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Abstract 

In this paper, an investigation has been made to design the best possible 

Proportional + Integral + Derivative (PID) controller for the Hopper type tank 

and Spherical tank system. In order to identify the optimal controller 
parameters, soft computing schemes, such as Particle Swarm Optimization 

(PSO), Bacterial Foraging Optimization (BFO), Firefly Algorithm (FA), and 

Cuckoo Search (CS) are considered. In the proposed work, minimization of a 

weighted sum of Objective Function (OF) is adopted to guide the soft 

computing technique based controller design procedure. The qualitative and 

quantitative analysis is carried out to validate the performance of the considered 

procedure. The results evident that, the Brownian walk guided algorithms offers 

better performance compared to the PSO. 

Keywords: Hopper type tank, Spherical tank, PID controller, Brownian walk,  

                   Heuristic algorithms. 

 
 

1.  Introduction 

Design of appropriate PID controller is widely preferred in process industries to 

enhance the quantity of final product without compromising the quality. In the 

control literature, a number of traditional [1-4] and soft computing approach [5-

7] based PID design procedures are discussed by most of the researchers for 

stable, unstable and nonlinear systems. Even though there exists a number of 

traditional tuning procedures [1, 8], heuristic and metaheuristic algorithm based 

approaches are also considered by the researchers in recent years [9-11]. These 

soft computing approaches are preferred in control  applications  because  of  its  
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Nomenclatures 
 

D Dimension of search 

Gp(s) Process model 

K Process gain 

Kd Derivative gain 

Ki Integral gain 

Kp Proportional gain 

Mp Peak overshoot 

ts Settling time 
 

Greek Symbols 

θ Process time delay 

τ Process time constant 
 

Abbreviations 

BW Brownian walk 

FOPTD First order plus time delay 

ITAE Integral time absolute error 

ITSE Integral time square error 

PID Proportional + Integral + Derivative 

PSO Particle swarm optimization 

simplicity, optimization ability, and speed of response. Due to its flexibility; the 

soft computing approaches can easily adapt with existing classical controller 

design procedures. Hence, in recent days, it is used as a tool to design classical 

and modified structured controllers for a class of stable, unstable, and nonlinear 

process models  

In this paper, soft computing based PID controller design procedure is 

discussed for hopper tank and spherical tank system and performance comparison 

is presented between algorithms, such as Particle Swarm Optimization (PSO), 

Bacterial Foraging Optimization (BFO), Firefly Algorithm (FA), and Cuckoo 

Search (CS) for the reference tracking and input disturbance operations. 

The paper is organized as follows: Section 2 presents the problem formulation 

for PID controller design. Process description is discussed in Section 3. Section 4 

presents the overview of the heuristic algorithms considered in this study and its 

implementation. Experimental results are evaluated and discussed in Section 5. 

Conclusion of the present research work is given in Section 6. 

 

2. Problem Formulation 

In order to improve the performance of closed loop systems, optimally tuned PID 

controller is required. Figure 1 depicts the illustration of a conventional closed loop 

control system. In this, the controller Gc(s) has to support closed loop stability, 

smooth reference tracking, and efficient disturbance rejection [2]. In this, Gc(s) is 

used to improve both the steady state as well as the transient response of Gp(s). The 

main objective here is to make Y(s) = R(s). In this framework, Gc(s) continuously 

adjusts the value of Uc(s) until the error E(s) is zero irrespective of D(s).   
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Fig. 1. General closed loop system structure. 

 

The closed loop response of the system with reference R(s) and supply 

disturbance D(s) can be expressed as: 
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where the complementary sensitivity function and sensitivity function of the 

above loop is represented in Eqs. (2) and (3) respectively. 
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The final steady state response of the system for the set point tracking and the 

disturbance rejection is presented below  
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where A is amplitude of the reference signal  and L is the disturbance amplitude. 

To achieve a satisfactory )(yR ∞ and )(yD ∞ , it is necessary to use optimally 

tuned PID parameter values. In this paper, non-interacting form of PID structure 

is adopted. In this structure, a low pass filter is available with the derivative term 

to minimize the effect of measurement noise. 

The PID structure is defined below:  
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where Kp / Ti = Ki, Kp x Td = Kd  and Nf = filter constant = 10.  

3.  Process Description 

Industrial systems are nonlinear in nature. Most of the real time process loops are 

characterized by an equivalent higher order modelling equations. These nonlinear 

processes can be efficiently modelled as linear processes based on operating 
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regions. In the proposed work, the FOPTD model of the hopper tank systems and 

spherical tank systems are considered. 

 

3.1. Hopper tank 

Hopper type process model is shown in Fig. 2(a). This system has conical bottom 

portion and cylindrical upper portion [12]. In this work, we considered the conical 

portion alone. The conical portion is highly nonlinear in nature and developing 

the mathematical model based on the working region is a hard job. 

 

50 cm 

Fin 

50 cm 

Fout 

 

Fin 

50 cm 

Fout  

Fig. 2(a) Hopper Tank System.                  Fig. 2(b) Spherical Tank System. 

In this paper, the mathematical model of the hopper tank system with various 

operating regions discussed by Kesavan et al. [12] is considered. In their work, 

the conical portion of the tank is considered and four stable FOPTD models are 

developed based on the different operating regions as shown in Table 1. 

Table 1. Process parameters at different operating range. 

Inflow 

% 

Range     

(cm
3
/s) 

Level range 

(cm) 
K τ θ 

40 (I Region) 0 - 15 2.70 0.75 0.15 

60 (II Region) 15 - 30 0.68 1.50 0.70 

80 (III Region) 30 - 40 0.18 0.78 0.22 

100 (IV Region) 40 - 50 0.09 0.30 0.30 

 

3.2. Spherical tank 

The spherical tank is the one of the nonlinear system widely discussed by the 

researchers in the literature [13, 14]. In this work, the spherical tank system shown 

in Fig. 2(b) is considered. The operating region of the spherical tank system is 

chosen as 18 cm. At this operating region, 29.549% of tank is filled with the water 

(19.34 L) and 70.451% is filled with the air, and the developed mathematical model 

around the corresponding operating range is presented below [14] 

1330.46
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In the proposed work, the conical tank portion with a height of 50 cm is 

considered for hopper tank system and the spherical tank with a diameter of 50 

cm is considered to develop the required FOPTD model of the system around the 

operating regions. 

4.  Overview of Heuristic Algorithms Considered 

In recent years, a considerable number of heuristic and meta-heuristic algorithms 

are proposed by the researchers to deal with variety of optimization problems. In 

this work, well known algorithms, such as Particle Swarm Optimization (PSO), 

Bacterial Foraging Optimization (BFO), Firefly Algorithm (FA) and Cuckoo 

Search (CS) are considered to design the PID controller. 

4.1.  Particle swarm optimization 

PSO algorithm was proposed by Kennedy and Eberhart in 1995 [15]. Compared 

to other agent-based stochastic optimization techniques, PSO offers better 

exploration performance, faster and more stable convergence rates. Also, the 

number of initial algorithm parameters to be assigned is very few compared to 

other nature-inspired algorithms existing in the literature [13]. 

During the optimization search, each particle remembers its best position 

attained so far (i.e., pbest - t

i,DP ), and also obtains the global best position 

information achieved by any particle in the population (i.e., gbest - t

i,DG ).   

At iteration t, each particle i has its position defined by 

],...,,[ 21 i,Di,i,

t

i.n XXXX = and velocity defined as  ],...,,[ 21 i,Di,i,

t

i,n VVVV =  in search 

dimension D. 

Velocity and position of each particle in the next iteration can be calculated as 

   )X(G*R*C)X(P*R*CV*WV
t
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where � = 1, 2, . . . , �; n = 1, 2, . . . , D;  C1 is the cognitive parameter (typically 

2); C2 is the social parameter (typically 2); R1 and R2 are random numbers in the 

range 0-1; and W is the weighting parameter (typically 0.75) [13]. 

4.2.  Brownian walk guided algorithms 

In the heuristic algorithm based search, generally the success towards the optimal 

solution mostly relies on the guiding procedure. Most of the recently developed 

nature inspired optimization search process is guided by Lévy Flight (LF) and 

Brownian Walk (BW) strategy. In this paper, BW is considered to guide 

algorithms, such as BFO, FA and CS 

The Brownian Walk (BW) is a subdiffusive non-markovian process, which 

follows a Gaussian distribution with zero mean and time-dependent variance. In 

this work, the BW recently discussed by Raja et al. [16] is adopted. 
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The following formulae are considered 

Brownian distribution = 
2/

s . A)s(B
α=                         (10) 
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where A is the random variable,  β is the spatial exponent, α is the temporal 

exponent, and )( βΓ is a Gamma function.  

A detailed description of BW is discussed in [16-18]. Figure 3 shows the 

exploration traces made by a BW guided single agent in a ‘D’ dimensional search 

space. When iteration increases, all the agents in the algorithm will converge 

towards the optimal values of the controller parameters in the search universe. 
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Fig. 3. Search traces made by a single agent in Brownian distribution. 

4.2.1. Bacterial foraging optimization 

BFO algorithm was developed in 2002 by mimicking the foraging behaviour of E. 

coli bacteria. In the proposed work, the enhanced BFO algorithm discussed in 

[14] is considered. The initial algorithm parameters are assigned as follows: 

Number of E.Coli bacteria =  N 

Nc = 
2

N
; Ns = Nre  ≈

3

N
; Ned ≈

4

N
; Nr = 

2

N
;  Ped =  









+ rNN

edN
; 

dattractant = Wattractant = 
N

sN
;    and           hrepellant = Wrepellent = 

N

cN
.          (12) 

In BFO algorithm, optimization accuracy and convergence rate depends on the 

chemotaxis operation and it can be expressed as in Eq. (12) [14]. 
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where θi (j, k, l) shows ith bacterium at jth chemotactic, kth reproductive and lth 

elimination-dispersal step; C(i) is the step size in the random direction, and ∆(i) is 

a random vector of size {-1, 1}. In the proposed work, Eq. (12) is modified as 

shown below: 
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where the symbol ⊕  represents the entry wise multiplication, and B(s) is the 

Brownian walk operator.  

4.2.2. Firefly algorithm 

Firefly algorithm is a nature inspired metaheuristic algorithm initially proposed 

by Yang [19]. It is developed by replicating the flashing illumination patterns 

generated by the firefly. This bioluminescence with varied flashing patterns is 

used to establish communication between two neighbouring insects, to search for 

pray and also to find mates [20].  

The overall performance (exploration time, speed of convergence, and 

optimization accuracy) of the FA depends on the OF, which monitors the search.  

For a minimization problem, luminance of a firefly is considered based on the 

following relation luminance = 1/OF. A detailed explanation about FA is 

available in literature [17-20]. 

In FA, the light intensity at a particular distance d from the light source 
t
iX  

obeys the inverse square law. The light intensity of a firefly I, as the distance d 

increases interms of
2d/1I ∝ . The movement of the attracted firefly i towards a 

brighter firefly j can be determined by the following position update equation; 

B(s)       ½) - sign(rand .)(
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where 1+t

iX is updated position of firefly, t
iX  is initial position of firefly,  

)(
2

0

t

i

t

j

γ d

XXeβ
ij −

−
 is the attraction between fireflies, and B(s ) is the Brownian 

walk operator. 

4.2.3. Cuckoo search technique 

CS was initially proposed by Yang and Deb [19].  It is based on the breeding 

tricks of parasitic cuckoos. CS algorithm has the following assumption [17] 

• Each cuckoo lays an egg and deposits in an arbitrarily chosen nest 

• The nest with good survived egg will be approved over to the next 

generation. Cuckoo’s egg normally hatches several days before than the 

host’s eggs. The cuckoo chick grows quicker and expels the host’s eggs. 

• In a search universe, the number of host nest is fixed. The host bird 

discovers the cuckoo’s egg with a probability [0,1]    pa ∈ . When the egg 

is discovered, host bird may eliminate it from nest, or simply abandon 

the nest and build a new nest. 

In CS, during the optimization search, the new solution ( )1( +t
iX ) mainly 

depends on the old solution ( )(t

iX ) and the search guiding procedure. 

In this work, the following expressions are considered to find the new solution 

)()()1( sBXX t

i

t

i ⊕+=+ α                                                                                     (16) 
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where α > 0 is the succeeding step. 

4.3.  Implementation 

Heuristic algorithm based PID controller tuning procedure is depicted in Fig. 4. For 

a given process model, the algorithm finds the optimal Kp, Ki and Kd values from the 

search universe ‘D’  by minimizing the objective function. In the literature, a 

number of objective functions are existing to support heuristic algorithm based PID 

design task. In this work, OF is framed by considering the time domain constraints 

(Mp, and ts) and the errors (ITAE, and ITSE) as presented below:  

)ITSEw()ITAEw()tw()Mw(J 43s2p1 min ×+×+×+×=                          (17) 

[ ] dty(t) - )t(r tdt)t(e t  ITAE
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0

2500

0

2 ∫∫ ==
 
            (18) 

[ ] dty(t) - )t(r tdt )t(e tITSE
500

0

2500

0

2 ∫∫ ==             (19) 

where  the weightes are assigned as w1 = w2 = w3 = w4 = 10. 
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Fig. 4. Soft computing based PID controller tuning. 

 

Prior to the optimization search, it is necessary to assign the parameters for the 

heuristic algorithm.  The initial algorithm parameters considered in the proposed 

work is presented in Table 2. The algorithm is allowed to explore the search 

universe until the OF value is minimized. This procedure is repeated 10 times and 

the average value of the controller parameters is chosen as the best possible 

controller parameter value. 

Table 2. Initial parameters of heuristic algorithms considered. 

Parameter PSO BFO FA CS 

Maximum Number of 

Iterations 

500 

Population of agents (N) 15 

Search dimension (D) 3 

Stopping criteria Jmin 

Number of trials 10 

Performance measure 

values 

Mp, ts, ITAE, ITSE 
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5.  Results and Discussions 

The heuristic algorithm based controller tuning procedure is demonstrated using a 

PSO, BFO, FA, and CS algorithm using Hopper tank and Spherical tank process 

models. In order to perform a fair comparison, all the algorithms are assigned 

with the same nominal parameters as shown in Table 2. 

5.1. Hopper tank model 

Initially, the proposed controller design procedure is implemented using the 

Hopper tank model discussed in Section 3.1. For this tank, Kesavan et al. [12] 

developed four FOPTD models based on four operating regions. 

Initially, the FOPTD model of I region is considered and the controller tuning 

procedure is executed. The soft computing approach continuously adjusts the 

values of Kp, Ki, and Kd until the objective function Jmin reaches a minimal value. 

During the optimization search, the PSO based approach converges at 49th 

iteration, BFO based search converges at 73
rd

 iteration, FA based search 

converges at 55
th

 iteration and CS based search converges at 64
th

 iteration. From 

these results, it is noted that, PSO offers faster convergence compared to the 

alternatives considered in this study. 

The controller parameters obtained using the soft computing technique is 

shown in Table 3. The performance of the controller is tested with an unity 

reference input and an input disturbance of 50% of reference input (0.5) 

introduced at 10 seconds. The process response and the corresponding controller 

response are presented in Figs. 5 and 6 respectively. Corresponding performance 

measure values, such as Mp, ts, ITAE and ITSE are presented in Table 3. From 

this, one can observe that, the proposed method supports smooth reference 

tracking and effective input disturbance rejection operations. 

Table 3. Controller values and performance measure values for I Region.  

Method Kp Ki Kd Mp ts (s) ITAE ITSE 

PSO 0.5098 0.4929 0.0136 0.000 5.418 12.49 3.934 

BFO 0.5217 0.7038 0.0424 0.021 4.862 8.525 2.774 

FA 0.4486 0.7084 0.0277 0.042 4.426 8.774 3.105 

CS 0.5925 0.6792 0.0218 0.000 3.317 8.597 2.666 
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Fig. 5. Process output response with I Region model. 
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Fig. 6. Controller output response with I Region model. 

 

Similar procedure is repeated for other FOPTD models of the Hopper tank 

system and the results are clearly presented in Tables 4, 5, and 6 and Figs. 7 to 12. 

From these results, it is noted that, the BW based BFO, FA, and CS algorithms 

offers better result compared with the PSO based controllers. 

 

Table 4. Controller values and performance measure values for II Region. 

Method Kp Ki Kd Mp ts (s) ITAE ITSE 

PSO 0.6239 0.4922 0.1083 0.000 9.831 37.18 6.992 

BFO 0.6111 0.4306 0.0703 0.000 14.74 43.30 8.105 

FA 0.6155 0.4719 0.1104 0.000 10.95 38.90 7.334 

CS 0.7204 0.5003 0.0829 0.000 10.27 35.75 6.490 

 

Table 5. Controller values and performance measure values for III Region. 

Method Kp Ki Kd Mp ts (s) ITAE ITSE 

PSO 1.0874 2.2180 0.0937 0.000 11.88 11.05 2.026 

BFO 1.6936 2.5921 0.1162 0.000 9.772 8.987 1.460 

FA 2.0488 2.5170 0.1091 0.000 10.64 9.795 1.459 

CS 2.1083 3.0037 0.0774 0.000 8.830 7.262 1.100 

 

Table 6. Controller values and performance measure values for IV Region. 

Method Kp Ki Kd Mp ts (s) ITAE ITSE 

PSO 5.1824 7.1271 0.0722 0.000 10.02 4.028 0.597 

BFO 5.0038 6.1183 0.0320 0.000 10.98 5.352 0.794 

FA 4.0273 6.9924 0.0533 0.000 9.135 3.905 0.646 

CS 4.9277 8.3081 0.0660 0.000 8.006 2.959 0.458 
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Fig. 7. Process output response with II Region model.  
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Fig. 8. Controller Output response with II Region model. 
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Fig. 9. Process output response with III Region model.  
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Fig. 10. Controller output response with III Region model. 
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Fig. 11. Process output response with IV Region model.  
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Fig. 12. Controller output response with IV Region model. 

 

Figure 13 presents the comparison of ITAE and ITSE for the Hopper tank 

system (regions I to IV). From this result, it is observed that, compared with the 

PSO, the BW guided algorithm offers reduced error values. Particularly, BW 

guided CS algorithm outperforms the alternatives considered in this study. It 

offers better ITAE and ITSE values compared with PSO, BFO and FA. 
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Fig. 13. Error comparison for Hopper type model. 

 

 

5.2. Spherical tank model 

The proposed controller design procedure is then implemented on the FOPTD model of 

spherical tank system discussed in Section 3.2. During the controller design process, the 

procedure considered in Section 5.1 is repeated with the spherical tank model. The 

average search iteration is as follows, PSO converges at 153
rd

 iteration, BFO based 

search converges at 227
th

 iteration, FA converges at 182
nd

 iteration and CS 

converges at 194th iteration 

Final controller parameters considered in this study is shown in Table 7. The 

performance of the PID controller for spherical tank system is tested for 

reference tracking and input disturbance rejection operations.  The input 

disturbance value of 0.5 is introduced at 500 seconds as depicted in Figs. 14 and 

15. The process response and the corresponding controller response is presented 

in Figs. 14 and 15 respectively. Corresponding performance measure values are 

presented in Table 7. The BW guided FA offers better Mp and ts compared with 

the PSO, BFO and CS. 

Figure 16 shows the assessment of ITAE and ITSE for the spherical tank 

system. From this, it is noted that, even though the search iteration is large, BFO 

results in providing less error value when compared to other methods. 
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Table 7. Performance measure values for spherical tank system.  

Method Kp Ki Kd Mp ts (s) ITAE ITSE 

PSO 3.4833 0.0926 1.5441 0.4502 208.01 6582 1058 

BFO 4.7204 0.1036 1.1943 0.4655 129.47 3880 676.3 

FA 4.2027 0.0805 1.0073 0.3731 102.68 4924 727.9 

CS 3.8837 0.1175 1.1727 0.5438 242.91 5968 1048 
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Fig. 14. Process output response of spherical tank process. 
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Fig. 15. Controller output response of spherical tank process. 

PSO BFO FA CS
0

1000

2000

3000

4000

5000

6000

7000

E
rr
o
r

 

 

ITAE ITSE

 

Fig. 16. Error values of spherical tank process. 
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6.  Conclusions 

In this paper, PID controller tuning is proposed for hopper type tank and spherical 

tank system using PSO, BFO, FA and CS. The performance of the proposed 

procedure is validated using traditional process measures, such as Mp, ts, ITAE, 

and ITSE. The result shows that the PSO-based approach offers a faster 

convergence when compared with BFO, and proposed BW guided FA and CS. 

However, even though there is a deviation in the performance measure values, 

BW guided algorithms offers overall superior result than PSO tuned controller for 

both the hopper type tank and spherical tank system. 
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