  Research Methodology 
To achieve these objectives a work flowchart was established denoting all the sub-
work packages needed to achieve implementation of a lightweight V-SLAM 
solution for dynamic objects. We have adopted the CDIO framework which splits 
the workload into conceive, design, implement and operate stages as shown in Fig. 
3. The conceive and design stages will consist of a literature review and preliminary 
while implementation and operation would include prototyping and benchmarking 
the algorithm with base ORBSLAM3. 
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Fig. 3. Research flowchart. 

A generic flowchart was drawn to denote the sub-processes in which data were used 
to achieve the lightweight implementation of dynamic V-SLAM, as shown in Fig. 4. 
The proposed algorithm was solely built on computer software running Ubuntu 20.04 
ROS Noetic, with base ORBSLAM3 being used for feature detection, but extra 
processing layers were applied to the raw data before being fed into ORBSLAM3. The 
image first underwent object detection and segmentation using YOLOv8, utilizing the 
base YOLOv8 COCO-trained models to output objects and masks before being 
classified as in-motion or static. Using this processed data, the output was fed into 
ORBSLAM3 to perform feature extraction, during which features from the identified 
moving objects were removed before performing SLAM. 

  

Fig. 4. Proposed algorithm architecture. 
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4.1.  Research materials  
The operation of the proposed lightweight V-SLAM algorithm involved the 
utilization of a series of hardware and software components. The selection of these 
software and hardware components was carried out with consideration given to four 
main factors: performance, processing speed, computational demand, and price. A 
summary of the research materials employed for the development and testing of the 
proposed algorithm is provided in Table 2 for all software components used and 
Table 3 for all hardware components used. 

Table 2. Summary of software components for research. 
Software Category Functionality 
Ubuntu 20.04 Operating System Manage Software and Hardware on the 

computing unit 
ROS Noetic Operating System Operate ROS files for RealSense and 

ORBSLAM3 
Python Language Run scripts for YOLO and RealSense 
OpenCV Computer Vision Image Processing and Camera Controls 
YOLOv8 Computer Vision Object Detection and Segmentation 
ORBSLAM3 SLAM Algorithm Used to perform visual SLAM from the 

processed image 
TUM RGB-D 
Dataset  

Benchmark 
Dataset 

Use for benchmarking of object detection 
and SLAM performance 

Rviz Visualization Used to visualize data from ORBSLAM3 

Table 3. Summary of hardware components for research. 
Hardware Category Functionality 
RealSense D435i RGB-D Camera Capture Raw RGB and Depth Data 
MSI Katana GF66 
11UE 

11th Gen i5 CPU 
RTX 3060 GPU 

Processing Unit for Dynamic V-SLAM 
algorithm 

4.2.  YOLOv8 output for moving object classification 
As previously mentioned in the flowchart, YOLOv8 segmentation was utilized to 
obtain object detection, object classification, object mask, bounding box, size, and 
position within the frame. Based on prior analysis, the utilization of YOLOv8m-
seg.pt was deemed most suitable for this application. To achieve this, a Python script 
was developed for use in ROS, facilitating the seamless publishing and subscription 
between the RealSense Node, YOLOv8 Node, ORBSLAM3 Node, and visualization 
nodes. Figure 5 illustrates the application of YOLOv8 using the RGBD camera. 

Moreover, the results from YOLOv8 were extracted into binary masks to be 
passed into ORBSLAM3 to remove dynamic objects. Figure 6 shows a 
visualization of the classification between humans and objects. This was then used 
to pre-classify high dynamic risk objects (people, vehicles, etc.) and low dynamic 
risk objects (tables, crates, TV, etc.) 

The classification masks were utilized in ORBSLAM3 to filter out undesirable 
feature points by restricting feature selections to areas outside the human masks. 
These segmentation masks were convoluted with the original RGB image before 
being forwarded into ORBSLAM3. Subsequent enhancements could involve 
implementing optical flow or perspective projection methods to enhance the 
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accuracy of dynamic object classification. However, such enhancements may result 
in increased computational demands and longer processing times due to the 
heightened complexity of the algorithm, as multi-view geometry and perspective 
projection methods typically impose greater GPU requirements. 

  

(a) RGB frame. (b) Colorized depth frame. 

Fig. 5. Yolov8m-Seg model on d435i camera input. 

  

(a) RGB frame. (b) Human segmentation mask. 

Fig. 6. Classification of dynamic objects. 

4.3.  Algorithm benchmarking methodology 

To evaluate the performance of the proposed algorithm, a scientific benchmarking 
standard was employed, assessing it across four key factors: accuracy, measured by 
absolute trajectory error (ATE) and relative pose error (RPE) in meters (m); 
processing speed, quantified by the time taken per frame in milliseconds (ms); and 
computational power draw. The algorithm was benchmarked against other notable 
dynamic V-SLAM datasets identified in the literature review, utilizing the same 
TUM RGB-D dataset, particularly focusing on variations such as w/static, w/xyz, 
w/rpy, w/halfsphere, and s/static. Furthermore, raw data obtained from Taylor’s 
University School of Engineering Labs was utilized to evaluate real-world 
applications. Figure 7 illustrates the testing environments planned for this project. 



28       Z. S. Wong and S. K. Phang 

 
 
Journal of Engineering Science and Technology                Special Issue 5/2024 

 

  
(a) TUM RGB-D dataset. (b) SOE engineering labs. 

Fig. 7. Testing environments for the algorithm. 

For both the ATE and RPE, they were computed and calculated within 
MATLAB to represent the deviation from the ground truth. ATE represents the 
difference between the ground truth and estimated points given in root mean square 
error and standard deviation while RPE represents the error in motion between 
frames also represented in root mean square or standard deviation. Both ATE and 
RPE can be calculated as shown in Eq. 1 and Eq. 2. 

𝐴𝐴𝐴𝐴𝐴𝐴𝑟𝑟𝑟𝑟𝑟𝑟 = �1
𝑁𝑁
∑ 𝑑𝑑(𝑇𝑇𝑖𝑖

𝑔𝑔𝑔𝑔 ,𝑇𝑇𝑖𝑖𝑒𝑒𝑒𝑒𝑒𝑒)2𝑛𝑛
𝑖𝑖=1                                        (1)     

where N is the number of samples, 𝑇𝑇𝑖𝑖
𝑔𝑔𝑔𝑔  represents the ground truth points, 𝑇𝑇𝑖𝑖𝑒𝑒𝑒𝑒𝑒𝑒  

shows the estimated points. Thus, ATE is the average error for the sum of distances 
between truths and estimates. As for RPE, it is represented by, 

𝑅𝑅𝑅𝑅𝑅𝑅𝑟𝑟𝑟𝑟𝑟𝑟 = �1
𝑁𝑁
∑ 𝑑𝑑(∆𝑇𝑇𝑖𝑖

𝑔𝑔𝑔𝑔 ,∆𝑇𝑇𝑖𝑖𝑒𝑒𝑒𝑒𝑒𝑒)2𝑛𝑛
𝑖𝑖=1                (2) 

where N is the number of samples of trajectories, ∆𝑇𝑇𝑖𝑖
𝑔𝑔𝑔𝑔  represents the ground truth 

pose, ∆𝑇𝑇𝑖𝑖𝑒𝑒𝑒𝑒𝑒𝑒 show the estimated pose while ∑ 𝑑𝑑(∆𝑇𝑇𝑖𝑖
𝑔𝑔𝑔𝑔 ,∆𝑇𝑇𝑖𝑖𝑒𝑒𝑒𝑒𝑒𝑒)2𝑛𝑛

𝑖𝑖=1  shows the sum of 
relative pose measurements. Thus, ATE is the average error for the sum of distances 
of relative pose measurements between truths and estimates. To ease implementation, 
TUM RGB-D provides an online evaluation tool as shown in Fig. 8. 

 

Fig. 8. Tum RGB-D ATE and RPE online evaluation tool. 
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5.  Results and Discussion 
In this section, the obtained results during the development and deployment of the 
proposed algorithm were reviewed, encompassing the performance of the object 
detection neural network as well as the performance of the aided ORBSLAM3. 
Before showcasing the results, the test environment was established. The system 
ran on Ubuntu 20.04 ROS Noetic, and all testing was conducted on an 11th Gen i5-
11400H CPU unit from Intel, supported by a NVIDIA RTX 3060 GPU.  

Firstly, a preliminary test was conducted to identify the performance and speed of 
different deep-learning neural networks. Primarily, Mask R-CNN and YOLOv8 were 
pitted against each other using the TUM RGB-D Dataset. As for the models used Mask 
R-CNN base COCO configuration was used along with YOLOv8n-seg model was used 
during testing. 3 iterations were tested namely YOLOv8 on CPU only, Mask R-CNN 
on CPU only and YOLOv8 on CPU + GPU. Using these configurations, the average 
time taken per frame was taken for each dataset along with the mean average precision 
to compare between both models as shown in Fig. 9 for the segmentation, Table 4 for 
the processing speed and Table 5 for the mean average precision. 

  

(a) YOLOv8n-Seg. (b) Base mask R-CNN. 

Fig. 9. Segmentation from detection models on tum RGB-D dataset. 

Table 4. Average processing speed per frame (ms/frame). 
 s/static w/static w/xyz w/rpy w/hp 

YOLOv8n-Seg 
(CPU+Intel) 56.3 39.8 46.1 41.7 45.9 

YOLOv8-Seg 
(CPU+GPU) 7.3 6.8 6.8 6.9 7.3 

Mask R-CNN 
(CPU+Intel) 3234.8 3362.9 3321.9 3441.0 3455.2 

Table 5. Mean average precision (mAP) of Yolov8n- 
Seg and Mask R-CNN on COCO validation dataset. 

 mAPmask50 mAPmask50-95 mAPbb50 mAPbb50-95 
YOLOv8n-Seg 0.570 0.367 0.597 0.335 
Mask R-CNN 0.600 0.371 0.623 0.398 

Using this information, it is shown that Mask R-CNN shows a significant mask 
precision improvement at higher thresholds with all precision metrics performing 
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better than YOLOv8n-Seg. This is due to the two-stage detector and refinement of 
Mask R-CNN compared to the direct optimized detection model of YOLO. 
Similarly, Mask R-CNN also has more parameters and FLOPs compared to 
YOLOv8n-Seg resulting in a more precise detection model. However, conversely, 
it comes with the price of computation demand and speed as shown in Table 4, 
YOLOv8 shows a significant speed increase using CPU and Intel integrated 
graphics vs Mask R-CNN also due to the single stage detector and lower parameters 
needing less parallel processing capabilities of an GPU. 

5.1.  Comparison between different YOLOv8 models 
To compensate for the performance differences between the models, the use of a 
higher complexity of YOLOv8 was explored to find a balance between 
performance and speed. The comparison models consist of YOLOv8n-Seg, 
YOLOv8s-Seg, YOLOv8m-Seg, YOLOv8l-Seg, YOLOv8x-Seg. Similarly, the 
processing speeds on the TUM RGB-D dataset along with raw data from the D435i 
camera and benchmarks of each model using the same COCO Validation dataset. 
Table 6 and Table 7 show the processing speed data from each model. Furthermore, 
the precision benchmarks show the mean average precision for mAPmask

50, 
mAPmask

50-95, mAPbox
50, and mAPbox

50-95 as shown in Table 8. 

Table 6. Processing speed per frame using CPU+Intel (ms/frame). 

Model Yolov8n-
Seg 

Yolov8s-
Seg 

Yolov8m-
Seg 

Yolov8l-
Seg 

Yolov8x-
Seg 

D435i Data 50.1 120.4 245.6 444.0 635.0 
w/xyz 50.1 112.5 245.0 470.9 678.4 
w/rpy 48.8 96.4 269.7 442.8 720.1 
w/hp 49.6 111.7 243.0 396.0 630.8 

Table 7. Processing speed per frame using CPU+GPU boosted (ms/frame). 

Model Yolov8n-
Seg 

Yolov8s-
Seg 

Yolov8m-
Seg 

Yolov8l-
Seg 

Yolov8x-
Seg 

D435i Data 6.7 9.4 13.8 30.7 39.1 
w/xyz 4.5 7.6 13.7 24.2 37.1 
w/rpy 4.3 7.6 13.7 24.1 37.6 
w/hp 4.2 7.1 13.6 23.6 37.2 

Table 8. Precision results from COCO  
validation dataset on YOLOv8-Seg models. 

Precision Yolov8n-
Seg 

Yolov8s-
Seg 

Yolov8m-
Seg 

Yolov8l-
Seg 

Yolov8x-
Seg 

BBox(P) 0.686 0.857 0.719 0.745 0.795 
mAPbb50 0.570 0.607 0.653 0.669 0.665 
mAPbb50-95 0.367 0.446 0.499 0.523 0.534 
mAPmask50 0.597 0.939 0.926 0.955 0.977 

Using these data entries from Tables 6, 7 and 8, the results for processing speed 
and performance can be tabulated and plotted as shown in Figs. 10 and 11. From 
here, we can extrapolate the processing speed vs performance efficiency to 
determine the best-performing model for our lightweight application. 
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Fig. 10. Processing speed per frame (ms). 

 
Fig. 11. Mean average precision based on  

COCO validation dataset (mAPbb50-95 // mAPmask50-95). 

From here, a concatenated graph to show the relationship between performance 
in terms of average precision (mAPmask

50-95) and processing speed (ms) can be 
drawn to show the performance efficiency as shown in Fig. 12. 

This graph shows the performance-to-processing speed ratio of each model. By 
comparing each model, the n model is the fastest but least accurate while the x 
model is the most accurate but slowest. According to previous data, Mask R-CNN 
mask precision is at 0.6 for mAPmask

50. Therefore, to stay competitive with current 
dynamic V-SLAM solutions using YOLOv8m-Seg while providing better 
processing time as compared to Mask R-CNN. 

  
Fig. 12. Mean average precision against  
processing speed (mAPmask50-95 vs. ms).  



32       Z. S. Wong and S. K. Phang 

 
 
Journal of Engineering Science and Technology                Special Issue 5/2024 

 

5.2.  Base ORBSLAM3 ATE and RPE benchmark 
To conduct the assessment of absolute trajectory error (ATE) and relative pose error 
(RPE) on ORBSLAM3, the TUM RGB-D Dynamic Objects dataset was employed. 
Specifically, the TUM RGB-D Evaluation tool was used to compare the estimated 
trajectory with the ground truth datasets provided here [31]. Essentially, the TUM 
evaluation tools assist by comparing the ground truth trajectory and estimated 
trajectory as shown in Fig. 13.  

  
(a) Ground truth. (b) Estimated trajectory. 

Fig. 13. Trajectory plots for s/static. 

Using this, the ORBSLAM3ROS algorithm was used to simulate the initial results 
of ORBSLAM3 before the implementation of YOLOv8. Figure 14 shows the 
interface and results from ORBSLAM3ROS w/xyz. Table 9 shows the RPE and ATE 
for translation and rotation of each dataset, s/static, w/static, w/xyz, w/rpy, and 
w/halfsphere in both roots mean square error (RMSE) and standard deviation (STD).  

 
Fig. 14. ORBSLAM3ROS visualization in Rviz on w/xyz. 

Table 9. ATE (m) and RPEtrans (m) RPErot (deg.) results for base ORBSLAM3. 
 ATErmse ATEstd RPErmse

t RPEstd
t RPErmse

r RPEstd
r 

s/static 0.0092 0.0043 0.0055 0.0029 0.1643 0.0853 
w/static 0.0222 0.0114 0.0141 0.0102 0.2837 0.1730 
w/xyz 0.4829 0.2366 0.0231 0.0158 0.5588 0.3933 
w/rpy 0.5211 0.2381 0.0289 0.0194 0.6802 0.4293 
w/hp 0.2022 0.0661 0.0214 0.0141 0.5351 0.3243 

This shows the current performance of ORBSLAM3 without the integration of 
dynamic object handling. When the frame object is stationary as seen in sitting_static, 
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the performance of ORBSLAM3 shows adequate accuracy with minimal drift. 
However, once dynamic motion is introduced in the form of human movement as 
shown in w/static, w/xyz, w/rpy and w/halfsphere the drift is significantly higher with 
sequences combined with camera motion having the highest ATE and RPE. To 
visualize this, Fig. 15 shows the ATE drift between the ground truth and estimated 
trajectory indicated with red lines separating the true point and estimated point along 
with the RPE which shows the translational error per frame in terms of time 
visualizing the maximum error during the entire sequence. 

  
(a) s/static ATE. (b) s/static RPE. 

  
(c) w/static ATE. (d) w/static RPE. 

  
(e) w/xyz ATE. (f) w/xyz RPE.. 

  
(g) w/rpy ATE. (h) w/rpy RPE. 

  
(i) w/hp ATE (j) w/hp RPE 

Fig. 15. ORBSLAM3 result visualization for ATE and RPE. 
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5.3.  Proposed algorithm benchmark (YOLOv8-Seg + ORBSLAM3) 
The proposed algorithm uses YOLOv8 with ORBSLAM3ROS. The RGB              
image is first passed into the YOLOv8 node to detect humans before extracting 
the segmentation mask to be subtracted from the base image. This segmented 
image is then published into ORBSLAM3. Figure 16 shows the difference           
before and after integration of YOLOv8 masking, The same TUM RGB-D 
Datasets were used to evaluate the performance to obtain ATE and RPE as shown 
in Table 10 using the TUM RGB-D Evaluation Tool as done with the base 
ORBSLAM3 results. 

  
(a) Original RGB image. (b) YOLOv8 Masked RGB image. 

Fig. 16. Visualization of proposed algorithm.  

Table 10. ATE (m) and RPEtrans (m) RPErot  
(deg) results for the proposed algorithm. 

 ATErmse ATEstd RPErmset RPEstdt RPErmser RPEstdr 
s/static 0.0074 0.0032 0.0060 0.0029 0.1679 0.0838 
w/static 0.0098 0.0056 0.0098 0.0060 0.2125 0.1179 
w/xyz 0.0163 0.0087 0.0138 0.0085 0.4088 0.2908 
w/rpy 0.1228 0.0890 0.0264 0.0180 0.6204 0.4148 
w/hp 0.0321 0.0167 0.0167 0.0107 0.4885 0.2931 

This result was compared with base ORBSLAM3 performance results. The data 
shows that for s/static, no significant improvement can be seen. Whereas for the 
walking sets, a significant improvement is shown for both ATE and RPE. This is 
due to the system masking out highly dynamic humanoids from the image. For 
w/xyz, a change in ATE can be seen from 0.4829m to 0.0163m. Comparatively 
against other dynamic V-SLAM options, all ATE and RPE fall within the same 
performance category [24, 29]. A better visualization of the improvement can be 
seen through the ATE and RPE plots as shown in Fig. 17. Comparing this to base 
ORBSLAM3, the red lines are shown to be significantly reduced after the 
introduction of YOLOv8-Seg. 
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(a) s/static ATE. (b) s/static RPE. 

  
(c) w/static ATE. (d) w/static RPE. 

  
(e) w/xyz ATE. (f) w/xyz RPE. 

  
(g) w/rpy ATE. (h) w/rpy RPE. 

  
(i) w/hp ATE (j) w/hp RPE 

Fig. 17. Proposed algorithm result visualization for ATE and RPE. 
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5.4.  Comparison between YOLOv8 and current market solutions 
These results show varying improvements based on the dataset with s/static and w/static 
only showing an improvement of 19.57% and 55.41% respectively. However, when 
evaluating the performance increase for w/xyz, w/rpy, and w/half, a significant increase 
of 96.64%, 87.65% and 84.17% respectively. Using the performance data of 
DynaSLAM [28] and RDS-SLAM [29] found in their e-journals for comparison against 
base ORBSALM3 and our proposed algorithm as shown in Table 11. 

Table 11. ATErmse comparison for V-SLAM solutions (m) [28, 29]. 

 ORB 
SLAM3 

Proposed 
Algorithm 
(Yolov8) 

RDS-SLAM 
(MRCNN) 

RDS-SLAM 
(SegNet) 

DynaSLAM 
(MRCNN) 

s/static 0.0092 0.0074 0.0088 0.0084 0.0108 
w/static 0.0222 0.0098 0.0815 0.0206 0.0068 
w/xyz 0.4829 0.0163 0.0213 0.0571 0.0164 
w/rpy 0.5211 0.1228 0.1468 0.1604 0.0354 
w/hp 0.2022 0.0321 0.0259 0.0807 0.0296 

Using these results, the YOLOv8-aided ORBSLAM3 outperforms base 
ORBSLAM3 and obtains similar performance to both versions of RDS-SLAM and 
DynaSLAM. In addition, RDS-SLAM and DynaSLAM utilize both more complex 
CNN masking as well as motion estimation techniques to obtain better results. 
However, this comes with higher computational demand and longer processing speeds 
due to more GPU-intensive tasks and larger detection models. To show a comparison, 
Table 12 shows the comparison between segmentation model parameters while Table 
13 shows the processing speed comparison between separate V-SLAM algorithms. 

Table 12. Parameters for V-SLAM segmentation models [28, 29]. 

 Proposed Algorithm  
(YOLOv8m-seg) 

RDS-SLAM  
(Mask R-CNN) 

RDS-SLAM  
(SegNet) 

DynaSLAM 
(Mask R-CNN) 

Parameters 
(M) 27.3 M 63.7 M 29.5 M 63.7 M 

Table 13. Processing speed comparison for V-SLAM algorithm [28, 29]. 
SLAM 
Algorithm GPU TFLOPS  

FP32 Model Detection 
Time (ms) 

Mean Tracking 
Time (ms) 

ORB 
SLAM3 

RTX 3060 
Mobile 10.94 - - 59.07 

Proposed 
Algorithm 

RTX 3060 
Mobile 10.94 YOLOv8m-

seg 13.7 81.96 

RDS-SLAM 
(M) 

RTX 
2080Ti 13.45 Mask R-

CNN 200 66.7 

RDS-SLAM 
(S) 

RTX 
2080Ti 13.45 SegNet 30 66.7 

DynaSLAM RTX 2060 6.451 Mask R-
CNN 195 801.9 

Using these results, from Table 12, we can see that YOLOv8 is the smallest 
model compared to Mask R-CNN and SegNet with only 27.3 M parameters 
indicating that YOLOv8 is less computationally intensive. As for Table 13, the 
comparison for processing speed is given in terms of mean tracking time (ms). The 
TFLOPS FP32 shows the computational power of the GPU, the higher the 
TFLOPS the more powerful the GPU. YOLOv8 has a mean tracking time of 81.96 
ms with 10.95 TFLOPS while RDS-SLAM shows 66.7 ms at 13.45 TFLOPS. The 
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results cannot be directly compared but by linearly normalizing the data based on 
performance per TFLOPS, YOLOv8 aided SLAM shows an approximate 
performance of ~66.62ms comparable to RDS-SLAM. In addition, RDS-SLAM 
runs parallel processing with ORBSLAM3 and Segmentation running on separate 
threads allowing for faster tracking times as compared to the blocked method of 
our proposed algorithm. As such, YOLOv8 shows to have comparable 
performance to the current market while achieving a 96.64% improvement in 
accuracy from base ORBSLAM3 using w/xyz. In addition, YOLOv8 also proves 
to be a lighter-weight option than RDS-SLAM and DynaSLAM with a lower 
number of parameters and a fast mean tracking time comparable to RDS-SLAM’s 
66.7ms when normalizing for computational power. The proposed algorithm can 
achieve this while maintaining improved performance on base ORBSLAM3 and 
comparable performance to RDS and DynaSLAM. 

5.5.  Real-world application showcase 
To showcase the real-world application capabilities of the proposed algorithm, an 
experiment was done within the grounds of Taylor’s University in the proposed V-
SLAM solution was integrated into an Autonomous Mobile Robot (AMR) platform 
to test the proposed algorithm in a real-world setting. A simple test was initiated in 
which the mobile robot was tasked to perform a predetermined and measured circuit. 
The sequence was to complete a U-shape path in which the AMR would travel 
4.534m forward, rotate 90 degrees to the left and travel 2.4m, rotate again 90 degrees 
to the left, and travel back 4.534m. This experiment was done to test the performance 
of the proposed algorithm on a 2D plane with major dynamic object influence in the 
frame. Figure 18 shows the AMR platform used within this research while Fig. 19 
shows a visual representation of the task assigned to the AMR platform. 

 
Fig. 18. AMR platform for real-world testing of the proposed algorithm. 

 
Fig. 19. Visual representation of the predetermined track. 
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The AMR platform was assembled using two hub motors and controlled 
through a ROS package interface through a personal laptop as the processor. Table 
14 shows the specifications of the AMR platform for this research. 

Table 14. Specifications of AMR platform.  
Specifications Details 
Processor 11th Gen. Intel® Core™ i5 Processor (11400H) 

NVIDIA® GeForce RTX™ 3060 Laptop GPU 6GB GDDR6 16GB 
DDR4-3200 

Motors ZLLG65ASM250-L 4096 Motor 
Motor Driver ZLAC706-CAN AC Servo Driver 
Camera Intel Real sense D435i (RGB-D) 
Chassis 40mm x 40mm Aluminium Profile 
Dimensions 850mm x 420mm x 500 mm 

Using this AMR and collecting data through the set 2D path, both the proposed 
algorithm and ORBSLAM3 were launched, and the RealSense RGB and Depth 
data was streamed into each V-SLAM algorithm. Figures 20 and 21 show the 
implementation of the captured data on ORBSLAM3 and the proposed algorithm. 

 
Fig. 20. Implementation of real-world data on ORBSLAM3. 

 
Fig. 21. Implementation of real-world data on the proposed algorithm. 

Once implemented, the trajectories were then saved into a text document and 
plotted via Matplotlib to show the difference in performance of base ORBSLAM3 
against the proposed algorithm as shown in Fig. 22. 
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(a) ORBSLAM3. (b) Proposed algorithm. 

Fig. 22: Trajectory plots for real-world data. 

Once the data was plotted, the resulting plots can be compared against the path 
visualization shown in Fig. 19 to see the effects of segmentation of humans in the 
frame. From Fig. 22, segmentation of dynamic objects has improved the translational 
drift showing less effects on the first straight of the path. However, as for rotational 
drift, the elimination of dynamic objects shows drastic improvement allowing for 
better rotational pose estimation. This shows the viability of the proposed algorithm 
in real-world applications. Allowing for better performance with minimal 
computational investment in highly dynamic environments. To improve this 
implementation further, the use of a wheel encoder would allow for the collection of 
odometry data allowing for better ground truth setting allowing for the computation 
of ATE and RPE as odometry data can output translational change and rotational 
change synchronized with the V-SLAM implementation. 

6.  Conclusions 
In conclusion, this project proposes a new lightweight V-SLAM solution to 
improve dynamic object handling while maintaining low processing speeds and 
computational demands. Our research aims to investigate and benchmark object 
identification models to design a novel V-SLAM solution to handle dynamic 
environments tested using the TUM RGB-D Dataset. The results were validated 
through a comparative analysis between the proposed algorithm and current market 
solutions using ATE and RPE. The proposed solution uses the YOLOv8 
segmentation model to achieve object detection to categorize highly dynamic 
objects before masking and performing ORBSLAM3. Using Ubuntu 20.06 ROS 
Noetic. Intel 11th 11400H CPU and a Nvidia RTX 3060 GPU, a comparison 
between YOLOv8 against Mask R-CNN on the TUM RGB-D dataset shows a 
significant increase in speed with an average processing time on the CPU being 
51.95 ms per frame due to its single-stage detection compared to Mask R-CNN 
which shows an average of 3363.16 ms while having better performance than 
YOLOv8. In addition, each model of YOLOv8 namely n, s, m, l, and x was tested 
on processing speed and precision using the mean average precision (mAP) metric 
with the n model being the fastest but least accurate and the x model being the most 
accurate but slowest. YOLOv8m-Seg was chosen as it had the best speed-to-
performance ratio with a mean average precision being on par with Mask R-CNN 
with a lower computational speed. Lastly, a benchmark was made for base 
ORBSLAM3 and the proposed algorithm by providing the ATE and RPE.  



40       Z. S. Wong and S. K. Phang 

 
 
Journal of Engineering Science and Technology                Special Issue 5/2024 

 

The results show a significant improvement in accuracy in high-motion scenes 
with an improvement of 96.64% on walking_xyz while having minimal 
improvements in static scenes. This performance boost was also compared to RDS-
SLAM and DynaSLAM, which shows performance to be on par. In addition, when 
comparing computational draw and processing speed, YOLOv8m-Seg shows the 
lowest number of parameters of 27.3 M indicating lower computational power draw 
while the processing speed tested on the RTX3060 Mobile shows a mean tracking 
time of 81.96ms which is significantly faster than DynaSLAM and comparable to 
RDS-SLAM. However, these results were approximately normalized due to the 
difference in benchmarking environments, namely the GPU used. For future 
improvements, testing on identical hardware, obtaining results from self-testing 
with RDS and DynaSLAM along with metric considerations of difference in CPU 
will allow for a more accurate comparison result. 
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