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Abstract 

In this paper, the problem of designing an optimal control algorithm for rolling 

processes is addressed. Deriving a mathematical model for a general class of 

rolling mills, the optimal control problem is defined. In the design procedure, 

time delays in thickness measurment and control input are taken into account. 
The proposed strategy significantly improves the results of previous 

investigations from practical point of view. Simulation results are also studied 

to highlight the effictiveness of the method. 
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1.  Introduction 

Rolling process plays an important role in steel manufacturing due to the 

increased demand for rolled products with high quality in aircrafts, automotive 

industry and so on. Although many control algorithms may theoretically meet 

such desired properties, but some practical limitations cause those methods not be 

implementable. In fact, rolling mills are some nonlinear systems with multiple 

inputs and multiple outputs [1-3]. Apart from the mechanical equipment, a big 

potential for improving the quality of the rolled products lies in the techniques 

adopted for process control. Meanwhile, high quality can be obtained by some 

control algorithms by using some sensors and actuators. 

Tension and speed control of the continuous strip processing lines are the 

challenging problems to be devoted to get the desired performance. During the 

past decades, various control methodologies have been developed for rolling 

processes under different assumptions [4-7]. Inverse Linear Quadratic (ILQ) theory, 
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Nomenclatures 
 

f Forward slip 

H Entry thickness, mm 

h Exit thickness, mm 

K Elastic constant, N/mm 

P Roll force, N 

R Work roll radius, mm 

r Thickness reduction 

S Roll gap, mm 

s Yield stress 

VR Roll velocity, m/s 

v Strip velocity, m/s 

W Strip width, mm 
 

Greek Symbols 

µ Coefficient of friction 

σ Tension, N/mm 

as a multivariable and optimal control technique can be applied to mass flow 

control in rolling mills [5, 8]. As it is straightforward to design control systems 

based on ILQ theory and it is easy to tune the resulting system, this method is also 

used for actual plant control. Robust control may be also adopted to tackle 

bounded disturbances [9, 10]. 

From an optimization viewpoint, applying optimal control techniques can 

significantly decrease the production costs. System modelling, based on Petri 

nets, may be used to develop some optimal solutions in view of production 

schedules [11]. In fact, rolling mill is described as a discrete event system to be 

used in optimizing a prescribed objective function. Such methodology is highly 

dependent to system structure and parameters and cannot be applied to a wide 

class of rolling mills with any number of stands. Optimization in rolling program, 

e.g., in batch scheduling [12], and number of rolling profiles [13], has been also 

noticed in previous works. More recent investigations have focused on optimal 

thickness and tension control strategies e.g., based on solving riccati equations 

[14, 15], intelligent strategies [16], model predictive control [17], and stochastic 

optimization algorithms [18].  

In spite of all the existing methods, considerable attention is still paid toward 

developing a controller, which effectively treats both the optimal performance and 

considering time delays [19]. In practice, time dalay which adds some right half 

plane zeros to open loop system and closed loop instability, inevitably arises from 

various sources, e.g., (i) the online data acquisition from sensors at different 

locations of the system, (ii) the time taken processing of the sensory data for the 

required control force calculation and transmission to the actuators, and (iii) the 

time taken by the actuator to produce the required control force. In this paper, a 

digital optimal control is formulated for a general class of rolling mills, taking the 

measurement and input delays into account. 

The organization of the paper is as follows. In Section 2, the general behaviour 

of rolling mills is introduced. The dynamic equations of the system are presented in 

Section 3. The optimal control problem of time-delayed systems is formulated in 
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Section 4, and the proposed algorithm is then applied to a typical rolling process in 

Section 5. Finally, the concluding remarks are given in section 6. 

 

2.  Rolling Mill Behavior 

Rolling process plays an important role in steel manufacturing due to the 

increased demand for rolled products with high quality in aircrafts, automobile, 

and other related industries. In the rolling process, strip is passed through a 

continuous production line, at high speed. Thickness reduction is managed by 

several stands, each consists of two work rolls and two backup rolls, as 

schematically shown in Fig. 1.  

The basic equations which govern the relationship of system variables are 

formed by the characteristics of the material and the mechanical variables, in 

which the index i corresponds to the ith stand. The symbols used and appeared in 

the equations are listed in the Nomenclature. 

 
Fig. 1. A Typical Rolling Mill With n Stands. 

 

The basic equations which govern the relationship of system variables are 

formed by the characteristics of the material and the mechanical variables, in 

which the index i corresponds to the ith stand.  

The rolling force equation for the ith stand is given by an implicit function as [20]  

0)( ’’’1 =fiiii hHHP σ  (1) 

where H1 is the entry thickness of the first stand, and hi, Hi, and σfi denotes 

respectively the exit thickness, the entry thickness and the tension at front of the stand.  

More precisely, the exit strip thickness is governed by 

K

F
Sh i

ii += (2) 

in which S represents the roll gap and K is the elastic coefficient. The rolling 

force equation is 

piiiiiii DhHRkWκP )( −′=  
(3) 

where 

)σ,σ,,,( fibi11 iii hHHg=κ  (4) 

strip 

H1 h1 

x-ray Tensiometer 

 

1st stand 2nd stand nth stand 
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)( βrαk ii +=  (5) 

),,,(2 iipi hHRgD µ=  (6) 

in which, ir  is the mean value of ri in the back and front of the ith stand. 

Thickness reduction at each stand, ri, is given by  

i

ii
i

H

hH
r

−
=  

(7) 

1) Flattened roll radius iR′  is determined by 

),,,,( ii3 hHWRPgR iii =′  (8) 

2) The strip velocity is related to roll velocity and forward slip by 

Riifi Vfv )1( +=  (9) 

where 




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(11) 

γ
fifi βrαs )( += (12) 

γ
bibi βrαs )( += (13) 

 

In the aforementioned equations, α, β, γ are material dependent constants 

and the indices b and f denote the parameter values in the back and front of 

stands respectively. 

 

3.  Dynamic Equations  

The dynamic behaviour of rolling mills is mostly determined by the equations, 

related to interstand tensions, roll gap and roll velocity dynamics at each stand. 

The two simplified dynamics related to roll gap and roll velocity are [14, 20] 

( )sii
s

i US
T

S −−=
1&  (14) 

( )viRi
v

Ri UV
T

V −−=
1

&  (15) 

where Usi and Uvi are the reference values and, Ts and Tv are the related time 

constants. Tension is governed by the following nonlinear dynamics: 
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( )( )fiibfi vv
L

E
σ −= +1&  

(16) 

where E and L are Young’s modulus of the strip and the distance between 

each two stands respectively.  

In general, the dynamic behaviour of the process represents nonlinearities. 

Although the relationships between some of the process variables are nonlinear, 

but at steady state the equations governing the system would be linear [1, 3, 8]. 

The linearized model around the operating point presents a state-space description 

of the form 





=

+=

CXy

BuAXX&
 

(17) 

where yX , and u  represent the vectors of states, outputs and inputs 

respectively. Moreover CBA ,,  are some matrices whose dimensions depend on 

the number of stands n. More precisely, X  contains the interstand tensions, roll 

velocities and gap between work rolls. The dimension of state vector X depends 

on the number of stands in rolling mill, i.e., for n stands one can select 

T
nRnRfnf SSVVX ],...,,,...,,,...,[ 111 σσ=  (18) 

In most of rolling processes, strip thickness is measured directly by x-ray 

measurement after stands. Although this method gives exact gauge value, the time 

delay involved in measurement cannot be ignored in the design procedure. The 

delay τ is determined by the strip velocity vf at the exit and the distance l between 

each stand and x-ray measuring device, i.e.,  

fv

l
=τ

 

 (19) 

 

4.  Opimal Controller Design 

In order to develop the optimal control algorithm for rolling mills, LQR method is 

first introduced for linear systems without delay. Then, incorporating the input 

and measurment delays into dynamical equations, the proposed controller is 

designed.  

4.1.  Classical LQR algorithm revisite 

Consider a linear system, described by 

BuAxx +=&

 

 (20) 

where x and u denote the state and control vector respectively. Choosing the 

control input as  

)()( txKtu −=  (21) 

the optimal control problem is to find the vector matrix K such that the 

quadratic criterion  

∫
∞

+=
0

)( dtuRuxQxJ TT  (22) 
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is minimized. In performance index (22), Q and R are weighting matrices which 

respectively show the significance of obtaining small states and control signals 

with respect together. In other words, the constraints on admissible control 

signals, imposed by the actuators, can be considered by choosing suitable 

weighting matrices. Equivalently, the digital implementation of the optimal LQR 

method may be stated as follows.  

For discrete time linear system 

)()()1( kBukAxkx +=+  (23) 

the performance index takes a form as 

J(u) =� [���������� + 
�����
���∞
�
� ]  (24) 

It can shown that the optimal gain vector in  

u(k) = -K(k) x(k) (25) 

is obtained as  

Kopt(k) = ������  (26) 

where S is the solution of  Riccati equation 

��� + �� − �������� + � = 0��  (27) 

Now, the classical LQR method is extended to a class of time delay systems 

by which rolling processes dynamics can be described. 

 

4.2. Optimal control of time delay systems 

As a general case, time delay may exist in both states and inputs. More precisely, 

the linear system dynamics (23) takes the form 

x (k+1)=Ax(k)+� ����� − �����
�
�  +Bu(k)+� ��
�� − ����

�
� � (28) 

in which �� , � = 1,2, … , �� and �� , # = 1,2, … , �$ denote the dealys in the states 

and inputs respectively.  

The key idea is transforming the dynamical equation (28) into a nominal form 

by defining  

e(k) = r(k-1) – x(k-1)  (29) 

∆x (k) = x(k) – x(k-1)  (30) 

and  

∆
��� = 
��� − 
�� − 1� (31) 

where r is the reference input. Replacing the error variables (29)-(31) in (28), 

yields 

∆x (k+1)=�∆x(k)+� ��∆��� − �����
�
�  +B∆u(k)+� ��∆
�� − ����

�
� �  (32) 

Now, defining the new state vector as  
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Z(k) = 

&
'
'
'
'
'
'
( )���

∆����
∆��� − 1�

⋮
∆��� − ���
∆
�� − 1�

⋮
∆
�� − ���+

,
,
,
,
,
,
-

 

 (33) 

results in a discrete time linear system as 

Z(k + 1) =���.Z(k) +���/  ∆u(k) + ∆r(k) (34) 

where �. and �/  are some matrices with appropriate dimensions, depending on 

the elements on A and B in (23). In fact, the discrete system (23) has a form, similar 

to the linear system without delay (20). Hence, the classical LQR algorithm for (34) 

can be applied as the optimal controller of time delay system (28). 

 

5.  Application to A Rolling Mill Process 

In order to evaluate the performance of the optimal controller, the developed LQR 

algorithm is applied here to a 2-stand cold rolling process. Nevertheles, the 

procedure can be easily extended to a system with n stands, whose model has 

been introduced in Secions 2 and 3. The numerical values of the system are 

specified by Tables 1 and 2.  

By using such parameter values, the matrices A and B of the state space 

description are calculated as  

 

 

Assuming l is 2.5 m, Eq. (19) results in time delays τ1 = 0.225 s and τ2 = 0.2 s. 

Now, the discrete time model of system of the form (34) is determined by 

defining 

Z(k) =

&
'
'
'
'
'
'
'
( )���

∆�����
∆�$���

∆���� − 1�
∆�$�� − 1�
∆���� − 2�
∆�$�� − 2�
∆
�� − 1� +

,
,
,
,
,
,
,
-

 (35) 

2 24.02 48 1.66 10 2.1 10

0 1.667 0 0

0 0 2.5 0

0 0 0 2.5

 − − × ×
 

− =  −
  − 

A

0 0 0

1.667 0 0

0 2.5 0

0 0 2.5

 
 
 =
 
  
 

B
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Table 1. Strip Mill Specifications. 

Parameter Value 

K (N/mm) 94.6 10×  

Tv (s) 0.6 

Ts (s) 0.3 

E (N/mm
2
) 52.1 10×  

L (mm) 4600 

( )α −  620 

( )β −  0.008 

( )γ −  0.3 

 

Table 2. Tandem Mill Operating Points. 

Last stand First stand Parameter 

1.6 2.1 H (mm) 

1.38 1.6 h (mm) 

1000 1000 W (mm) 

11.44 10.08 vf (m/s)  

100 20 σb (N/mm)  

44 100 σf (N/mm)  

285 285 R (mm) 

0.0166 0.0488 f 

0.07 0.07 µ  

In order to evaluate the performance of the applied optimal controller for the 

underlying rolling system, some simulation studies are presented here. In order to 

make a comparison, a PID controller is applied to system and the time response is 

depicted in Fig. 2. Using the PID structure, a faster response and a more smooth 

output is achieved, as shown in Fig. 3, comparing to the original system (without PID) 

and a simple proportional controller, respectively. Nevertheless, from a practical 

viewpoint, the time response is not acceptable dut to the overshoots and fluctuations.  

 

Fig. 2. Output Response by Applying PID Structure. 
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Fig. 3. Step Response Using Proportional and PID Controllers. 

 

To remove such drawbacks, the optimal controller based on LQR algorithm is 

applied to system with reference input 1.38 mm for thickness. Taking the time 

delays τ1 and τ2 into account, the capability of the poposed optimal controller is 

demontrated in Figs. 4 and 5. It is shown that the output which has been 

significantly imroved with respect to PID algorithm. A smooth response without 

steady state error is obtained by adopting the weighting matrices in objective 

function (15) as Q = I, and R = 2I. Moreover, a faster time response can be 

achived by Q = 2I, and R = I, at the expense of larger control effort. In fact, 

increasing the weighting matrix Q causes to increase the speed of convergence in 

the system states. 

 

 
Fig. 4. Thickness Control by LQR Algorithm. 
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Fig. 5. Tension Regulation Using LQR Method. 

 

Remark 1: Comparing with some previous investigations, developed for 

restricted rolling systems [11, 13, 14, 18], the developed optimal controller can be 

applied to a wide class of rolling mills.  

Remark 2: Ensuring both optimal performance and simplicity of implementation 

for rolling mills, as a complex dynamical system, are of the main benefits of the 

developed algorithm. In fact, some theoretically powerful methods may result in a 

complicated design procedure [9, 14]. 

 

6. Conclusion 

Assigning the state variables, inputs and outputs, a general class of rolling mills in 

the presence of measurement and output delays are modeled. The optimal control 

problem is formulated for discrete-time linear systems. Then, such method is 

modified and extended to the case, time-delays also exist is system dynamics. The 

developed digital optimal algorithm is applied to a typical rolling process. To 

show the benefits of the developed scheme, PI and PID strategies are also applied 

to the system. Making a comparison between simulation results show the 

effectiveness of the designed digital optimal scheme. 
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